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Abstract. Learning one class at a time can be seen as an effective so-
lution to classification problems in which only the positive examples are
easily identifiable. A kernel method to accomplish this goal consists of
a representation stage - which computes the smallest sphere in feature
space enclosing the positive examples - and a classification stage - which
uses the obtained sphere as a decision surface to determine the positivity
of new examples. In this paper we describe a kernel well suited to repre-
sent, identify, and recognize 3D objects from unconstrained images. The
kernel we introduce, based on Hausdorff distance, is tailored to deal with
grey-level image matching. The effectiveness of the proposed method is
demonstrated on several data sets of faces and objects of artistic rele-
vance, like statues.

1 Introduction

In the learning from eramples paradigm the goal of many detection and clas-
sification problems of computer vision — like object detection and recognition
(see [ITOITTIT2/T3I20] for example) — is to distinguish between positive and neg-
ative examples. While positive examples are usually defined as images or portion
of images containing the object of interest, negative examples are comparatively
much less expensive to collect but somewhat ill defined and difficult to char-
acterize. Problems for which only positive examples are easily identifiable are
sometimes referred to as novelty detection problems. In this paper we study
a kernel method for learning one class at a time in a multiclass classification
problem.

Kernel methods, which gained an increasing amount of attention in the last
years after the influential work of Vapnik [I7/18], reduce a learning problem of
classification or regression to a multivariate function approximation problem in
which the solution is found as a linear combination of certain positive definite
functions named kernels, centered at the examples [BITY]. If the examples be-
long to only one class, the idea is that of determining the spatial support of the
available data by finding the smallest sphere in feature space enclosing the ex-
amples [I]. The feature mapping, or the choice of the norm, plays here a crucial
role.
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In this paper, we introduce a kernel derived from an image matching tech-
nique based on the notion of Hausdorff distance [7], well suited to capture image
similarities, while preserving meaningful image differences. The proposed kernel
is tolerant to small amount of local deformations and scale changes, does not
require accurate image registration or segmentation, and is well suited to deal
with occlusion issues.

We present experiments which show that this kernel outperforms the linear
kernel (effectively corresponding to a standard template matching technique)
and polynomial kernels in the representation and the identification of 3D objects.
The efficacy of the method is assessed on databases of faces and 3D objects of
artistical interest. All the images used in the reported experiments are available
for download at ftp://ftp.disi.unige.it/person/0doneF/3Dobjects.

In summary, the major aim of this paper is to evaluate the appropriateness
of Hausdorff-like measures for engineering kernels well suited to deal with im-
age related problems. A secondary objective is to assess the potential of kernel
methods in computer vision, in the case in which a relatively small number of
examples of only one class is available. The paper is organized as follows. The
kernel method used in this paper, suggested by Vapnik [17] and developed in [I],
is summarized in Section 2] Section Bl introduces and discusses the Hausdorff
kernel for images. The experiments are reported in Section H] Section Blis left to
conclusions.

2 Kernel-Based Approach to Learn One Class at a Time

In this section we review the method described in [1] which shares strong simi-
larities with Support Vector Machines (SVMs) [17/I8] for binary classification.
The main idea behind this approach is to find the sphere in feature space of min-
imum radius which contains most of the data of the training set. The possible
presence of outliers is countered by using slack variables & which allow for data
points outside the sphere. This approach was first suggested by Vapnik [I7] and
interpreted and used as a novelty detector in [15] and [I6]. If R is the sphere
radius and xg the sphere center, the primal minimization problem can be written
as

4
in R>4+C ; 1
Auin, B +CD ¢ ©

subject to (x; —x0)? < R*+¢& and & >0, i=1,...,/0

with x1, ..., %y the input data, £ > 0 and C' a regularization parameter. The dual

formulation requires the solution of the QP problem
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As in the case of SVMs for binary classification, the objective function is
quadratic, the Hessian positive semi-definite, the inequality constraints are box
constraints. The two main differences are the form of the linear term in the ob-
jective function and the equality constraint (the Lagrange Multipliers sum to 1
instead than 0). Like in the case of SVMs, the training points for which a; > 0
are the support vectors for this learning problem.

The sphere center xg is found as a weighted sum of the examples as xg =
>~ a;x; while the radius R can be determined from the Kuhn-Tucker condition
associated to any training point x; for which 0 < a; < C' as

R2 = (Xi - X0)2.

The distance between a point and the center can be computed with the following
equation

() = (x—x0)* =

=X-X—2X X9+ X Xg =

¢ ’
=x-x—22aix-xi+ Z 00X - X
i=1 ij=1
In full analogy to the SVM case, one can introduce a kernel function K [1§], and
solve the problem

¢ ¢
Hia.dX — ZaiK(Xi,Xi) + Z ZO(,;O[jK(Xl‘,Xj) (3)
¢ i=1 i=1 j=1
¢
subject to Zai =1 and 0<u<C, i=1,...,¢
i=1

A kernel function K is a function satisfying certain mathematical constraints |2
18] and implicitly defining a mapping ¢ from the input space to the feature space
— space in which the inner product between the feature points ¢(x;) and ¢(x;)
is K (x;,%;). The constraints on «; define the feasible region of the QP problem.

In this case the sphere center in feature space cannot be computed explicitly,
but the distance dg (x) between the sphere center and a point x can be written
as

‘ ¢
d%(x) = K(x,%x) — 22 a; K (x,%;) + Z a0 K (x4,%5).
i=1 i,j=1
As in the linear case, the radius Rx can be determined from the Kuhn-Tucker
conditions associated to a support vector x; for which 0 < o; < C.

3 The Hausdorff Kernel

In this section we first describe a similarity measure for images inspired by the
notion of Hausdorff distance. Then, we determine the conditions under which
this measure defines a legitimate kernel function.
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3.1 Hausdorff Distances

Given two finite point sets A and B (both subsets of RY ), the directed Hausdorff
distance h, can be written as

h(A, B) = maxmin||a — b||.
acA beB

Clearly the directed Hausdorff distance is not symmetric and thus not a “true”
distance, but it is very useful to measure the degree of mismatch of one set with
respect to another. To obtain a distance in the mathematical sense, symmetry
can be restored by taking the maximum between h(A, B) and h(B, A). This
brings to the definition of Hausdorff distance, that is,

H(A, B) = max{h(A, B), h(B, A)}.

A way to gain intuition on Hausdorff measures which is very important in relation
to the similarity method we are about to define, is to think in terms of set
inclusion. Let B, be the set obtained by replacing each point of B with a disk
of radius p, and taking the union of all of these disks; effectively, B, is obtained
by dilating B by p. Then the following holds:
Proposition The directed Hausdorff distance h(A, B) is not greater than p if
and only if A C B,.

This follows easily from the fact that, in order for every point of A to be
within distance p from some points of B, A must be contained in B,.

3.2 Hausdorff-Based Measure of Similarity between Grey-Level
Images

Suppose to have two grey-level images, I; and I, of which we want to compute
the degree of similarity; ideally, we would like to use this measure as a basis to
decide whether the two images contain the same object, maybe represented in
two slightly different views, or under different illumination conditions. In order to
allow for grey level changes within a fixed interval or small local transformations
(for instance small scale variations or affine transformations), a possibility is to
evaluate the following function [7]

k(IhIz):Z@(f—qu}\% [11[p] — I2[q]|) (4)

where 6 is the unit step function. The function k counts the number of pixels p in
I, which are within a distance e (on the grey levels) from at least one pixel ¢ of
I5 in the neighborhood N, of p. Unless N,, coincides with p, k£ is not symmetric,
but symmetry can be restored by taking the max as for the Hausdorff Distance,
or the average

K = L{k(I, 1) + k(I 1) (5)

Equation (@), can be interpreted in terms of set dilation and inclusion, leading
to an efficient implementation [7] which can be summarized in three steps.
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1. Expand the two images I; and Is into 3D binary matrices Z; and Z,, the
third dimension being the grey value:

Lif I1(4,7) = g;
0 otherwise.

2. Dilate both matrices by growing their nonzero entries by a fixed amount e
in the grey value dimension, €, and €. (the size of the neighbourhood N,)
in the space dimensions. Let D; and D, be the resulting 3D dilated binary
matrices. This dilation varies according to the degrees of similarity required
and the transformations allowed.

3. Compute the size of the intersections between Z; and D, and Zo and Dy
and take the average of the two values obtaining K (11, I5).

3.3 Relationship with the Hausdorff Distance

The similarity measure k is closely related to the directed Hausdorff distance h:
computing k is equivalent to fix a maximum distance ppq. (by choosing e and
N,) allowed between two sets, and see if the sets we are comparing, or subsets
of them, are within that distance. In particular, if the dilation is isotropic in
an appropriate metric, and k(Iy, I5) takes the maximum value s (which means
that there is a total inclusion of one image in the dilation of the other), then
h(Il7I2) < Pmazx-

In general, if k(I1, I3) = m < s we say that the m-partial directed Hausdorff
distance [6] is not greater than p,.., which means, loosely speaking, that a
subset of I, of cardinality m is within a distance p,,q, from Is.

3.4 1Is K a True Kernel?

A sufficient condition for a function K to be used as a kernel is the positive
definitiveness: given a set X C IR", a function K : X x X — IR is positive
definite if for all integers n and all x3,...,x, € X, and a1, ...,a, € R,

iiaiajf((xi,xj) Z 0. (7)
i=1 j=1

In the case of interest the inequality (T) is always satisfied because, by definition,
K(x;,%x;) > 0 for each x; and x;, and also in the feasible region of the optimiza-
tion problem () all the «; are non-negative. In the case of binary classification,
case in which the «; can also be negative, the proposed function is not a kernel,
unless the dilation is appropriately redefined (see [§] for details).

4 Experiments

In this section we present results obtained on several image data sets, acquired
from multiple views: a group of data sets of faces for face recognition, and group
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of data set of 3D objects of artistical interest acquired in San Lorenzo Cathedral.
The two problems are closely related but distinct. As we will see in the case of the
latter, the notion of object is blurred with the notion of scene (the background
being as important as the foreground), while in face recognition this is not the
case.

In our approach we make a minimal use of preprocessing. In particular, we
do not compute accurate registration, since our similarity measure takes care
of spatial misalignments. Also, since our mapping in feature space allows for
some degree of deformation both in the grey-levels and in space, the effects of
small illumination and pose changes are attenuated. Finally, we exploit full 3D
information on the object by acquiring a training set which includes frontal and
lateral views.

In the remainder of this section we will first describe the recognition system,
and then results of the applications on the two different families of data sets.
All the images used have been resized to 72 x 57 pixels, therefore we work in a
space of more than 4000 dimensions. The results presented in this section have
been obtained by applying a dilation of 1 on the spatial direction and a dilation
of 3 on the grey-levels.

4.1 The Recognition System

Given a training set of images of the object of interest, we estimate the smallest
sphere containing the training data in the feature space implicitly defined by the
kernel K as described in Section Bl After training, a new image x is classified as
a positive example if

Y4

¢
K(x,x) — QZajK(x, X;) + Z K (xj,x;) = di(x) < t. (8)
j=1 k=1

where ¢ > 0 is a threshold typically in the range of the square of radius R . It is
interesting to remark that while in the case of the linear kernel and polynomial
kernels all the terms in the Lh.s. of () need to be computed for each point, for
the Hausdorff kernel the only term which depends on point x is the second, the
other two being constant. In this case the inequality d% (x) <t can be rewritten
as

Z o K(x,%;) > T, (9)

for some suitably defined threshold 7.

4.2 Application to Face Identification

First Data Set

In the first set of images, we acquired both training and test data in the same
session. We collected four sets of images (frontal and rotated views), one for each
of four subjects, for a total of 353 images, samples of which are shown in Figure
[l To test the system we used 188 images of ten different subjects, including test
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images of the four people used to acquire the training images (see the examples
in Figure [2).

All the images were acquired in the same location and thus have a similar
background. No background elimination was performed since the face occupies
a substantial part of the image — about three quarters of the total image area,
— but this implies that even images of different people have, on average, one
fourth of the pixels which match. This is shown in Figure B} the white pixels in
the rightmost image are points of the first image close in the Hausdorff sense to
the middle image — they mainly correspond to background pixels. Notice that
the two binary images are similar even though one of them has been computed
by comparing two images of the same subject, while the other one by comparing
two images of different subjects. This makes it clear that in this setting one or
a few images are not sufficient for object characterization. The performance of

€e
2

2
Aa

Fig. 1. Two training images for each of the four subjects

the Hausdorff kernel have been compared with a linear kernel, on the same set
of examples. The choice of the linear kernel is due to the fact that it can be
proved to be similar to correlation techniques (sum of squared differences and
cross correlation) widely used for the similarity evaluation between grey level
images.

The results of this comparison are shown as Receiver Operating Character-
istic (ROC) curves [5]. Each point of an ROC curve represents a pair of false-

alarms and hit-rate of the system, for a different threshold ¢ (Equation (g])).
The system efficiency can be evaluated by the growth rate of its ROC curve:

2
0

£
§

Fig. 2. Examples of test images

4 b
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Fig.3. Spatial support of the Hausdorff distance. Both rows: the white pixels in
the rightmost image show the locations of the leftmost image which are close, in the
Hausdorff sense, to the middle image.

for a given false-alarm rate, the better system will be the one with the higher
hit probability. The overall performance of a system can be measured by the
area under the curve. Figure [4] shows the ROC curves of a linear and Hausdorff
kernels for all the four face recognition problems. The curve obtained with the
Hausdorff kernel is always above the one of the linear kernel, showing superior
performance. The linear kernel does not appear to be suitable for the task: in all
the four cases, to obtain a hit rate of the 90% with the linear kernel one should
accept more than 50% false positives. The Hausdorff kernel ROC curve, instead,
increases rapidly and shows good properties of sensitivity and specificity. We
tested the robustness of the recognition system by adding difficult positives to
one of the test sets (see Figure [). The corresponding ROC curve graph is the
one in the lower left corner of Figure @l

In a second series of experiments on the same training sets, we estimate the
system performance in the leave-one-out mode. We trained the system on ¢ — 1
examples, and tested it on the one left out, for all possible choices of £ — 1
examples. Figure [6] shows samples from one of the training sets. Even if the set
contains a number of images which are difficult to classify, only 19% were found
to lie outside the sphere of minimum radius, but all of them within a distance
less than 3% of the estimated radius.

Second Data Set

Other sets of face images were acquired on different days and under uncon-
strained illumination (see examples in Figure[d). A change of scale is immediately
noticeable comparing Figure [[land Figure [[] which therefore necessitated back-
ground elimination from the training data: to this purpose, we performed a semi-
automatic preprocessing of the training data, exploiting the spatio-temporal con-
tinuity between adjacent images of the training set. Indeed, we manually selected
a rectangular patch in the first image of each sequence, and then tracked it auto-
matically through the rest of the sequence obtaining the reduced images shown
in Figure [8. Figures [ and [0 show positive and negative test images, respec-
tively, used to test the machine trained with the images represented in Figure
The result of the recognition is described by the ROC curve at the top right
of Figure [Tl For space constraints we did not include examples of images from
all the four data sets, but Figure [[T shows the performance of the four systems.
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Fig.4. ROC curves for the four training sets. Comparison between a linear kernel
(filled circles) and the Hausdorff kernel (empty circles).

fNE

Fig.5. Examples of the images which affected the ROC curve in the lower left corner
of Figure[d]
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Fig. 6. Examples of the data set used for the leave-one-out experiment
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The four different training sets were made of 126, 89, 40, 45 data (correspond-
ing to the curves in clockwise order, from the top left). The size of the test set
is specified in the caption of the figure. With this second class of data sets, in
most cases the results of the linear kernel are too poor to represent a good com-
parison, so we also experimented polynomial kernels of various degrees. In the
ROC:s of Figure [[1]we included the results obtained with a polynomial of degree
2, the one which produced the best results. One of the reasons of the failure
of classic polynomial kernels may be related to the fact that the data we use
are not correlated, i.e., images have not been accurately registered with respect
to a common reference. During the acquisition the person was moving and, in
different images, the features (eyes, for instance, in the case of faces) are set on

different positions.
I I 1wr 1
| |

Fig. 7. One image for each one of the subjects of the new experiments

Fig. 8. Face tracking throughout the sequence. Top rows: original sequences (acquired
in two different days); bottom rows: reduced images.

Fig. 9. Samples from positive test sequences, relative to the training set of Figure
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Fig. 10. Samples from negative test sequences, relative to the the training set of Figure

)

Federico Andrea

05 - o5t

hausdorff hausdorff
linear AT linear
-~~~ polynomial (deg 2) -~~~ polynomial (deg 2)

0 0.5 1 0 0.5 1
Marco Simone

—— hausdorff —— hausdorff
linear linear
-~~~ polynomial (deg 2) -~~~ polynomial (deg 2)
0 . L0 . .
0 0.5 1 0 0.5 1

Fig. 11. ROC curves the four subjects of the second data set, comparing the Hausdorff
kernel, with linear and polynomial (deg. 2) ones. From top left: Federico (training:
126, test: 102 (positive), 205 (negative)); Andrea (training; 89, test: 228 (positive) 345
(negative)); Marco (training: 40, test: 149 (positive), 343 (negative)); Simone(training;
45, test: 122 (positive), 212 (negative))

4.3 Application to 3D Object Recognition

In this second application we aim to represent and identify 3D objects against
a complex background. The data sets, acquired in San Lorenzo Cathedral, are
images of marble statues, all located in the same chapel(Cappella di S. Giovanni
Battista) and thus acquired under similar illumination conditions: this results
in noticeable similarities in the brightness pattern of all the images. In this case
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no segmentation is advisable, since the background itself is representative of the
object. Here we can safely assume that the statues will not be moved from their
usual position.

Figure [Z shows images of two different recognition tasks (two different stat-
ues); Figure illustrates negative examples with respect to both statues of
Figure Some of the negative examples look alike the positive ones. The per-
formances on the two training sets of Figure [[Z are depicted by the ROC curves
of Figure [[4] We have trained the system with an increasely small training sets
to check the possible degradation of the results: the two curves on the row above
have been produced with about 300 training data, the two on the row below
with about 95 training data, and a much bigger test set. Notice that the results
of our kernel are still very good.

Fig. 13. A few examples of negative examples, with respect to both statues of Figure
12

5 Conclusion

In this paper we proposed a kernel function derived from the notion of Hausdorff
distance for dealing with images of 3D objects. The adopted learning mechanism
consists of a kernel method that learns one class at a time, that finds the smallest
sphere in feature space containing the training data, and uses it as a decision sur-
face to determine the positivity of new examples. The obtained results indicate
that this method, when used with the proposed kernel, appears to be adequate
for 3D object modeling, even if the images used are not accurately registered,
and thus there is not a precise correspondence between object features in differ-
ent images. For practical applications the proposed kernel method is suitable for
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Fig. 14. Effect of the decrease of the training set size: the Hausdorff kernel performs
well even with relatively small training sets. Top row: left (training 314, test 628 (pos)
285 (neg)), right (training 226, test 449 (pos) 211 (neg)). Bottom row: left (training
96, test 846 (pos)3593 (neg)), right (training 97, test 577 (pos) 3500 (neg)).

real-time, provided that reliable prior information is available about object ap-
parent size and rough image location. In the current implmentation the average
test image is processed in a few seconds on a Pentium III.

Current work on the subject include theoretical studies of the mathematical
properties of the Hausdorff kernel including tolerance to occlusions, which, for
example, does not apply to Gaussian kernels, and efficient multiscale implemen-
tation.
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