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Abstract. The problem of searching for a model-based scene interpre-
tation is analyzed within a probabilistic framework. Object models are
formulated as generative models for range data of the scene. A new statis-
tical criterion, the truncated object probability, is introduced to infer an
optimal sequence of object hypotheses to be evaluated for their match to
the data. The truncated probability is partly determined by prior knowl-
edge of the objects and partly learned from data. Some experiments on
sequence quality and object segmentation and recognition from stereo
data are presented. The article recovers classic concepts from object
recognition (grouping, geometric hashing, alignment) from the proba-
bilistic perspective and adds insight into the optimal ordering of object
hypotheses for evaluation. Moreover, it introduces point-relation densi-
ties, a key component of the truncated probability, as statistical models
of local surface shape.
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1 Introduction

Model-based object recognition or, more generally, scene interpretation can be
conceptualized as a two-part process: one that generates a sequence of hypothe-
ses on object identities and poses, the other that evaluates them based on the
object models. Viewed as an optimization problem, the former is concerned with
the search sequence, the latter with the objective function. Usually the evalua-
tion of the objective function is computationally expensive. A reasonable search
algorithm will thus arrive at an acceptable hypothesis within a small number of
such evaluations.
In this article, we will analyze the search for a scene interpretation from a

probabilistic perspective. The object models will be formulated as generative
models for range data. For visual analysis of natural scenes, that is, scenes that
are cluttered with multiple, non-completely visible objects in an uncontrolled
context, it is a highly non-trivial task to optimize the match of a generative
model to the data. Local optimization techniques will usually get stuck in mean-
ingless, local optima, while techniques akin to exhaustive search are precluded
by time constraints. The critical aspect of many object recognition problems
hence concerns the generation of a clever search sequence.



In the probabilistic framework explored here, the problem of optimizing the
match of generative object models to data is alleviated by the introduction of
another statistical match criterion that is more easily optimized, albeit less re-
liable in its estimates of object parameters. The new criterion is used to define
a sequence of hypotheses for object parameters of decreasing probability, start-
ing with the most probable, while the generative model remains the measure for
their evaluation. For an efficient generation of the search sequence, it is desirable
to make the new criterion as simple as possible. On the other hand, for obtaining
a short search sequence for acceptable object parameters, it is necessary to make
the criterion as informative as is feasible. As a key quantity for sequence opti-
mization, an estimate of features’ posterior probability enters the new criterion.
The method is an alternative to other, often more heuristic strategies aimed at
producing a short search sequence, such as checking for model features in the
order of the features’ prior probability [7, 12], in a coarse-to-fine hierarchy [6],
or as predicted from the current scene interpretation [4, 8].
Classic hypothesize-and-test paradigms have been demonstrated in RANSAC-

like [5, 19] and alignment techniques [9, 10]. The method proposed here is more
similar to the latter in that testing of hypotheses is done with respect to the full
data rather than on a sparse feature representation. It significantly differs from
both, however, in that it recommends a certain order of hypotheses to be tested,
which is indeed the main point of the present study. Other classic concepts
that are recovered naturally from the probabilistic perspective are feature-based
indexing and geometric hashing [13, 20], and feature grouping and perceptual
organization [14, 15, 11].
To keep the notational load in this article to a minimum and to support ease

of reading, we will denote all probability densities by the letter p and indicate
each type of density by its arguments. Moreover, we will not introduce symbols
for random variables but only for the values they take. It is understood that
probability densities become probabilities whenever these values are discrete.

2 Generative Object Models for Range Data

Consider the task of recognizing and localizing a number of objects in a scene.
More precisely, we want to estimate object parameters (c,p) from data, where
c ∈ IN is the object’s discrete class label and p ∈ IR6 are its pose parameters
(rotation and translation). Suppose we use a sensor like a set of stereo cameras
or a laser scanner to obtain range-data points d ∈ IR3 of one view of the scene,
that is, 2 + 1/2 dimensional (2 + 1/2D) range data. A reasonable generative
model of the range-data points within the volume V(c,p) of the object c with
pose p is given by the conditional probability density

p(d|c,p) =
{

N(c) f [φ(d; c,p)] for d ∈ S(c,p),
N(c) b for d ∈ V(c,p)\S(c,p). (1)

The condition is on the object parameters (c,p). The set S(c,p) ⊂ V(c,p) is the
region close to visible surfaces of the object c with pose p, b > 0 is a constant that
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describes the background of spurious data points, and N(c) is a normalization
constant. The surface density of points is described by a function f of the angle
φ(d; c,p) between the direction of gaze of the sensor and the object’s inward
surface normal at the (close) surface point d ∈ S(c,p). The function f takes its
maximal value, that we may set to 1, at φ = 0, i.e., on surfaces orthogonal to
the sensor’s gazing direction.
Four comments are in order. First, the normalization constant N(c) generally

depends upon both c and p. However, we here neglect its dependence on the
object pose p. The consequence is that objects will be harder to detect, if they
expose less surface area to the sensor. Second, the extension of the set S(c,p)
has to be adapted to the level of noise in the range data. Third, points d ∈
S(c,p) that are close to but not on the surface have assigned surface normals of
close surface points. Fourth, given the object parameters (c,p), the data points
d ∈ V(c,p) can be assumed statistically independent with reasonable accuracy.
Our task is to estimate the parameters c and p by optimizing the match

between the generative model (1) to the range data D. Because of the condi-
tional independence of the data points in V(c,p), this means to maximize the
logarithmic likelihood

L(c,p;D) :=
∑

d∈D∩V(c,p)

L(c,p;d) :=
∑

d∈D∩V(c,p)

ln p(d|c,p) (2)

with respect to (c,p) ∈ Ω ⊂ IN × IR6. A computationally efficient version is
obtained by assuming that φ ¿ 1, which is true for patches of surface that are
approximately orthogonal to the direction of gaze. Fortunately, such parts of the
surface contribute most data points; cf. (1). Observing that

ln f(φ) = −aφ2 +O
(

φ4
)

= 2a (cosφ− 1) +O
(

φ4
)

, (3)

with some constant a > 0, we may neglect terms of order O(φ4) to obtain

L(c,p;d) ≈
{

2a [n(d; c,p) · g − 1] + lnN(c) for d ∈ S(c,p),
ln b+ lnN(c) for d ∈ V(c,p)\S(c,p), (4)

where n(d; c,p) is the object’s inward surface-normal vector at the (close) surface
point d ∈ S(c,p) and g is the sensor’s direction of gaze; both are unit vectors.
The constant ln b < 0 is effectively a penalty term for data points that come
to lie in the object’s interior under the hypothesis (c,p). Again, discarding the
terms O(φ4) in (3) is acceptable as data points producing a large error will be
rare; cf. (1).

3 Probabilistic Search for Model Matches

In this section, we derive the probabilistic search algorithm. We first intro-
duce another statistical criterion function of object parameters (c,p). The new
criterion, to be called truncated probability (TP), defines a sequence of (c,p)-
hypotheses. The hypotheses are evaluated by the likelihood (2), starting with
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the most probable (c,p)-value and proceeding to gradually less probable values,
as estimated by the TP. The search terminates as soon as L(c,p;D) is large
enough.
We will obtain the TP from a series of steps that simplify from the ideal

criterion, the posterior probability of object parameters (c,p). Although this
derivation cannot be regarded as a thoroughly controlled approximation, it will
make explicit the underlying assumptions and give some feeling for how far we
have to depart from the ideal to arrive at a feasible criterion.
The TP makes use of the probability of the presence of feature values consis-

tent with object parameters (c,p). It is thus an essential property of the approach
to treat features as random variables.

3.1 The Search Sequence

Let us define point features as surface points centered on certain local, isolated
surface shapes. Examples of such point features are corners, saddle points, points
of locally-extreme surface curvature etc. They are characterized by a pair (s, f),
where s ∈ IN is the feature’s shape-class label and f ∈ IR3 is its location. Consider
now a random variable that takes values (s, f) of point features that are related
to the objects sought in the data. Its values are statistically dependent upon the
range dataD. Let us restrict the possible feature values (s, f) to s ∈ {1, 2, . . . ,m}
and f ∈ D, such that only data points can be feature locations. This is equivalent
to setting the feature-value probability to 0 for values (s, f) with f /∈ D. The
restriction is not really correct as we will loose true feature locations between
data points. However, it will greatly facilitate the search by limiting features
to discrete values that lie close to the true object surfaces and, hence, include
highly probable candidates.
Let us introduce the concept of groups of point features. A feature group is

a set Gg = {(s1, f1), (s2, f2), . . . , (sg, fg)} of feature values with fi 6= fj for i 6= j.
A group Gg hence contains simultaneously possible values of g features.
The best knowledge we could have about true values of the object parameters

(c,p) is encapsulated in their posterior-probability density given the data D,
p(c,p|D). However, we usually do not know this density, and if we knew it, its
maximization would pose a problem similar to our initial one of maximizing the
generative model (2). We can nonetheless expand it using feature groups,

p(c,p|D) =
∑

Gg

p(c,p|D,Gg) p(Gg|D) ,
∑

Gg

p(Gg|D) = 1 . (5)

The summations are over all possible groupsGg of fixed size g. Their enumeration
is straightforward but tedious to explicate, so we omit this here. Note that the
expansion (5) is only valid, if we can be sure to find g true feature locations
among the data points.
Let us now simplify the density (5) to the density

pg(c,p;D) :=
∑

Gg

p(c,p|Gg) p(Gg|D) . (6)
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Unlike the posterior density (5), pg depends upon the feature-group size g. For-
mally, pg is a Bayesian belief network with a g-feature probability distribution
at the intermediate node. Maximization of pg with respect to (c,p) is still too
difficult a task, as all possible feature-group values contribute to all values of
(c,p)-density.
A radically simplifying step thus takes us naturally to the density

qg(c,p;D) := max
Gg

p(c,p|Gg) p(Gg|D) , (7)

where for each (c,p) only the largest term in the sum of (6) contributes. Note
that qg(c,p;D) ≤ pg(c,p;D) for all (c,p), such that qg is not normalized on the
set Ω of object parameters (c,p). This density will nonetheless be useful for our
purpose of guiding a search through Ω, as there only relative densities matter.
As pointed out above, for all this to make sense, we need g true feature

locations among the data points. To be safe, one could be tempted to set g = 1.
However, the simplifying step from density pg to density qg suggests that the
latter will be more informative as to the true value of (c,p), if the sum in
(6) is dominated for high-density values of (c,p) by only few terms. Now, less
than three point features do not generally define a finite set of consistent object
parameters (c,p). The density p(c,p|Gg) will hence not exhibit a pronounced
maximum for g < 3. High-density points of pg arise then from accumulation over
many g-feature values, i.e., terms in (6), and are necessarily lost in qg. Groups
of size g ≥ 3, on the other hand, do define finite sets of consistent (c,p)-values,
and p(c,p|Gg) has infinite density there. Altogether, feature groups of size g = 3
seem to be a good choice for our search procedure; see, however, the discussion
in Sect. 5.
Let us now introduce the logarithmic truncated probability (TP),

TP(c,p;D) := lim
ε→0

ln

∫

Sε(p)

dp′ q3(c,p
′;D) , (8)

where Sε(p) is a sphere in pose space centered on p with radius ε > 0. The
integral and limit are needed to pick up infinities in the density q3(c,p;D); see
below. The TP is truncated in a double sense: finite contributions from q3 are
truncated and q3 itself is obtained from truncating the sum in (6).
According to the discussion above, it is expected that (c,p)-values of high

likelihood (2) will mostly yield a high TP (8). Our search thus proceeds by
evaluating, in that order,

L(c1,p1;D), L(c2,p2;D), . . . with

TP(c1,p1;D) ≥ TP(c2,p2;D) ≥ . . . , (c1,p1) = arg max
(c,p)∈Ω

TP(c,p;D) . (9)

The search stops, as soon as L(ck,pk;D) > Θ or all (c,p)-candidates have
been evaluated. In the former case, the object identity ck and object pose pk

are returned as the estimates. In the latter case, it is inferred that none of the
objects sought is present in the scene. Alternatively, if we know a priori that one
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of the objects must be present, we may pick the object parameters that have
scored highest under L in the whole sequence. The algorithm will be formulated
in more detail in Sect. 3.3.
In the density (7) that guides the search, one of the factors is the density of

the object parameters conditioned on the values G3 of a triple of point features.
This is explicitly

p(c,p|G3) =











∑h(G3)
i=1 γi(G3) δc,Ci(G3) δ[p− Pi(G3)]

+
[

1−∑h(G3)
i=1 γi(G3)

]

ρ1(c,p;G3) for G3 ∈ C,
ρ2(c,p;G3) for G3 /∈ C.

(10)

Here δc,c′ is the Kronecker delta (elements of the unit matrix) and δ(p − p′) is
the Dirac-delta distribution on pose space; C is the set of feature-triple values
consistent with any object hypotheses; h(G3) is the number of object hypotheses
consistent with the feature triple G3; (Ci(G3), Pi(G3)) are the consistent (c,p)-
hypotheses; γi(G3) ∈ (0, 1) are probability-weighting factors for the hypotheses.
Generally we have

h(G3)
∑

i=1

γi(G3) < 1 , (11)

which leaves a non-vanishing probability 1 −∑i γi > 0 that three consistent
features do not all belong to one of the objects sought. Accordingly, the density
p(c,p|G3) on Ω contains some finite, spread contribution ∝ ρ1(c,p;G3), a “back-
ground” density, in the consistent-features case. In the inconsistent-features case,
the density is similarly spread on Ω and given by some finite term ρ2(c,p;G3).
Clearly, only the values (Ci, Pi) of object parameters where the density (10) is
infinite will be visited during the search (9); cf. (8).
The functions γi(G3), Ci(G3), Pi(G3) are computed by generalized geometric

hashing. Let G3 = {(s1, f1), (s2, f2), (s3, f3)}. As key into the hash table we use
the pose invariants

(s1, s2, s3, ||f1 − f2||, ||f2 − f3||, ||f3 − f1||) , (12)

appropriately shifted, scaled, and quantized. Here || · || denotes the Euclidean
vector norm. The poses Pi(G3), i = 1, 2, . . . , h(G3), are computed from matching
the triple G3 to h(G3) model triples from the hash table. Small model distortions
that result from an error-tolerant match are removed by orthogonalization of the
match-related pose transforms. The weight γi(G3) and the object class Ci(G3)
are drawn along with each matched model triple.
The weights γi(G3) can be adapted during a training period and during op-

eration of the system in an unsupervised manner. One simply needs to count
the number of instances where a feature triple G3 draws a correct set of object
parameters (Ci, Pi), i.e., one with L(Ci, Pi;D) > Θ. The adapted γi(G3) rep-
resent empirical grouping laws for the point features. Since it will often be the
case that γi(G3) ∝ 1/h(G3) for all i = 1, 2, . . . , h(G3), it turns out that hypothe-
ses drawn by feature triples less common among the sought objects tend to be
visited before the ones drawn by more common triples during the search (9).
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In order to fully specify the TP (8) and formulate our search algorithm, it
remains to establish a model for the feature-value probabilities p(G3|D) given
the data D; cf. (7). This is the subject of the next section.

3.2 Inferring Local Surface Shape from Point-Relation Densities

In principle, a generative model of range data on local surface shapes s can be
built analogous to (1). Thus, we may construct a conditional probability density
p(D|s, f , r), where r ∈ IR3 are the rotational parameters of the local surface
patch represented by the point feature (s, f). During recognition, however, it
would then be necessary to optimize the parameters r for each s ∈ {1, 2, . . . ,m}
and f ∈ D, in order to obtain the likelihood of each feature value (s, f). Besides
the huge overhead of doing so without being interested in an estimate for r,
this procedure would confront us with a problem similar to our original one of
optimizing p(D|c,p). On the other hand, the density p(D|s, f) is an infeasible
model because of high-order correlations between the data points D. Neglecting
these correlations would throw out all information on surface shape s.
The strategy we pursue here is to capture some of the informative cor-

relations between data points D in a family of new representations T (c) =
{∆1,∆2, . . . ,∆N}, c ∈ IR3. Each T (c) represents the geometry of the data D
relative to the point c, and each ∆i represents geometric relations between mul-
tiple data points. A reasonable statistical model is then obtained by neglecting
correlations between the ∆i.

Learning Point-Relation Densities. The point relations we are going to
exploit here are between four data points, that is, tetrahedron geometries, where
three of the points are selected from a spherical neighborhood of the fourth. For
four points x1,x2,x3, c ∈ IR3 we define the map





x1

x2

x3



 7→ ∆(c;x1,x2,x3) :=







r/R

d
/
√

r2 − 4a
3
√

3

4a/3
√
3(r2 − d2)






∈ [0, 1]× [−1, 1]× [0, 1] ,

(13)
where r is the mean distance of the center c to x1,x2,x3, R is the radius of the
spherical neighborhood of c, d is the (signed) distance of c to the plane defined
by x1,x2,x3, and a is the area of the triangle they define

1. Explicitly,

r =
1

3

3
∑

i=1

||xi − c|| , (14)

d = sgn[g · (x1 − c)]
|| (x1 − c) · [(x2 − x1)× (x3 − x1)] ||

|| (x2 − x1)× (x3 − x1) ||
, (15)

a =
1

2
|| (x2 − x1)× (x3 − x1) || . (16)

1 The quantity introduced in (13) will be denoted by ∆(c;x1,x2,x3), ∆(c), or simply
∆ to indicate its dependence on points as needed.
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As seen in (15), the sign of d is determined by the direction of gaze g. We can
now define the family of tetrahedron representations T (c) by

T (c) :=
{

∆(c;d1,d2,d3)
∣

∣

∣ {d1,d2,d3} ⊆ D ∧ max
i=1,2,3

||di − c|| < R

∧ max
i=1,2,3

||di − c|| − min
i=1,2,3

||di − c|| < ε
}

. (17)

The parameter ε > 0 sets a small tolerance for differences in distance to c among
each data-point triple d1,d2,d3, that is, ideally all three points have the same
distance. In practice, the tolerance ε has to be adapted to the density of range-
data points D to obtain enough ∆-samples in each T (c). Figure 1 depicts the
geometry of the tetrahedron representations.

PSfrag replacements

d1 d2

d3
c

r r
r
d
a

Fig. 1. Transformation of range data points to a tetrahedron repre-
sentation. For an inspection point c, the 3-tuples (r, d, a) are collected
and normalized [cf. (13)] for each triple of data points d1,d2,d3 ∈ D

with (approximately) equal distance r ∈ (0, R) from c.

One of the nice properties of the tetrahedron representation (17) is that for
any surface of revolution we get at its symmetry point c samples ∆ ∈ T (c) that
are confined to a surface in ∆-space characteristic of the original surface shape.
For surfaces of revolution, the distinctiveness and low entropy of the distribution
of range data D sampled from a surface in 3D is thus completely preserved in the
tetrahedron representation. For more general surfaces, it is therefore expected
that a high mutual information between ∆-samples and shape classes can be
achieved.
Our goal is to estimate point-relation densities for each shape class s =

1, 2, . . . ,m. Samples are taken from tetrahedron representations centered on fea-
ture locations f from a training set Fs, that is, from ∪f∈Fs

T (f). Moreover,
we add a non-feature class s = 0 that lumps together all the shapes we are
not interested in. The result are the shape-conditioned densities p(∆|s) for
∆ ∈ [0, 1]× [−1, 1]× [0, 1] and s = 0, 1, 2, . . . ,m. In particular, p(∆|s) = p(∆|s, f)
for ∆ ∈ T (f).
Estimation of p(∆|s) is made simple by the fact that we get O(n3), i.e., a lot

of samples of ∆ for each feature location f with n data points within a distance
R. For our application, it is sufficient to count ∆-samples in bins to estimate
probabilities p(∆|s) for discrete ∆-events as normalized frequencies.

Inferring Local Surface Shape. Let the features’ prior probabilities be p(s)
for s = 1, 2, . . . ,m, that is, p(s) ∈ (0, 1) is the probability that any given data
point from D is a feature location of type s. The feature priors are virtually
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impossible to know for general scenes. We do know, however, that p(s)¿ 1 for
s = 1, 2, . . . ,m, i.e., the overwhelming majority of data points are not feature
locations. This must be so for a useful dictionary of point features. It thus makes
sense to expand the logarithm of the shapes’ posterior probabilities, given l
samples ∆1(f),∆2(f), . . . ,∆l(f) ∈ T (f), f ∈ D,

ln p[s|∆1(f),∆2(f), . . . ,∆l(f)] = ln p(s) +

l
∑

i=1

{ln p[∆i(f)|s]− ln p[∆i(f)|0]}

+ O[p(1), p(2), . . . , p(m)] , (18)

and neglect the terms O[p(1), p(2), . . . , p(m)]. Remember that p(∆|0) is the ∆-
density of the non-feature class. The expression (18) neglects correlations be-
tween the ∆i(f) ∈ T (f).
The sample length l for each representation T (f) will usually be l ¿ |T (f)|,

the cardinality of the set T (f). It is in fact crucial that we do not have to generate
the complete representations T (f) for recognition, as this would require O(n3)
time for n data points within a distance R from f . Instead, it is possible to draw
a random, unbiased sub-sample of T (f) in O(n) and O(l) time.
The first term in (18) can be split into

ln p(s) = ln q(s) + ln

m
∑

s′=1

p(s′) , (19)

where q(s) ∈ (0, 1) are the relative frequencies of shape classes s = 1, 2, . . . ,m.
Now, these frequencies do not differ between features over many orders of mag-
nitude for a useful dictionary of point features2. The dependence of (19) on the
shape class s is thus negligible compared to the sum in (18) for reasonable sam-
ple lengths l À 1 (several tens to hundreds). The first term in (18) may hence
be disregarded, and we are left with the feature’s log-probability

Φ(s, f ;D) := ln p[s|∆1(f),∆2(f), . . . ,∆l(f)] + const.

≈
l
∑

i=1

{ln p[∆i(f)|s]− ln p[∆i(f)|0]} , (20)

that is, a log-likelihood ratio.

3.3 The Search Algorithm

We still need to determine the TP (8) for guiding the search (9). Let again G3 =
{(s1, f1), (s2, f2), (s3, f3)}. It is reasonable to assume statistical independence of
the point features in G3, as long as there are many different objects in the

2 A feature that is more than a hundred times less frequent than the others should
usually be dropped for computational efficiency.
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world that have these features3. We hence model the feature-triples’ posterior
probability p(G3|D) in (7) as

p(G3|D) =
3
∏

i=1

p[si|∆1(fi),∆2(fi), . . . ,∆l(fi)] ∝ exp
[

3
∑

i=1

Φ(si, fi;D)

]

. (21)

The TP can then be expressed as

TP(c,p;D) = max
G3∈C



ln

h(G3)
∑

i=1

γi(G3) δc,Ci(G3) δp,Pi(G3) +
3
∑

i=1

Φ(si, fi;D)



 , (22)

up to additive constants. The first term under the max-operation is the contri-
bution from feature grouping4, the second from single features. In particular, we
get

TP(c,p;D) = −∞ for

(c,p) /∈
{

(Ci(G3), Pi(G3))
∣

∣G3 ∈ C, i ∈ {1, 2, . . . , h(G3)}
}

, (23)

that is, for (c,p)-values not suggested by any feature triple G3.
We are now prepared to formulate the search algorithm. The following is not

meant to specify a flow of processing, but rather a logic sequence of operations.

1. From all possible feature values (s, f) ∈ {1, 2, . . . ,m} ×D, select as feature
candidates the values with log-probability Φ(s, f ;D) > Ξ.

2. From the feature candidates, generate all triples G3. Use their keys (12) into
a hash table to find the associated object hypotheses (Ci(G3), Pi(G3)) and
their weights γi(G3) for i = 1, 2, . . . , h(G3).

3. For the object hypotheses obtained, compute the TPs.
4. Evaluate the object hypotheses by the likelihood L in the order of decreasing
TP, starting with the hypothesis scoring highest under TP. Skip duplicate
hypotheses. Stop when L(c,p;D) > Θ for a hypothesis (c,p).

5. Return the last evaluated object parameters (c,p) as the result, if L(c,p;D) >
Θ. Else conclude that there is none of the sought objects in the data.

Some comments are in order.

– Comment on step 1: The restriction to the most probable feature values by
introduction of the threshold Ξ is optional. It is a powerful means, however,
to radically speed up the algorithm, if there are many range data points
D. If the probability measure on the features is reliable and Ξ is adjusted
conservatively, the risk of missing a good set of object parameters is very
small; see Sect. 4.1 below.

3 These objects may or may not be in our modeled set.
4 The factor δp,Pi(G3) is an idealization. Since the pose parameters p are continuous,
the hashing with the key (12) is necessarily error tolerant. The factor is then to be
replaced by an integral

∫

Pi(G3)
dp′ δ(p− p′) for a set Pi(G3) of pose parameters.
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– Comment on step 2: Feature triples G3 /∈ C, that is, inconsistent triples, are
discarded by the hashing process.

– Comment on step 3: Computation of TP is cheap as the hashed weights γi
from step 2 and the feature’s log-probabilities Φ from step 1 can be used; cf.
(22).

– Comment on step 4: Duplicate hypotheses may be very unlikely, but this
depends on when two hypotheses are considered equal. In any case, skipping
them realizes the maxG3∈C-operation in the TP (22), ensuring that each
hypothesis is drawn only by the feature triple which makes it most probable.

– Comment on step 5: If the likelihood L does not reach the threshold Θ
but we know a priori that at least one of the objects must be present in
the scene, the algorithm may return the object parameters (c,p) that have
scored highest under L.

A complete scene interpretation often involves more than one recognized set
of object parameters (c,p). A simultaneous search for several objects is possible
within the current framework, although it will be computationally very costly.
It requires evaluation of TPs and likelihoods

TP(c1,p1, c2,p2, . . . ;D) , L(c1,p1, c2,p2, . . . ;D) (24)

for a combinatorially enlarged set of object parameters (c1,p1, c2,p2, . . .). A
much cheaper, although less reliable, alternative is sequential search, where the
data belonging to a recognized object (c,p) are removed prior to the algorithm’s
restart.

4 Experiments

We have performed two types of experiment. One tests the quality of the measure
(20) of the features’ posterior probability. The other probes the capabilities of
the complete algorithm for object segmentation and recognition. All experiments
were run on stereo data obtained from a three-camera device (the ‘Triclops Stereo
Vision System’, Point Grey Research Inc.). The stereo data were calculated
from three 120 × 160-pixel images by a standard least-sum-of-pixel-differences
algorithm for correspondence search. The data were accordingly of a rather low
resolution. They were moreover noisy, contained a lot of artifacts and outliers,
and even visible surfaces lacked large regions of data points, as is not uncommon
for stereo data; see Figs. 4 and 5.

4.1 Local Shape Recognition

Only correct feature values are able to draw correct object hypotheses (c,p),
except from accidental, unprobable events. For an acceptable search length it is,
therefore, crucial that correct feature values yield a high log-probability Φ; cf.
(20) and (22). This is even more crucial, if feature candidates are preselected by
imposing a threshold Φ(s, f ;D) > Ξ; cf. step 1 of the algorithm in Sect. 3.3.
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As point features, we chose convex and concave rectangular corners. The
training set contained 221 feature locations that produced 466,485 ∆-samples
for the densities p(∆|s), s ∈ {“convex corner”, “concave corner”}. For the non-
feature class s = 0 we obtained 9,623,073 ∆-samples from several thousand
non-feature locations (mostly on planes, also some edges). The parameters for
∆ sampling were R = 15 mm and ε = 1 mm; cf. Sect. 3.2. The ∆-samples were
counted in 15 × 20 × 10 bins, which corresponds to the discretization used for
the ∆-space [0, 1]× [−1, 1]× [0, 1].
Feature-recognition performance was evaluated on 10 scenes that contained

(i) an object with planar surface segments, edges, saddle points, and altogether
65 convex and concave corner points (feature locations); (ii) a piece of loosely
folded cloth that contributed a lot of potential distractor shapes. The sample
length was l = 50 ∆-samples; cf. Sect. 3.2. Since drawing ∆-samples is a stochas-
tic process, we let the program run 10 times on each scene with different seeds
for the random-number generator to obtain a more significant statistics.
Corner points are particularly interesting as test features, since they allow for

comparison of the proposed log-probability measure (20) with the classic method
of curvature estimation. Let c1(f ;D) and c2(f ;D) be the principal curvatures of a
second-order polynomial that is least-squares fitted to the data points from D in
the R-sphere around the point f . Because the corners are the maximally curved
parabolic shapes in the scenes, it makes sense to use the curvature measures

C(s = “convex corner”, f ;D) := min[c1(f ;D), c2(f ;D)] , (25)

C(s = “concave corner”, f ;D) := min[−c1(f ;D),−c2(f ;D)] , (26)

as alternative measures of “cornerness” of the point f for convex and concave
shapes, respectively. We thus compare Φ(s, f ;D) as defined in (20) to C(s, f ;D)
on true and false feature values

(s, f) ∈ {“convex corner”, “concave corner”} ×D . (27)

In Fig. 2 we show the distribution of Φ- and C-scores for the 65 true feature
values in relation to their distribution for all possible feature values, which are
more than 100,000. As can be seen, the Φ- and C-distributions for the popu-
lation of true values are both distinct from, but overlapping with the Φ- and
C-distributions for the entire population of feature values. A qualitative differ-
ence between Φ- and C-scoring of feature values is more obvious in the ranking
they produce. In Fig. 3 we show the distribution of Φ- and C-ranks of the true
feature values among all feature values, with 1 being the first rank, i.e., highest
Φ/C-score, and 0 the last. Both Φ- and C-ranks of true values are most fre-
quently found close to 1 and gradually less frequently at lower ranks. There are
almost no true features Φ-ranked below 0.6. The C-ranks, in contrast, seem to
scatter uniformly in [0, 1] for part of the true features. These features score under
C as poorly as the non-features. If using the C-score, they would in practice not
be available for object recognition, as they would only be selected to draw an
object hypothesis after hundreds to thousands of false feature values.

12
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Fig. 2. Score distribution of true (transparent bars, thick lines) and all possible (filled
bars, thin lines) feature values as produced by the Φ-score (left) and the C-score (right).
Horizontally in each plot extends the score, vertically the normalized frequency of
feature values.
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Fig. 3. Rank distribution of true feature values among all possible feature values as
produced by the Φ-score (left) and the C-score (right); rank 1 is the highest score in
each data set, rank 0 the lowest score. Horizontally in each plot extends the rank,
vertically the normalized frequency of true feature values.

The result of the comparison comes not as a complete surprise. Some kind of
surface-fitting procedure is necessary for estimation of the principal curvatures
[2, 3, 18]. If not a lot of care is invested, fitting to data will always be very
sensitive to outliers and artifacts, of which there are many in typical stereo
data. A robust fitting procedure, however, has to incorporate in some way a
statistical model of the data that accounts for its outliers and artifacts. We here
propose to go all the way to a statistical model, the point-relation densities, and
to do without any fitting for local shape recognition.

4.2 Object Segmentation and Recognition

We have tested segmentation and recognition performance of the proposed al-
gorithm on two objects. One is a cube from which 8 smaller cubes are removed
at its corners; the other is a subset of this object. These two objects can be
assembled to create challenging segmentation and recognition scenarios.
The test data were taken from 50 scenes that contained the two objects to

be recognized, and additional distractor objects in some of them. A single data
set consisted of roughly 5,000 to 10,000 3D points. As an acceptable accuracy
for recognition of an object’s pose we considered what is needed for grasping
with a hand (robot or human), i.e., less than 3 degrees of angular and less than
5 mm of translational misalignment. For a fixed set of parameters of the search
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algorithm, in all but 3 cases the result was acceptable in this sense. Processing
times ranged roughly between 1 and 50 seconds, staying mostly well below 5
seconds, on a Sun UltraSPARC-III workstation (750 MHz).
In Figs. 4 and 5 we show examples of scenes, camera images, range data, and

recognition results. Edges drawn in the data outline the object pose recognized
first. The other object can be recognized after deletion of data points belonging
to the first object.

Top View

Fig. 4. Example scene with the two objects we used for evaluation of segmentation and
recognition performance. The smaller object is stacked on the larger as drawn near the
center of the figure. Shown are one of the camera images and three orthogonal views of
the stereo-data set. The object pose recognized first is outlined in the data. The length
of both objects’ longest edges is 13 cm. The recognition time was 1.2 seconds.

5 Conclusion

We have derived from a probabilistic perspective a new variant of hypothesize-
and-test algorithm for object recognition. A critical element of any such algo-
rithm is the ordered sequence of hypotheses that is tested. The ordered sequence
that is generated by our algorithm is inferred from a statistical criterion, here
called the truncated probability (TP) of object parameters. As a key component
of the truncated probability, we have introduced point-relation densities, from
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Top View

Fig. 5. Example scene with the two objects we used for evaluation of segmentation
and recognition performance; cf. Fig. 4. The recognition time was 1.5 seconds.

which we obtain an estimate of posterior probability for surface shape given
range data.

One of the strengths of the algorithm, as demonstrated in experiments, is its
very high degree of robustness to noise and artifacts in the data. Raw stereo-data
points of low quality are sufficient for many recognition tasks. Such data are fast
and cheap to obtain and are intrinsically invariant to changes in illumination.

We have argued in Sect. 3.1 that feature groups of size g = 3, i.e., minimal
groups, are a good choice for guiding the search for model matches. However,
if we can be sure that more than three true object features are represented in
the data, it may be worth considering larger groups. For g > 3, the density
(10) that enters the TP (8) looks more complicated. In particular, hash tables of
higher dimension are needed to accommodate the grouping laws, i.e., the weights
γ(Gg). If we do without the grouping laws, using larger groups is equivalent to
having more than just the largest term of the density (6) contributing to the
TP; cf. (7). In the limit of large feature groups, the approach then resembles
generalized-Hough-transform and pose-clustering techniques [1, 17, 16].

One avenue of research that is suggested here is for generalizations of point-
relation densities. Alternative representations of range data have to be explored
for learning posterior-probability estimates for various surface shapes.
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