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Abstract. Standard vision-based control techniques can be classified
into two groups: model-based and model-free visual servoing. Model-
based visual servoing is used when a 3D model of the observed object
is available. If the 3D model is completely unknown, robot positioning
can still be achieved using a teaching-by-showing approach. This model-
free technique needs a preliminary learning step during which a reference
image of the scene is stored. The objective of this paper is to propose
an unified approach to vision-based control which can be used with a
zooming camera whether the model of the object is known or not. The
key idea of the unified approach is to build a reference in a projective
space invariant to camera intrinsic parameters which can be computed if
the model is known or if an image of the object is available. Thus, only
one low level visual servoing technique must be implemented at once.

1 Introduction

Standard vision-based control techniques [7] can be classified into two groups:
model-based and model-free visual servoing. Model-based visual servoing is used
when a 3D model of the observed scene is available. The explicit exploitation
of the CAD model of an object facilitates recognition [13] and tracking [6]. Us-
ing both the model and measured image features, one can estimate the pose
of the camera with respect to the object frame. Thus, a robot, with a cam-
era mounted on the end-effector, can be driven to any desired position using a
standard position-based control law [15]. Obviously, if the 3D structure of the en-
vironment is completely unknown, model-based visual servoing can not be used.
In that case, robot positioning can still be achieved using a teaching-by-showing
approach. This model-free technique, completely different from the previous one,
needs a preliminary learning step during which a reference image of the scene
is stored. After the camera and/or the object have been moved, several visual
servoing methods [1,4,10] have been proposed in order to drive the robot back
to the reference position. When the current image observed by the camera is
identical to the reference image the robot is back to the desired position. The
model-free approach has the advantage of avoiding the knowledge of the model
but it cannot be used with a zooming camera. If the camera intrinsic parame-
ters change during the servoing, then the reference image must be learned again.
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Both model-based and model-free approaches are useful but, depending on the
7a priori” knowledge we have of the scene, we must switch between them. The
objective of this paper is to propose an unified approach to vision-based control
which can be used whether the model of the object is known or not. The key
idea of the unified approach is to build a reference in a projective space which
can be computed if the model is known or if an image of the object is avail-
able. Thus, only one low level visual servoing technique must be implemented
at once. The strength of our approach is to keep the advantages of model-based
and model-free methods and, at the same time, to avoid some of their draw-
backs. In particular, we work in a projective space which is invariant to camera
intrinsic parameters. This allows us to use the unified visual servoing approach
with a zooming camera, contrarily to standard model-free approaches. There are
various ways in which invariance to camera parameters can be obtained. Simple
invariants to focal length and principal point have been proposed in [14] where
the invariants are computed from interest points. In [9] invariance to all the cam-
era intrinsic parameters has been obtained by choosing three points to build a
projective transformation. Consequently, the selection of the three points raised
the problem of the best choice. The problem is solved in this paper by building
the projective transformation from all points available in the image. Moreover,
the computation of the invariants is extended in this paper to generic non-planar
curves in the image. Experiments on simulated data demonstrate the validity of
the unified approach and the improvements over existing methods.

2 Theoretical Background
2.1 Model of the Object

For simplicity, I consider in the paper that the model of the object can be
described by a set of 3D points. The theory can be generalized to different
geometric shapes such straight lines or conics. In this paper, I suppose also that
the object is non-planar. If the object is planar the method presented in the
paper can work under the same hypotheses done for standard methods but not
in the general case when intrinsic parameters at the convergence are different
from the parameters during the learning [9]. Let Fq be a frame attached to a
non-planar object. Suppose that the model is represented by the homogeneous
coordinates of a discrete set of n 3D points X; = (X;,Y;, Z;, 1) (1 ={1,2,....,n})
with respect to Fy. I consider also the case when the set of points is continuous
and describes a generic closed curve in the 3D space, for example the boundary
of a generic surface. In that case, the model is represented by a parametric
representation of the curve X (1) = (X(7),Y (1), Z(7), 1) where 7 is a parameter
of the representation.

2.2 Perspective Projection

Let C be the center of projection coinciding with the origin O of frame F. Let the
plane of projection be parallel to the plane (@, 7). Without loss of generality



An Unified Approach to Model-Based and Model-Free Visual Servoing 435

we can suppose that the distance between the two planes is 1. A 3D point
X = (X;,Y:, Z;, 1) € P3 is projected to the point m; € P2

i [RO to] Xi = (xivyia 1) (1)

m; = Z
i

where Ry and t( are respectively the rotation and the translation between frame
Fo and F. The point m; is defined in the projective coordinate system M € P2,
Similarly, the 3D curve X (7) projects to the 2D curve m(7) = (z(7),y(7), 1).

2.3 Camera Model

Pinhole cameras perform a perspective projection of a 3D point. The information
measured by the camera is a point p; which depends on its internal parameters:

P = I(ITI2 = (ui, Vis 1) (2)
where the triangular matrix K contains the camera internal parameters:

f s uo
K=[0rfuw (3)
001

f is the focal length (pixels), ug and vy are the coordinates of the principal point
(pixels), s is the skew and r is the aspect ratio. Note that the non-singular (3x3)
matrix K defines a projective transformation (homography) from the projective
coordinate system M € P? to the projective coordinate system P € P2.

3 Two Separate Approaches to Vision-Based Control

In this paper, I consider the positioning of a single camera mounted on the robot
end-effector. Suppose that we want to move the camera to a reference position
with respect to the object. Note that, any feature or parameter in the reference
frame will be marked with an asterisk symbol. Let F7* be the reference frame
and let R{ and t be respectively the rotation and the translation between F*
and Fg. The choice of the vision-based approach depends on the knowledge we
have of the model of the object. For the sake of simplicity, I consider in this
section that the object is described with a discrete set of points.

3.1 Model-Free Approach

If we do not know the model of the object we must use a model-free approach
which is based on a teaching-by-showing step. It consists in driving the robot to
the desired position and storing the corresponding reference image features p;},
Vi € {1,2,...,n}. The approach is model-free since we do not need to know the
model of the object to measure p}, but only a reference image taken during the
preliminary learning step. After the robot or the object have been moved, the
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problem is how to drive the robot to the desired position from the initial position
using the current image points p;, ¥i € {1,2, ...,n}. As already mentioned in the
introduction, several methods have been proposed for visual servoing. Generally
speaking, the problem can be solved by minimizing a (6x1) error vector which
can be computed as a function of the current and reference points:

E:5(p15pT7p27p2*5"'7p7va:;) (4)

The error vector is null if and only if p; = pf, Vi € {1,2,...,n}. In that case,
the robot is back to the reference position R and t{. Note that, the equivalence
Ro = Rj and to = t§ < p; = p} ,Vi € {1,2,...,n} is true only if the camera
parameters do not change during the servoing. Otherwise, the reference points
must be learned again.

3.2 Model-Based Approach

If the model of the object is known we do not need a preliminary learning step
in order to drive the camera to the reference position R§ and t§. The model-
based approach uses the model of the object X'; and the current image points
pi, Vi € {1,2,...,n} in order to estimate the current camera pose. If n = 4 one
must know the camera intrinsic parameters [2]. In this paper, I suppose that the
camera intrinsic parameters are unknown. On the other hand, I suppose that a
large number of points are available. In this case, we can compute the camera
pose and the camera intrinsic parameters at the same time [5]. Indeed, from
equation (1) and equation (2) we obtain (;p; = PX’;, where ¢; is an unknown
scalar factor and the unknown projection matrix P is given by P = K [R() to ]
From the equations above, we estimate P and then extract from this matrix the
camera parameters K and the current camera position (Rg, to) with respect
to the object frame Fy [5]. Since we know the reference position (R, t§) with
respect to Fg we can compute the displacement of the camera with respect to
the reference position. Again, there are several ways of controlling the pose of
the camera. The problem is generally solved by building a (6x1) error vector
which can be computed as a function of the current and reference camera poses:

€= €(t0at3,R0aR3) (5)

The error vector is null if and only if tg = t; and Ry = R{. The model-based
approach can be used with a zooming camera since the intrinsic parameters are
estimated on-line and they are not used to control the camera pose.

3.3 Incompatibility of the Two Approaches

There is an incompatibility problem which prevents the two approaches being
used together. First of all, it is evident that the model-based task function in
equation (5) can be measured if and only if the model of the object is known.
On the other hand, the task function given in equation (4) can not be used with
zooming cameras. The aim of this paper is to propose an unified approach which
can be used in both cases. The strength of our approach is to keep the advantages
of model-based and model-free methods and to avoid their drawbacks.
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4 An Unified Visual Servoing Approach

The key idea of the new unified visual servoing approach is to always work
in a projective space @ € P? which can be computed from points belonging
to the image space P € P? (if the model is unknown) or points belonging to
the projective space M € P? (if the model is known). The approach does not
need the explicit calibration of the camera and can be used even if the camera is
zooming. Indeed, we will show that the projective space Q is invariant on camera
intrinsic parameters. Invariance to camera intrinsic parameters is obtained by
computing a projective transformation.

4.1 Computing the Transformation When the Model Is Unknown

When the model is unknown we use a teaching-by-showing technique. Suppose
that the camera has been driven to frame F. Thus, n points can be extracted
from the corresponding image. Using all the image points, with projective coor-
dinates p; = (u;, v, 1), we compute the following symmetric (3x3) matrix:

- n n n A
Sur Y uwe Y
i=1 =1 i=1
1 n 1 i3 n n 0-11 0'12 0-13
S — T _ 9 2 | = 6
p — ; Pip; = ; Ui V; v; Vi | = [012 022 023J ( )
= ’ =1 =1 i—1 g
¢ l * n ¢ n ! i3 0-13 0—23 1
E U; E Vi E 1
L i=1 i=1 i=1 -

This matrix has a simple geometric meaning. Indeed, o13 and 23 are the coor-
dinates of the centroid of the n points, while o1, 012 and g9, are the second
order moments of the set of points. If the observed points are not collinear and
n > 3 then matrix S, is symmetric positive definite and it can be written, using
a Cholesky decomposition, as:

Sp=T, T, (7)

where T, is the following (3x3) non-singular upper triangular matrix:

4 2 2
12 — 013023 012 — 013023 -|
[\/maﬂ< ) \/( 2o

T, = | O92 — O34 09y — 053 | (8)
[ 0 \/ 0922 — 0'53 J923
0 0 1 J

This matrix defines a projective transformation from the projective image space
P € P? to a new projective space Q € IP2. Each point q; € Q is computed as:

q;i =T, 'p; = (as, bi, 1) (9)

I will show in Section 4.3 that q; is independent on camera intrinsic parameters.
In conclusion, a set of reference points qf can be computed by using a reference
image p} in the previous equations (all parameters in the reference frame are
marked with an asterisk).
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4.2 Computing the Transformation When the Model Is Known

Suppose that we want to drive the robot to a desired position (Rg, tg) with
respect to the object frame Fy. If the model X'; is also known, for each point
it is possible to compute, from equation (1), its perspective projection m; =
(x4, 94, 1). Using all the projected points, we compute the following symmetric
(3x3) matrix:

| Zn::z:? Zn:z,y, Zn::lr,;_
=1 i=1 =1
Sm = lz mym; = l leyz Zy? Z‘yi (10)
j i=1 =1 i=1

n

n n
Z:L',,; Zy, Zl
i=1 i=1

L i=1

Again, it is possible to decompose S,,, using a Cholesky decomposition as:
T
SnL = T7n Tm (ll)

where T, is an upper triangular matrix having the same form of matrix T,.
Again, the non-singular matrix T, can be used to define a projective transfor-
mation from the projective space M € P? to the projective space Q € P%:

q =T, 'm; (12)

Note that T,, does not depend on K since it is computed from S,,,. Thus, q; is
independent on camera intrinsic parameters. Again, a set of reference points qf
can he computed by using a reference position (R, t§) in the previous equations.

4.3 Equivalence between the Two Computations

I show now that the points obtained from equation (9) and equation (12) are
equivalent (therefore, the vector computed from equation (9) is also independent
on camera intrinsic parameters). Since p; = Km,, the matrix S, can be written
as a function of S,, and of the camera intrinsic parameters K:

S, = %z::pipj = % IZ::KmiquKT =K (%Zi:mlmr> K =KS,,K'
(13)
Thus, from equations (7), (11) and (13) we obtain:
T, = KT,, (14)
The equivalence between equation (9) and equation (12) is straightforward:
q;=T,'p; =T, 'K 'p; =T, K 'Km; =T, 'm

In conclusion, we can compute the same vectors q; from the knowledge of model
of the object and the desired position (equation (12)) or from image points
(equation (9)). The new projective space Q is independent on camera intrinsic
parameters. Thus, the zoom of the camera can be controlled separately.
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4.4 Extension to a Generic Non-planar Curve in Space

The extension of the method to a generic non-planar curve in space is straight-
forward. If the model of the curve is unknown we can measure the curve @ in
an image taken from frame F. Thus, if p is a running point on €, the sum in
equation (6) can be generalized to the following integral:

[, ppT dudy 1 Jo v dudv [[guvdudy [ ududy
S, = =2 T = T and Jowdudv f[ov?dudv f[ovdudv| (15)
Jo dudv Jo dudv [ﬂe wdudv  [ovdudv [ d'uva

Since the curve is generic S, > 0 and it can be decomposed as S, = TpT; .
The (3x3) triangular matrix T, defines again a change of projective coordinates
from P to Q in P? (i.e. q = T;lp where q belongs to the transformed curve).

If a parametric representation of the curve X (7) and the position (Ry, to) of
frame F with respect Fy are known, then it is possible to compute the projection
m(7) = (z(7),y(7),1) € 2. Thus, the sum in equation (10) can be generalized
to the following integral:

[, mmT dady 1 [ 2 dedy [, zy dzdy [,z dvdy .
S = T dedy = T dody Joxydady [, y° dady ff,ydaedy | (16)
2 2 Jozdedy [[,ydady [, dedy

Since the curve is generic S,, > 0 and it can be decomposed as S,, = T,, T .
The (3x3) triangular matrix T,,, defines again a change of projective coordinates
from M to Q in P? (i.e. ¢ = T,,'m where q belongs to the transformed curve).

I show now the equivalence of the two ways of computing the space Q. Since

p = Km then:
_ Joprp' dudy _ J, Kmm K" |J|dzdy

S
? lr@ du dv .ﬂ}z \J|da;dy
where the Jacobian J is:
ox Ox
a5 o 1
—|Qu Qv | — -
/ 9y 9y ki1koo
ou v

Since J and K are independent on x and y (they depends on camera intrinsic
parameters) they can be factored out from the integrals:
Jopp' dudv Jomm? dady

S, = : =K : K'=KS, K"
P Jo dudv I dedy

Finally, as done for the discrete set of points, the Cholesky decomposition of
S, gives a matrix T, such that T, = K'T,,. Thus, q = T;]p =T 'K 'p=
T 'K 'Km = T;'m. This equation show the equivalence between the two
ways of building space Q and that this space is independent on camera internal
parameters. Again, one can build a reference curve q* € Q from a reference
curve p* € P in the image or from the model and a reference position (R§,t5).
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5 The Control Law of the Unified Visual Servoing

The control of the camera pose is achieved by minimizing an error computed in
the space Q invariant to camera intrinsic parameters. For the sake of generality,
I present a control approach which can be used both with a discrete set of
points and a 3D curve. Indeed, the curve can be sampled and considered as
a collection of points to design the control. However, in the case of a real 3D
curve it is probably better not to use points in the control law due to potential
problems in matching between contours. The control of a generic set of points
is achieved by stacking all the reference points of space Q in a (3nx1) vector
s* = (qf,q3,--- ,q}). Similarly, the current points are stacked in the (3nx1)
vector s = (q1,4Q2," - ,dn). If 8 = 8* then the camera is back to the reference
position whatever the camera intrinsic parameters. The derivative of vector s is:

s=Lv (17)

where the (3nx6) matrix L is called the interaction matrix and v = (v, w)
the velocity of the camera. The interaction matrix depends on current camera
intrinsic parameters K and on the current depth distribution Z = (Z,, Zs, ..., Z,)
(both unknowns), on the current image coordinates p; € P and on the invariant
points q; € Q. In order to control the camera, we can use the task function
approach [11] which has already been validated for image-based visual servoing
in [4]. Consider the following (6x1) task function:

e=L"(s—s% (18)

where LT is the pseudo-inverse of an approximation of L (since K and Z are un-
known only rough approximations K and Z arc used to compute the interaction
matrix). Differentiating equation (18) we obtain:

é=1Jv (19)

where the (3nx6) matrix J is called the Jacobian of the task. In order to control
the movement of the camera we can use the following control law:

v=—M\e (20)

where A is a positive scalar tuning the speed of the convergence. Using this
control law, the closed-loop equation is € = —AJe. It is well known from control
theory [11] that if J > 0 then the task function e converge to zero and, in the
absence of local minima and singularities, so does the error s —s*. If the presence
of local minima and singularities is due to the choice of the control scheme, then
it can be avoided by choosing a different control law. The problem to know if,
and in which case, a local minimum can be found is beyond the aim of this paper
and it will be addressed in future work.

As already mentioned, the main improvement over existing techniques is the
possibility to use a zooming camera during the servoing. A simple control strat-
egy for the zoom is the following. Let d = /min; (u?,v?, (u; — )2, (v; —v)2) be
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the distance in pixels of the closest point to the border of the image (the size of
the image being @ x T). We can keep the distance to a desired value d* by using
the following control law for the focal length:

f=d-d) (21)

where ~y is a positive scalar tuning the speed of the zoom. If d < d* (a point is
too close to the border and it could get out of the image) then f < 0 and the
camera zoom out. If d > d* then f > 0 and the camera zoom in to obtain a
better resolution. Finally, if d = d* then f = 0 and the camera does not zoom.

6 Experiments Using Simulated Data

In this section, I validate the unified visual servoing approach using both a dis-
crete and a continuous set of points. The problem of matching/tracking features,
common to all visual servoing techniques, is beyond the aim of this paper and it
has been already investigated in the literature. For the model-based approach,
we need to match the model to the current image [8]. With the model-free ap-
proach, we need to match feature points [16] or curves [12] between the initial
and reference views. Finally, when the camera is zooming we need to match
images with different resolutions [3]. In the experiments, I focus on the general
properties of the vision-based control approaches, therefore I consider that the
matching/tracking problem has been solved for all visual servoing methods.

6.1 The Model Is Known

In the first experiment, I suppose that the 3D coordinates of a set of n =
100 points (randomly distributed in a sphere with 10 cm radius) are known
with respect to the absolute frame Fy (see Figure 1(a)). A Gaussian noise with
standard deviation 0 = 1 is added to the current image. Suppose that we want
to position the robot in a desired reference position (Rg,t8). In that case, we
can estimate the current pose of the camera (Figure 1(d)) and use a standard
position-based visual control law [15]. This control law (plotted in Figure 1(b)
and (c)) makes the current frame converge to the reference frame since the
rotation and the translation errors converge to zero (see Figures 1(e) and (f)).
The aim of this experiment is to show that the unified approach proposed in the
paper is able to execute exactly the same task. From the model and the reference
position (R§,t5) we compute the reference points qf in space Q (see the points
marked with a circle in Figure 2(a)). From the current image observed by the
camera, we compute the points q; (for example, the points marked with a square
in Figure 2(a) corresponds to the initial image). The unified approach makes the
errors q; — q; converge to zero (except for noise) as shown in Figure 2(d) using
the control law plotted in Figures 2(b) and (c¢). Consequently, the translation
(Figure 2(e)) and the rotation (Figure 2(f)) errors between the current and the
reference camera frames converge to zero. Obviously, the final points in the
projective space @ (the points marked with a cross in Figure 2(a)) coincides
to the reference points except for noise. Despite the presence of the noise the
positioning accuracy for both methods is less than 1 mm and 0.1 degrees.
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Fig. 2. The control law of the unified approach when the model is known. The trans-
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6.2 The Model Is Unknown

In this experiment, we consider the same set of points and Gaussian noise with
o = 1 added to image features. On the other hand, I suppose that we do not
know the model of the object. Using the teaching-by-showing scheme, we store
the reference image (the points marked with a circle in Figure 3(a)). Then, the
camera is moved to its initial position (the corresponding points are marked with
a square in Figure 3(a)). Using a standard image-based control law [4] (plotted
in Figures 3(b and (c¢), the error p; — p} (see Figure 3(d)) is servoed to zero
(except for noise). Indeed, the final image (the points marked with a cross in
Figure 3(a)) coincides to the reference image except for noise. Consequently, the
translational and rotational errors in Figures 3(e) and (f) converge to zero with
an accuracy of 1 mm and 0.1 degrees.

Since the model of the object is unknown, the position-based control law
used in the previous experiment cannot be used here. On the other hand, the
unified method proposed in the paper is able to achieve this same task. Indeed,
from the initial and reference images we can compute the vectors q; (the points
marked with a square in Figure 4(a)) and q} (the points marked with a circle
in Figure 4(a)) in the projective space Q. Using the control law plotted in Fig-
ures 4(b) and (c), the error q; —q} (Figure 4(d)) is zeroed (except for noise) and
the camera is back to the reference position (i.e. the translational and rotational
crrors in Figures 4(e) and (f) converge to zero with an accuracy of 1 mm and
0.1 degrees). Again, the points obtained at the convergence (the points marked
with a cross in Figure 4(a)) coincide (except for noise) with the reference points
in the invariant space. Similarly to the image-based method, despite the camera
internal parameters K and the depth distribution Z are not exactly known, the
control law is stable and converges. Obviously, if the calibration errors are big
the performance of the visual servoing decreases (long time of convergence, un-
predictable behavior). Note that Figures 2 and 4 are almost identical, the only
difference being the random noise, since in both experiments we use the same
initial and reference camera frames. This proves that the unified approach has
the same behavior whether the model of the object is known or not.

When compared with standard methods, the unified approach is slightly less
sensitive to noise than standard position-based visual servoing. This is probably
due to the reconstruction of the pose of the camera in the position-based scheme
(remark the level of noise in Figure 1(d)). Even if the unified approach does not
need any reconstruction step, it needs to compute the projective transformation
used to obtain q; from p;. This, can explain why the unified approach is slightly
more sensitive to noise than standard image-based visual servoing. A possible
solution to this problem is to use a robust method for rejection of noise. For
example, enforcing the epipolar geometry between two views of the object can
give some constraints to reject points with a high level of noise. Finally, a problem
common to all visual servoing methods is that some points can get out of the
camera field of view during the servoing. With the unified approach, a possible
solution to this problem is to use a zoom in order to bound the size of the object
in the image as it is shown in the next experiment.
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6.3 The Model Is Unknown and the Camera Is Zooming

This experiment demonstrates the improvements provided by the unified ap-
proach over the existing methods and in particular the possibility of using a
zooming camera when the model of the object is unknown. We want to position
the robot with respect to the 3D curve given in Figure 5(a). I suppose now that
the model is unknown (i.e. the model-based approach cannot be used) and that
the camera is zooming during the servoing (i.e. the model-free approach cannot
be used). On the other hand, we can still use a teaching-by-showing technique.

The reference curve (the dashed curve in Figure 5(c)) is taken with a camera
having the following internal parameters: f* = 600, s* = 0, r* = 1.5, u§ = 300
and v = 250. A Gaussian noise with ¢ = 1 pixel is added to the images. In order
to reduce noise in the off-line learning step, the reference curve is the average
curve obtained from several images. From the reference contour, we compute the
matrix Sy (using p; instead of p; in equation (15)) and the transformation T3,
which allows us to compute the transformed reference contour in the space Q (see
the dashed curve in Figure 5(d)). After the robot has been moved to the initial
position (the initial displacement of the camera is t = (—0.067, —0.031, —0.514)
m and r = (—13.4, 20.0, —26.7) degrees), the initial image (the smallest curve in
Figure 5(c)) is taken with a completely different camera at a lower resolution: f =
500, s =0, r = 1, wg = 250 and vy = 200. Remark that not only the focal length
and principal point are different but also the aspect ratio is changed. Using the
current curve, we compute the matrix S, and we extract the transformation T,
which allows us to compute the initial contour in the space Q (see Figure 5(d)).
From the current and reference contours in space @ we compute the control law
(i.e. the velocity sent to the robot controller) plotted in Figure 5(e) and (f).
The control law is stable and the robot is driven back to the desired position as
shown by Figure 5(g) and (h) where the error converges to zero. Due to the the
noise in the image, the error is not exactly zero but the positioning accuracy is
again less than 1 mm and 0.1 degrees.

The behavior of the focal length, fixed by the control law of equation (21)
with d* = 50 pixels and v = 0.5, is plotted in Figure 5(b). During the servoing
the camera zooms out (from iteration 1 to 5 and from iteration 55 to 250 in
Figure 5(b)) if the object is getting out the field of view. The camera zooms in
(from iteration 5 to 54 in Figure 5(b)) if the object is too small in the image
(thus, we can always have a good resolution). At the convergence, the camera
focal length is f =2 600 (see Figure 5(b)). However, the curve at the convergence
(see Figure 5(c)) is not identical to the reference curve not only because the
cameras have slightly different focal length but specially because the aspect ratio
and principal point are completely different. A different principal point translates
the curve while a different aspect ratio stretches the curve. On the other hand,
the final curve in the space @ is identical, except for noise and sampling errors,
to the reference curve since Q is independent on all camera internal parameters
(see Figure 5(d)). Sampled trajectories of the curve in the image P and in the
space Q are plotted respectively in Figure 5(¢) and (d) (dashed lines).
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Conclusions

The approach proposed in the paper unifies model-based and model-free visual
servoing techniques since it can be used whether the model of the object is
known or not. The unified visual servoing scheme will be useful especially when a
zooming camera is mounted on the end-cffector of the robot. In that case, model-
free visual servoing techniques cannot be used. As shown in the experiments,
using the zoom during servoing is very important. The zoom can be used to
enlarge the field of view of the camera if the object is getting out of the image and
to bound the size of the object to improve the robustness of features extraction.
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