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Abstract. It is highly desirable that an imaging system has a single effective
viewpoint. Central catadioptric systems are imaging systems that use mirrors to
enhance the field of view while keeping a unique center of projection. A general
model for central catadioptric image formation has already been established. The
present paper exploits this model to study the catadioptric projection of lines.
The equations and geometric properties of general catadioptric line imaging are
derived. We show that it is possible to determine the position of both the effec-
tive viewpoint and the absolute conic in the catadioptric image plane from the
images of three lines. It is also proved that it is possible to identify the type of
catadioptric system and the position of the line at infinity without further infor-
mation. A methodology for central catadioptric system calibration is proposed.
Reconstruction aspects are discussed. Experimental results are presented. All the
results presented are original and completely new.

1 Introduction

Many applications in computer vision, such as surveillance and model acquisition for
virtual reality, require that a large field of view is imaged. Visual control of motion can
also benefit from enhanced fields of view [1,2/4]. One effective way to enhance the field
of view of a camera is to use mirrors [5)6/7,819]. The general approach of combining
mirrors with conventional imaging systems is referred to as catadioptric image formation
[3].

The fixed viewpoint constraint is a requirement ensuring that the visual sensor only
measures the intensity of light passing through a single point in 3D space (the projec-
tion center). Vision systems verifying the fixed viewpoint constraint are called central
projection systems. Central projection systems present interesting geometric properties.
A single effective viewpoint is a necessary condition for the generation of geometrically
correct perspective images [[10], and for the existence of epipolar geometry inherent to
the moving sensor and independent of the scene structure [[1]]. It is highly desirable for
any vision system to have a single viewpoint. In [[L0], Baker et al. derive the entire class
of catadioptric systems with a single effective viewpoint. Systems built using a parabolic
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mirror with an orthographic camera, or an hyperbolic, elliptical or planar mirror with a
perspective camera verify the fixed viewpoint constraint.

In [12], Geyer et al. introduce an unifying theory for all central catadioptric systems
where conventional perspective imaging appears as a particular case. They show that
central panoramic projection is isomorphic to a projective mapping from the sphere to a
plane with a projection center on the perpendicular to the plane. A modified version of
this unifying model is presented in [21]]. The mapping between points in the 3D world and
points in the catadioptric image plane is split into three steps. World points are mapped
into an oriented projective plane by a linear function described by a 3 x 4 matrix (similar
to the projective camera model referred in [[13]]). The oriented projective plane is then
transformed by a non-linear function f(). The last step is a collineation in the plane
depending on the mirror parameters, the pose of the camera in relation to the reflective
surface and the camera intrinsic parameters. The model obtained is general, intuitive and
isolates the non-linear characteristics of general catadioptric image formation.

A line in 3D projects into a conic in a general catadioptric image. The equations and
geometric properties of the resulting conic are derived in [12]. In [12][14] the intrinsic
calibration of central catadioptric systems using line projections is discussed. A method
to calibrate a system consisting of a paraboloid and an orthographic lens using two sets of
parallel lines is presented in [[14]]. Our work uses the established mapping model to derive
the equations and geometric properties of general central catadioptric line projections.
The derived geometric properties are used to determine the position of the effective
viewpoint and the absolute conic in the catadioptric plane from three line images. With
the effective viewpoint and the absolute conic it is possible to compute the position of
the line at infinity from two line images. Moreover we show that mirror parameters can
be partially recovered directly from a single line image. The proposed theory is useful
to both calibration and 3D reconstruction applications. Some experimental results are
presented.

2 General Model for Central Catadioptric Imaging

In [[10], Baker et al. derive the entire class of catadioptric systems with a single effective
viewpoint. Systems built using a a parabolic mirror with an orthographic camera, or
an hyperbolic, elliptical or planar mirror with a perspective camera verify the fixed
viewpoint constraint. An unifying model for all central projection panoramic imaging is
proposed in [12]. This section presents a modified version of this model.

Figll is a scheme of the catadioptric system combining an hyperbolic reflective
surface with a perspective camera. The hyperbola is placed such that its axis is the
z-axis, its foci are coincident with O and Ocapy (the origin of coordinate systems R
and Rcam), its latus rectum is 4p and the distance between the foci is d. Light rays
incident with O (the inner focal point) are reflected into rays incident with Ocay, (the
outer focal point). Assume a perspective camera with projection center in O ¢,y pointed
to the mirror surface. All the captured light rays go originally through the inner focus
of the hyperbolic surface. The effective viewpoint of the grabbed image is O and is
unique. Elliptical catadioptric images are obtained combining an elliptical mirror with
a perspective camera in a similar way. In the parabolic situation a parabolic mirror is
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Fig. 1. Central catadioptric vision system

placed such that its axis is the z-axis, and its unique finite real focus is coincident with
O. Light rays incident with O are reflected into rays parallel with the z-axis which are
captured by an orthographic camera with image plane perpendicular to the z-axis. The
effective viewpoint is in O and is unique. A catadioptric system made up of a perspective
camera steering a planar mirror also verifies the fixed viewpoint constraint. The effective
projection center is behind the mirror in the perpendicular line passing through camera
center. Its distance to the camera center is twice the distance between the planar mirror
and the camera.

Consider a generic scene point, visible by the catadioptric system, with cartesian co-
ordinates X, in the catadioptric reference frame. The corresponding homogeneous rep-
resentation is X! . Visible points in the scene X! are mapped into projective rays/points
x in the catadioptric system reference frame centered in the effective viewpoint. The
transformation is linear being described by a 3 x 4 matrix P. We can think of the projec-
tive rays x as points in an oriented projective plane T?2. Notice that in standard projective
geometry, given a projective point X, Ax represents the same point whenever A # 0.
In an oriented projective plane this is only true if A > 0 [I7)]. This is important when
modelling panoramic vision sensors where diametrically opposite points relative to the
projection center can be simultaneously imaged.

Leam = Mc.f(w) (1)
v—¢& 0 0

M. = 0 §—¢0 (2)
0 0 1

T y z
) ) +
(\/x2+y2+22 VEZ+y2 + 22" /22 +y? + 22

To each oriented projective ray/point X, corresponds a projective ray/point X¢am in a
coordinate system whose origin is in the camera projection center. Notice that x and Xcam

f(zx) = &)’ 3)
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Table 1. Column 1: Reflective surfaces for the different cases of central panoramic imaging.
Column 2 and 3: Parameters £ and v of the general central catadioptric model

Mirror Surface 15 P
Parabolic \/W =2p—=z 1 L+2p
. (=—4)° _ z®+y® - d d+2p
Hyperbolic AW/Pr17—20)2  p(\/dtap—2p) ! V@ +4p? | \/d2+4p?
.. (z—£)? 22442 _ d d—2p
Elliptical (1 (/a2 +4p2+2p))? " p(\/d2+ap2+2p) ' Va2 +ap? | /a2 +ap?
Planar z= % 0 1

must intersect in the mirror surface (see Fig[Tl). We can think of this transformation as a
non-linear mapping between two oriented projective planes. The relationship between
these two points can be written in the form of equation[Il(the proof is available at [22]).
The matrix M depends on the mirror parameters (see equation[2]). The parameters £ and
1 are presented in Table [Tl Function f() is given by equation 3] Notice that f(Ax) = Ax
whenever A > 0. f() is a positive homogeneous function and correspondence x. = f(x)
can be interpreted as a non-linear mapping between two oriented projective planes.

X; = KcReXcam represents the measured point in the catadioptric image plane.
The relation between Xx; and Xcam, is established by a collineation depending on camera
orientation (matrix R.) and camera intrinsic parameters (matrix K.). In the case of the
hyperbolic and elliptical systems, the fixed viewpoint constraint is verified whenever the
camera center is coincident with the second focus of the reflective surface. There are
no restrictions on the camera orientation and R, is a 3 x 3 rotation matrix specifying
the camera pose. The same can be said when using a planar mirror. For the parabolic
situation the camera is orthographic with center at infinity. However there is an important
restriction, its image plane must be orthogonal to the paraboloid axis. We are going to
assume that R, = I for the parabolic mirror situation.

z; = H..f(P.X") 4)

H.=K.R..M, ®)

A scheme of the proposed model for general central projection is presented in Fig.
The mapping between points in the world X, and projective points in image x; is
given by equation @ Points X2 in projective 3D space are transformed in points x in
the oriented projective plane with origin in the effective viewpoint of the catadioptric
systems (x = P.X! ). Points x are mapped in points X, in a second oriented projective
plane. The correspondence function x. = f(x) is non-linear. Projective points x; in
catadioptric image plane are obtained after a collineation H, (x; = H¢xc).

Figure[2] depicts an intuitive “concrete” model for the proposed general central pro-
jection mapping. To each visible point in space corresponds an oriented projective ray x
joining the 3D point with the effective projection center O. The projective ray intersects
a unit sphere centered in O in a unique point Q. Consider a point O with coordinates
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Fig. 2. “Concrete” model for central catadioptric image formation (point and line imaging)
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(0,0, —&)*. To each x corresponds an oriented projective ray X, going through O and
Q. Points in catadioptric image plane x; (not represented in the figure) are obtained
after a collineation H, of 2D projective points X.. The scene is projected in the sphere
surface and then points on the sphere are re-projected in catadioptric image plane from a
novel projection center O. Point O only depends on mirror parameters (see Table[T).

3 General Central Catadioptric Imaging of Lines

Assume a line in space lying on plane IT = (n,,n,, n, 0)" which contains the effective
viewpoint O. Accordingly to the model of Fig. 2| line world points X, are mapped in
the oriented projective plane on points x lying on n = (n,,ny,n.)" (n*.x = 0).

n2(1—¢&%) —n2&%  ngny,(1—€%) ngn,
= nany (1 — &%) ni(l — &) —n2& nyn, (6)

2
NgNy NyN, n;

The non-linear f mapping (equation [3]) establishes the relation between points x
and x.. It can be shown that points x verifying n®.x = 0 are mapped into points X
which verify x.!$2x. = 0 with 2 given by equation[@)). Thus a line in space is mapped
into a conic curve §2. Points x. and x; in the catadioptric image plane are related by a
familiar collineation H. Since a projective transformation maps a conic on a conic we
can conclude that in general the catadioptric image of a world line is a conic curve. This
section assumes H, = I and the study will focus on the non-linear f() mapping.
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Fig[2 depicts central catadioptric line projection using the sphere model. The world
line in space is projected into a great circle in the sphere surface. This great circle is
the curve of intersection of plane /I, containing both the line and the projection center
O, and the unit sphere. The projective rays X, joining O, to points in the great circle,
form a central cone surface. The central cone, with vertex in the O, projects into the
conic §2 in the canonical image plane. Notice that we can always think of a conic {2
in the projective plane as a central cone of projective rays with vertex in the projection
center. 2 is a degenerate conic whenever n, = 0. If the imaged line is co-planar with
the Z-axis of the catadioptric reference frame, the corresponding catadioptric image is
also a line. This can be easily understood using the sphere model for the mapping.

A=(n2+ny)(1—¢&)—n2¢ )

N, )
\/ N2+ nZ

Equation [7] gives the conic discriminant A. For A = 0, A > 0 and A < 0 the
conic curve §2 is respectively a parabola, an hyperbola and an ellipse/circle. Consider
the normal n = (n,ny,n.)" to plane I7 (Fig.[2) and the angle o between n and plane
XOY (equation B). From equation [7land @]it results that A = 0 whenever tan(a)? =
(1 — £2)/€2. If the normal to the plane IT intersects the unitary sphere in the dashed
circles of Fig. Dlthen the line image is a parabola. Moreover if the intersection point is
between the circles the line image is an hyperbola and if the intersection point is above
or below the circles the line image is an ellipse/circle.

a = arctan(

®)

M= (_nyaniao)t (9)
_ NpNy NyNy
PlaPZZ(_ 2 y T Y P 71>t
(n§+n§)(1i§,/l+n2jni) (niJrng)(l:tf,/lJrn%jng)
(10)

Affine (center, asymptotes) and euclidean (principal axis, focus, eccentricity) pa-
rameters of the conic curve 2 (equation [6) were derived in [12|21] assuming the line
at infinity and the circular points at their canonical positions [13,20]. The catadioptric
image of a line is the conic curve §2 only if collineation H is the identity. In general
H, # I and the derived affine and euclidean properties do not hold. Equations Qand
present two results that will be needed latter. ;. is one of the principal axis of §2 and P,
and P are the points where 1 intersects the conic curve.

4 Geometric Properties of Central Catadioptric Line Images

In the derived central projection model, points in the scene are projected on the surface
of an unitary sphere centered in the effective viewpoint O. The catadioptric image is
captured by a conventional perspective camera which projects the points from the sphere
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Fig. 3. Projecting sphere points in the plane at infinity and the projective transformation H¢ of
I in the catadioptric image plane.

to a plane. If H, = I then the image plane is on the canonical position (by canonical we
mean orthogonal to the forward looking Z axis). Consider that, whenever H, = I, the
image plane is the plane at infinity /7. To each sphere point P corresponds a projective
ray going through the camera center O.. Point P projects on P which is the intersection
of the projective ray O.P with IT,

Consider a line in the scene which lies in plane IT depicted in Fig[3l I, going
through the effective viewpoint O with normal n, intersects the spherical surface in a
great circle. Points on the great circle define a central cone of projective rays with vertex
in O.. The central cone of projective rays intersect I/, in the conic curve {2 (equation
[6). Moreover a pencil of parallel planes intersects 1., in the same line (the horizon
line) and a pencil of parallel lines intersects I, in the same point (the direction point).
Returning to Fig. B] 7 is the horizon line of plane I, D is the direction point of line
P1Ps, and N is the direction orthogonal to II. Notice that space line P;P5 lies on
plane I7 thus 7tD = 0. Moreover lines P1 P2, 0.0, projective rays O.P1, O.P5 and
the normal n are co-planar, thus the corresponding direction points D, O, P,, P, and
N are all collinear.

Collineation H, depends on camera intrinsic parameters, the relative rotation be-
tween the imaging device and the reflective surface, and mirror parameters (equation
B). In general H, # I and the the catadioptric image and IT, are related by a gen-
eral projective transformation between planes (Fig. B). A generic pomt P is mapped
in P = H.P, the conic curve £2 is imaged in 2 =H, '2H, !, and the line W is
transformed in i = H. ! w [13119].

In general the projective transformation H, changes the position of the line at infinity
and the circular conic envelope 2. If H. # I the affine and euclidean parameters
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derived for the conic curve £2 in [[12]21] do not hold. This is illustrated in Fig. Bl for the
major axis y. From equation[@lone concludes that both the principal point O = (0,0, 1)*
and the direction point of the normal N = (n,,n,,n.)" lie on u (u'O = p!'N = 0).
Thus the major axis p is the intersection line between I, and the plane containing
both the normal direction 12 and the Z axis. The collineation H. between I/, and the
catadioptric image plane maps p in /i and 2 in 2. In general i is no longer a principal
axis of £2. Nevertheless the projective transformation preserves collinearity, incidence
and the cross-ratio. These invariants will be exploited to establish geometric relations
for line catadioptric imaging when H # 1.

Fig. 4. Three world lines projected on the unitary sphere.

4.1 Three Catadioptric Line Images

Consider three world lines visible in the catadioptric image plane. Configurations leading
to degenerate conics §2 are excluded. Thus the imaged lines are not co-planar with the
Z axis and the central catadioptric system is not a perspective camera.

The three world lines lie on planes I1y, Il and I3, with normals 11, ne and ng,
going through the effective viewpoint O. As depicted in Fig.H] each plane intersects the
unit sphere in a great circle. Great circles lying in planes I1; and II; intersect in antipodal
points F;; and By;. Line Fj;B;;, containing the effective viewpoint 0, intersects the plane
at infinity I1, in point ]_Dij. ]_Dij is the common direction of planes II; and I1;. Moreover
planes Iy, I15 and I13 intersect I/, in lines w1, m2 and 73 (the horizon lines), and the
direction points of normal vectors 1, ng and ng are N;, N5 and N3j.

4.2 The Principal Point O and the Absolute Conic 2., in the Catadioptric
Image Plane

The three world lines are projected in the catadioptric image plane in conic curves 2,
£25 and §23 as depicted in Fig.[3 In general two conic curves intersect in four points [[16].
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Fig. 5. Determining the principal point and the absolute conic from three catadioptric line images

If the camera, with center in point O, is forward looking then only two real intersection
points are visible in the catadioptric image (Fig. d). Any pair of conic curves £2; and
QJ, intersect on Fj; and By; which are the catadioptric image of the antipodal points
,J and Byj. Line {5 goes through the two intersection points of conic curves £2; and
(rlJ = FlJ A Blj)

Proposition 1: Consider the line catadioptric images €2; and flj intersecting on f‘ij and
Bi;j. The catadioptric image center O is always collinear with the intersection points of
the two conics.

Proof: The effective viewpoint O always lies in the plane defined by the two antipodal
points Fy;, Bj; and the camera center O (Fig. ). Consider the intersection line rj; of
plane O F;;B;; with 11 Since plane O F;B;; contains projective rays OcFiyj, O.Bj;
and OO, then points Fij, ]_Bij and O must lie in r;;. The projective transformation H
preserves collinearity, thus O must lie on 5.

Corollary 1: The image center O can be determined from three catadioptric line images
.Ql, Qz and 93 whenever the lines T4, 13 and 23 are not coincident.

Lines 12, 13 and T'23 are coincident whenever the three world lines project on three
great circles in the sphere surface which intersect in the same pair of antipodal points
(see Fig.H). This exception only occurs if the rank of matrix [IT; ITo T3] is less than 3
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which means that the three imaged world lines can be intersected by a same line going
through the effective viewpoint O.

Proposition 2: The conic of points 2 is the catadioptric image of a line in space lying
on a plane II going through the effective viewpoint. The intersection line 7 of II with
I is mapped on 7 in the catadioptric image plane, which is the polar line of the image
center O with respect to conic locus 0 (7 = 0. O)

Proof: The plane II, containing the imaged line, intersects the unitary sphere in a great
circle. Consider a generic line, lying on II and going through the effective viewpoint
O, with direction point D (Fig. B). The line intersects the great circle in two antipodal
points P and P2 which are equidistant to O. This implies that, in the plane at infinity,
points D and O are harmonic with respect to P4 and P». Points P; and Ps, lie in the
conic curve {2, and the locus of direction points D is the horizon line 7 of plane I1. Thus
7 is the polar of O with respect to §2. The catadioptric image is related with the plane
at infinity by a collineation H.. The proposition is proved since pole/polar relations are
invariant under a projective transformation.

Corollary 2: Consider two lines lying on planes II; and I1;, imaged in the conic curves
2; and flj. The common direction f)ij of the two planes is mapped in the catadioptric
image at ]f)ij, which is the intersection point of lines 7t;, 75 and %;5. Moreover, if the
two imaged lines are parallel, then they intersect Il at point D which is mapped at
D = Dy;.

Planes I1; and II; intersect on line F;B;; with direction ]_)ij as depicted in Fig. 4l Since
the direction is common to both planes then I_)ij lies on both vanishing lines 7; and
7j. Moreover plane Fy;0.B;;, containing the line F;B;;, intersect II on rj; which
goes through f)ij. The projective transformation H preserves incidence thus f)ij lies
on the three lines 7;, 7; and ;. If the imaged world lines are parallel then the common
direction of planes I; and II; is the line direction D.

Knowing collineation H, and the image center 0, it is possible to recover the
orientation of any world plane I7 from the catadioptric image of two sets of parallel
lines lying on it. Assume that one set intersects in the plane at infinity at D, and the other
at D’. The direction points are mapped in the catadioptric image plane at points D and
D’ which can be determined from the results of proposition 2 and corollary 2. Since
both D and D’ must lie on the horizon line of plane I7 it comes that 7 is mapped on
# = DAD’.If H, is known then the horizon line of IT is 7 = H.'# and the orientation
of the plane can be recovered.

Proposition 3: Consider that the absolute conic §2o is mapped on conic o at the
catadioptric image plane. If 0 is the catadioptric image of a line in space, then the polar
line # of the image center O (& = £2.0) intersects the conic locus 2 in two points A
and B which belong to 200

Proof: In general a quadric in space intersects a plane in a conic curve. Assume {2 as the
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intersection of a quadric Q with the plane at infinity /... Two conics curves intersect
in four points. Consider the points of intersection of 2 with the absolute conic 2.
Each pair of intersection points A and B defines a line which is the horizon line of a
pencil of parallel planes (real or complex). Moreover each plane in the pencil intersects
the original quadric Q in a conic going through points A and B. Since A and B are
the circular points of the plane one concludes that the intersection conic is a circle.
Thus the pencil of parallel planes intersect the quadric in circular sections [15]. Fig.
Bl shows that a line in space projects in a great circle in the sphere surface. The great
circle defines a central cone Q of projective rays with vertex in O, which intersects
IT, in £2. According to proposition 2, 7 = §2.0 is the horizon line of the plane
11, going through the effective viewpoint, and containing the imaged line. The plane
cuts the central cone Q of projective rays in a circular section (the great circle). Thus
the corresponding horizon line 7 intersects {2 in two circular points which lie in the
absolute conic §2.. The established relations hold in the catadioptric image plane after
the projective transformation H.

Corollary 3: The absolute conic .Qoo in the catadioptric image plane can be determined
from the three image lines 02, 25 and 25

For each conic locus compute the polar line of the image center O and determine the
two intersection points of the obtained line with the original conic curve. Six points of
2 are obtained: A, By, Az, Bo, Az and B3 (see F1g B). Since five points define a
conic locus, the six points are sufficient to estimate oo

4.3 Estimating Mirror Parameters from the Catadioptric Projection of Lines

Assume that both the catadioptric image center O and the absolute conic £2oc are known.
The conic curve §2 is the catadioptric image of a line in space lying on plane I/ going
through the center O of the catadioptric system. From proposition 2 it results that 7 =
2.0 is the locus where the horizon line of IT is mapped. If N is the direction point
of the normal to the plane then N is mapped on N = 2.7 at the catadioptric image
plane.

Proposition 4: Consider the normal direction N of a plane II containing the effective
viewpoint. If N is mapped on N then the > major axis (i of the projection Nonlly ofa
line lying on 11 is mapped on ji = OAN

Proof: Figurd3] depicts the major axis j as the intersection of plane at infinity with the
plane defined by the normal vector n to II and the Z axis. This result comes directly
from equation [0 Notice that both O and N lie on p. Since collineation H preserves
incidence comes that both points O and N must lie on the locus [t where p is mapped.

Corollary 4: If the conic of points :(AZ is the catadioptric image of a line lying on IT
then the pole of i with respect to {2 lies on 7, which is the intersection line of the
catadioptric image plane with the plane at infinity 11
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Corollary 5: If both the catadioptric image center O and absolute conic o are
known, it is possible to determine the position of the line at infinity T from two distinct
catadioptric line images.

The major axis y is a diameter of the conic 2, thus the corresponding pole lies in the
line at infinity 7o [20]. Since the pole/polar relations are preserved under a projective
transformation comes that point 2% [ must lie on 7, ( £2* is the conic envelope of 0).
Corollary 5 arises from the fact that a line is defined by two points. Notice that if 7, is
on the canonical position (0,0, 1)! then He is an affine transformation and the camera
is not rotated with respect to the reflective surface (R = I in equation[3)). Points D and
M., depicted on Fig. 3] are the intersection points of /i with the horizon line of IT and
the line at infinity at the catadioptric image plane D = AARand M = [i A 7).

Proposition 5: The cross ratio of points O, M Dand N lying on [i, only depends
on the angle between plane II and plane X OY of the catadioptric reference frame. In
particular {D,N; O, M} = — tan(«)? with « the angle of equation

Proof: Consider the major axis 1 depicted on Fig. [ given in equation [0l The origin
of I, is O = (0,0,1)" and the normal vector n intersects the plane at infinity at
N = (ng,ny,n,)". Moreover the intersection point D of pand 7is D = p A7 =
(—ngng, —Nyn, ni + ni)t Point M is the direction point of p. The line at infinity 7o,
is on the canonical position thus, from equation@] results M= (ng, ny,0)". Computing
the cross-ratio between the four points arises {D,N; O, M} = — tan(a)2. The cross-
ratio is a projective invariant and the proposition is proved.

Proposition 6: Consider point P and Py where line [ intersects the corresponding
conic locus §2 (the catadioptric line image). The cross ratio of points D, N, P, and P,
depends on catadioptric system parameter § and on angle o (equation [8). In particular
2{P1,D;N, Py} =1+ ¢ cot(a)|.

Proof: At the plane at infinity I1.., major axis 4 intersects conic locus £2 on points
P, and P, provided by equation [I0] (see Fig.[3). Computing the cross-ratio it comes
{P;,D;N, Py} = M . Points Py, P, D and N mapped on the catadioptric

image plane at points P1, Py, Dand N by collineation H. which preserves the cross-
ratio.

Corollary 6: Consider the points O, N, D M, P, and P, lying on line fi associated
with catadioptric line image 2, as depicted in Fig. Bl The & parameter of the central

catadioptric system is ¢ = (2{P1,D;N,P,} — 1)y/—{D,N; O, M}

5 Calibration Algorithm and Results

The previous section shows that it is possible to estimate the catadioptric image center
and the absolute conic from three line images. Moreover it is possible to estimate the
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position of the line at infinity and the & parameter of the catadioptric vision system.
In this section we use the established propositions to derive the following calibration
algorithm.

1.

10.

11.

12.

Identify in the catadioptric image three distinct non-degenerate line images (each
line must project on a proper conic)

Fit the three conics Ql, Qg and .(23 [23]].

For each pair of conics §2; and §2;, determine the intersection points F; and Bj;j
and compute line f‘ij = Fij A Bij.

Estimate the image center O as the intersection point of lines t12, T13 and t23.
For each conic §2; compute the polar t; of image center O.

Obtain points A4, By, Az, B., A3z and Bg by intersecting 71, fZl; 7o, 2o and
73, §23.

Fit the conic going through the 6 points Al, El, A2, ]:3)2, A3 and B3. The result

(2o is the absolute conic at the catadioptric image plane.

For each line Tty compute the pole N; with respect to the estimated absolute conic
(N; = $2%_ .7t fori=1,2,3).

Obtain the line [i; going through point N; and the image center O i =0A N;
fori=1,2,3)

Estimate the line at infinity 7o as the line going through the poles fl;“,&,

For each line [i;, obtain the intersection points f)i, Mi with lines 7; and 7o
(Di = i3 A 7ty and D = [is A\ o) and P, Po, with conic $2;.

Estimate parameter £ averaging the estimations &; = (z{ﬁli,]ji;Ni,pzi} _
1)\/_{f)iaNi§ O:, M} fori=1,2,3.

The principal point can be directly extracted from the estimation of O. From the

position of the line at infinity it is possible to determine if the camera is rotated with
respect to the reflective surface. If 7, is on the canonical position then H, is an affine
transformation. Thus, from equation B the rotation matrix R is equal to the identity and
H. = K.M.. In this case H is upper triangular and it can be determined from f)oo
using Cholesky factorization [13]. If 7 is not in the canonical position, then R # I
and H, must be estimated using stratified methods.

This algorithm has been validated by simulation. In practical application the per-

formance of the algorithm highly depends on the accuracy of the conic fitting method.
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Fig. 6. The calibration algorithm. The green, red and blue lines are the fitted catadioptric line
images §21, £22 and §23. The mirror boundary is under the yellow line. The image center using
our algorithm (+) and the mirror boundary algorithm (*)

Some experiments have been made using parabolic images (Fig. [6). Total least square
estimation using SVD decomposition have been used for both conic fitting and point/line
estimation. Without a specific conic fitting algorithm we have correctly estimated the
line at infinity at the canonical position and an unitary parameter €.

6 Conclusions

In this paper several new results that apply to central catadioptric images were derived.
All the results obtained are based on the images of lines. In addition the theoretical results
presented show how the orientation of a plane in space can be computed for the all class
of catadioptric systems. With the knowledge of the absolute conic it is also possible to
find out when two lines are perpendicular.
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