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Abstract. In this paper we compare different ways of representing the
photometric changes in image intensities caused by changes in illumina-
tion and viewpoint, aiming at a balance between goodness-of-fit and low
complexity. We derive invariant features based on generalized color mo-
ment invariants — that can deal with geometric and photometric changes
of a planar pattern — corresponding to the chosen photometric models.
The geometric changes correspond to a perspective skew. We compare
the photometric models also in terms of the invariants’ discriminative
power and classification performance in a pattern recognition system.

1 Introduction

Color constancy and viewpoint invariance are crucial properties of the human
visual system, which motivated and inspired a great amount of work in computer
vision. Substantial efforts have been targeted towards geometric invariants for
contours under changing viewpoint [I8[19]. These invariants do not exploit the
pattern within the contours. In parallel, an extensive literature on photometric
invariants of surface patterns has emerged. Much attention has been paid to
the illumination independent characterization of the color distribution of the
pattern [ZQITOT222I2412]], but there tends to be little emphasis on the spatial
distribution of the colors within the pattern, or on their deformations under
changing viewpoint.

In [25] and [I6] it was proposed to use moment invariants, that combine
invariance under geometric and photometric changes for planar patterns. This
work could be considered a generalization of the work by Reiss [2T]. In par-
ticular, in [T6] invariants were built as rational expressions of generalized color
moments rather than the traditional moments. Consider a color pattern, rep-
resented as a vector-valued function I defined on an image region {2 that as-
signs to each image point (z,y) € 2 the 3-vector of RGB values I(x,y) =
(R(z,y), G(z,y), B(z,y)). Then the generalized color moment M} of the
pattern is given by
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MZ‘};’C is said to be a (generalized color) moment of order p+q and degree a+b+c.
In the sequel they will sometimes be called “moments” for short. These moments
characterize the shape information (z, y) and the color information (R, G, B) in a
more uniform manner, as powers of each of these are used. From a practical point
of view, the advantage is that even for low orders and degrees, a sufficiently large
set of such moments can be extracted to build invariants. In [16] only generalized
color moments up to the first order and the second degree were considered. Also
in this paper we will stick to these primary features to build invariants from
because of their higher reliability.

Apart from the choice of basic features to use, another important issue to
decide on when extracting invariants, are the exact transformation groups un-
der which the invariance should hold. In [I6] moment invariants were extracted
and implemented that combine invariance under affine deformations (for the ge-
ometric part of the changes) and a scaling of the color bands combined with
offsets (for the photometric part of the changes; scale factors and offsets were
different for the different bands). The offset allows to better model the combined
effect of diffuse and specular reflection [29] and has been found to give better
performance [2I]. In this paper, we investigate alternative choices for the geo-
metric and photometric transformations. In particular, since we assume planar
patterns, as geometric transformations we may consider

1. affine transformations
2. perspective transformations

This amounts to extracting invariants under plane affine or projective transfor-
mations, resp. (invariance under perspectivities implies invariance under projec-
tivities, which form the encompassing group). For the photometric changes, we
consider invariance under
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which have been among the most popular models in the literature and have
proven most appropriate based on the considerations described in sections [2land
Bl In [16] the first choice in either case has been considered. Here we also consider
other model combinations that could allow the invariants to be used on a larger
range of data. The final goal is to achieve invariant features that can cope with
changes in illumination and viewpoint, and which are effective under a broad
range of lighting conditions without the need of additional photometric adjust-
ments. We therefore compare the performance of the two photometric choices
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for the case of indoor and outdoor images, respectively. For achieving viewpoint
invariance, we focus on the more complete perspective model of geometric de-
formations. Moment invariants can only deal with the photometric part of the
changes, however, because there are no moment invariants for the projectivi-
ties [27]. Hence, these deformations are dealt with through a prior normalization
step. Note that we still restrict our analysis to planar (parts of) scenes.

The structure of the paper is as follows. Section 2l compares the quality of fit
of the two photometric models (Type SO and Type AFF) to actual changes as
observed in indoor and outdoor images. Section [l derives the moment invariants
for both types. Section @] discusses the outcome of a recognition experiment based
on these invariants. Finally, section [Bl concludes the paper.

2 Modeling Photometric Changes

Previous publications are mixed about their conclusions concerning intensity
changes and achieving illumination invariance, but many seem to agree on the
appropriateness of linear models for the case of planar surfaces. Investigations
on photometric models were carried out in different contexts, like for instance,
colour constancy algorithms ([68]1]), color image retrieval ([10]), color object
recognition algorithms ([3520015]), and recovering lighting and reflectance prop-
erties of real scenes ([4]). The choice of a particular model also depends on the
application context. On the one hand, good results have been reported based
on rather simple photometric models [BJT5T0] in the same vein as our Type SO
transformations. On the other hand, some experiments suggested the need for
more complicated, Type AFF-like ones [H23], especially in the case of outdoor
images. Part of the reasons that account for the difference is that the handled
type of scenes and illumination conditions were quite different. Also, some ex-
periments were carried out indoor, others use outdoor imagery.

A first question to be investigated is whether the Type AFF photometric
transformation model is really better than other simpler transformations, like
Type SO. It goes without saying that Type AFF will be able to yield a better fit
to the photometric changes that are observed in real scenes, as it simply has more
degrees of freedom. The relevance of such improvement has to be demonstrated
before one would actually embark on the extraction of invariants for such case, as
these will undoubtedly be more complicated than those for simpler photometric
models. This in turn could mean that the resulting invariants are less reliable
and therefore useful under fewer rather than more conditions.

In this paper we compare different types of linear transformations for the
global intensity changes on planar surfaces when observed under variable view-
point and illumination conditions. Two main cases are here considered, namely
indoor images under internal changes of light and outdoor imagery under variable
viewing angles and illumination. A way of comparing the possible photometric
models is by means of model selection procedures. Selecting a particular model
also depends on the influence of the model on the invariant features computation
and performance.
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For the case of outdoor imagery we performed a series of model selection tests
on the following type of images. Several views of several instances of billboards
(advertisement panels) were taken under different viewing angles and different
illumination (natural light), without gamma correction. An overview of the 16
billboard types is given in Figure 2l The diversity among the images of the same
type is illustrated by Figure [ As can be seen, there is quite some variation
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Fig. 1. Examples of images in the database of outdoor images illustrating the degree of
variation in both viewpoints and illumination conditions, for 3 types of advertisement
panels.

in both viewpoint and illumination conditions. About 150 pairs of billboard
images belonging to the same type were considered for the photometric model
selection procedure. Because linear transformation models are considered, the
natural choice for the parameter estimation method is linear regression. A series
of nested models ranging from diagonal to 3D affine transformations were fitted
(in the least-squares sense) between the (R, G, B)-values of corresponding pixels.
It turned out that in many cases the diagonal entries in the affine transformation
are significantly larger than the off-diagonal entries of the linear component of
the transformation. In most cases the linear component of the transformation
can be approximated by one depending on fewer parameters. Unfortunately,
these simplifications largely depend on the actual pattern. In particular, the
subgroups that would correspond to these cases would pertain to different pairs
of color bands for the different patterns. In the end, only those choices that are
symmetric in the treatment of the color bands can be considered for cases where
the methods are supposed to work independently from the particular pattern at
hand. On the other hand, offsets were always found to be significant. This leaves
us with the Type SO and Type AFF transformations. These two models were
then further compared on the basis of model selection criteria.

Model selection criteria aim at choosing among several possible models the
one that strikes the best balance between goodness-of-fit and low complexity.
In order to quantify differences in model complexity, one typically considers the
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number of model parameters. This still leaves some leeway and the models are
compared on the basis of several model selection criteria. These include statis-
tical tests on the relevance of the additional parameters in the affine model (by
confidence intervals, as in [L1]), hypothesis testing, adjusted R?, Mallows’ C(p)-
statistic, Bayesians information criterion, and Akaike’s information criterion.
Excellent references about model selection criteria are the seminal work by
Kanatani [I4] and the review by Torr [26]. In most cases, especially the ones
taken under substantially different conditions, the full 3D affine transformations
(Type AFF) were selected as statistically the best explaining model. Even though
the best describing model may differ from one pairwise sample to the other, the
same conclusion is reached for a particular test sample by all the model selection
criteria, that is the criteria systematically agree on the outcome.

The previous analysis dealt with our outdoor images only. For the case of
images of planar surfaces under artificial lighting and under indoor conditions,
Gros [I1] already compared our two models (and more) by means of model se-
lection procedures. His conclusions were rather ambivalent about the statistical
relevance of the two models (based on confidence intervals for the model pa-
rameters), but there was a slight preference for the Type SO model as a good
compromise between complexity and accuracy.

In summary, the tests point in the direction that it is worthwhile to consider
the more complex affine model (Type AFF) and the corresponding invariants.
Such decision would come at a price, however. The invariants for Type AFF will
be more complicated than for Type SO, and hence may be more prone to noise.
Also, there will be fewer invariants for Type AFF than for Type SO that can
be extracted from a given set of moments. Thus, it does not follow from the
previois tests that Type AFF invariants will also give a better result in terms
of recognition score. It is this overall performance that is of real interest. In
the following section we derive these invariants and we will be in a position to
compare their complexity and recognition performance.

3 Moment Invariants

Our goal is to build moment invariants, i.e. rational expressions of the generalized
color moments (), that do not change under the selected photometric transfor-
mations. Moreover, we prefer to only use those moments that are of a simple
enough structure to be robust under noise. That means that high orders and
high degrees should be avoided. Invariants involving generalized color moments
up to the first order and the second degree are considered, thus the resulting
invariants are functions of the generalized color moments Mg, M{%¢ and MgPe
with (a,b,¢) € {(0,0,0), (1,0,0), (0,1,0), (0,0,1), (2,0,0), (0,2,0),

(0,0,2), (1,1,0), (1,0,1), (0,1,1) }.

For the photometric part of the transformations, a complete basis of 21 in-
variants was extracted for Type SO and a subset of 11 out of 14 basis invariants
for Type AFF. The remaining 3 invariants for Type AFF could not be extracted
yet at the time of writing. This is mainly a theoretical issue, as the already
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extracted set still allows good recognition, as will be shown in the experimental
section. An overview of the invariants is given in Table [[] The invariants can be
classified according to 3 degrees of freedom: the order, the degree and the num-
ber of color bands of the moments involved. To allow maximal flexibility for the
user in the choice of the color bands and to ensure the highest possible robust-
ness of the invariants in the classification, the following 2 criteria were used to
construct a basis for the moment invariants: (1) Keep the number of color bands
as low as possible; and (2) include as much as possible low-order invariants. The
invariants’ derivation is obtained by Lie group theoretical methods ( [17]).

Among the 21 invariants for Type SO, three invariants are of the type S11 (see
Table M) when applied to the three color bands, and similarly three invariants
are of the type Si,. Six more one-band invariants are of the type S%, with
pq € {01,10} when applied to the three color bands. Similarly, when applied to
the 3 possible combinations of 2 out of the 3 color bands, formula D}, provides
3 invariants and D%, provides 6 invariants when pg € {01,10}.

Of the 11 invariants for Type AFF, two are the invariants T\, T? and the
rest are of the type T3, (i, ) with pg € {00,01,10} and ij € {11,12,22}.

As to the comparison of the complexity of the invariants for the two Types of
photometric transformations, a first observation is that the simplest invariants
for Type SO yield rational functions of the second degree, whereas this degree is
raised to six in the case of Type AFF. A second observation is that the Type SO
invariants can be based completely on the combination of moments that only
use two color bands, whereas the Type AFF invariants need to call on all three
bands simultaneously. Last but not least, it is obvious from inspection that the
Type AFF invariants have a more complicated structure.

The next section investigates the practical aspect of the invariant features
in terms of discriminant power and robustness to noise. The question to answer
is whether the (theoretically) higher robustness of the Type AFF invariants in
terms of the changes that they can withstand outweigh their far greater com-
plexity.

4 Experimental Comparison

In order to compare the recognition performance of the two Types of photomet-
ric moment invariants and investigate their applicability on different settings,
experiments were run on two main sorts of images. One kind of data consists of
digital color images of outdoor advertisement panels and the second database
contains indoor images of scenes under different illuminations. For both data
sets the following steps were taken:

1. Extract the data from all images (with manual delineation of planar parts, if
necessary ), followed by the extraction of its Type SO and Type AFF moment
invariants.

2. Statistical analysis of the overall sample population, and extraction of the
5 main canonical variables following a MANOVA [I3] (i.e. 5 linear combi-
nations of the moment invariants, separately for Type SO and Type AFF
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Table 1. Moment invariants from both sets involving 1, 2 or 3 color bands; S.q4 stands
for 1-band invariants, D.q for 2-bands invariants, and T4 for 3-bands invariants of order
¢, and degree d, respectively. My, stands for either Mggo, MI%O or Mgg_l, depending on
which color band is used; M’ stands for either M;fﬂ M;gj or M;f,);], depending on
which 2 of the 3 color bands are used.

Type SO
0 as1 0 af1 0 a2 _asl ol
S = TGRSR Sl = G AR
Mg Mgy = Mgy My, (MooMm_MMMOO)(MOOMM_Mquoo)
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- 2
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moment invariants). The canonical variables try to maximize the separation
between the classes.

3. Recognition following a leave-one-out strategy: each time one panel is singled
out and all others are used as a training set. The panel is then assigned to
a class based on nearest-neighbour classification. This was repeated for all
panels of the same data set.

Fig. 2. Outdoor images - the 16 classes of different patterns that were used in the
classification system.

4.1 Owutdoor Images — Natural Light

In the case of the outdoor advertisement panels, the goal was to recognize to
which of the 16 classes (Figure[2]) a panel belongs. For each of the classes between
10 to 18 images were taken, under a quite large variety of viewing conditions
(Figure ). Samples of the same class also included images of several, physically
different panels. In this paper we chose to consider perspective deformations for
the geometric transformation model. These deformations are dealt with through
a prior normalization step. This was easy in the case of our experiments, based
on the advertisement panels which have a simple rectangular shape. The four
corners of the panels were brought to four canonical positions in order to achieve
the geometric normalization. Examples of resulting geometrically normalized
images are shown in Figure Bl The normalized shape more or less corresponds
to a rectangle with an aspect ratio one would get in a head-on view.

The cluster separation obtained with the first three canonical variables is
illustrated in the left side plot of Figure @ for Type SO and in the right side



456 F. Mindru, T. Moons, and L. Van Gool

Fig. 3. Different samples of a pattern (up) and their geometrically normalized version
(down).

Fig. 4. Outdoor images - the first 3 canonical variables for the feature vector based on
invariants of Type SO (left) and Type AFF (right).

plot for Type AFF. Visual inspection of these figures already suggests that the
Type AFF canonical variables yield a better separability between classes than
those of Type SO. This is also borne out by the actual recognition rates: the
recognition performance using the Type SO canonical variables is only 78.6%,
whereas the recognition rate for the Type AFF canonical variables reaches 93.9%.
Still, at closer inspection of the Type SO invariants, it turns out that the de-
nominators involved in all the invariants are numerically unstable because they
actually represent a determinant of a nearly singular matrix. This instability ex-
plains part of the bad classification. One way of correcting the numerical insta-
bility is by computing a new set of invariants as functions of the basis invariants
presented in Table [[] such that the unstable denominators get simplified. With
9 possible resulting invariants the recognition performance reaches 94.6%.

As experiments by other authors have already shown, one has to be careful in
extrapolating results of one particular experiment to others. Nevertheless, this
experiment was carried out under natural, outdoor conditions and constituted
a quite critical test to the effectiveness of these invariants. The outcome shows
equivalent performance of Type AFF and Type SO invariants, and hence also
suggests that the simplicity of Type SO invariants provides similar performance
to the more accurate, but also more complex Type AFF invariants.
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4.2 Indoor Images — Artificial Light

We have examined the performance of the two Types of invariants on outdoor
images, but we are also interested in comparing them for the case of indoor
images, where transformations of Type SO are reported to be a rather good
approximation of the intensity changes.
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Fig. 5. Indoor images - the 19 classes of different patterns that were used in the clas-
sification system.

For this, we investigated the recognition performance of the invariant fea-
tures when applied to the set of indoor images with planar surfaces contained in
the database made publicly available at http://www.cs.sfu.ca/colour/data. This
data was collected by Lindsay Martin under the guidance of Kobus Barnard, as
part of investigations into computational colour constancy algorithms, but its
use can be extended to other colour based applications. The images are in TIFF
format and have been linearized (camera offset removed, and low intensity val-
ues linearized). A detailed presentation of the data is available in [2]. Several
preprocessing steps were taken to improve the data. First, some fixed pattern
noise were removed. Second, images were corrected for a spatially varying chro-
maticity shift due to the camera optics. Finally, the images were mapped into a
more linear space as described in [2]. This included removing the sizable cam-
era black signal. The resulting images are such that pixel intensity is essentially
proportional to scene radiance.

The database consists of images of objects viewed on black background, under
11 different illuminants. The images from the set of images with minimal specu-
larities containing planar surfaces were selected for our tests. That brought us to
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the collection of the following objects (Figure[H)): books-2, collage, macbeth, mun-
selll, munsell2, munsell3, munsell4, munsell5, paperl, paper2, sml-mondrianl,
sml-mondrian2, bookl, book2, book3, book4, cruncheroos, macaroni, rollups,
thus 19 in total. When required, viewpoint invariance was achieved by a nor-
malization step, as described in the previous section. A first observation about

Fig. 6. Indoor images - the first 3 canonical variables for the feature vector based on
invariants of Type SO (left) and Type AFF (right).

this data set is that the 11 illuminants have different colours, and it affects the
objects appearance in a different way than the natural light did in the previ-
ous data set. A question to answer by using these data is therefore whether the
invariant features are sensible or not to this kind of illumination change. Sec-
ond, we notice that the data contains 5 very similar patterns (labeled 'munsell’),
which provides a rather hard test on the discriminative power of the invariant
features.

The cluster separation obtained with the first five canonical variables based
on invariants of Type AFF proves again better than that obtained for the invari-
ants of Type SO, as illustrated by Figure [6]l and by the recognition rates. Only
8 samples are misclassified out of the total 209 samples in the data set when
using the Type AFF invariants, that is 96.2% correct classification, whereas the
invariants of Type SO yield only 46% correct classification. When using the
9 new numerically stable invariant functions, the recognition performance sig-
nificantly improves again, reaching a rate of 99.5% correct classifications. This
proves that the basis invariants are not to be used directly for recognition, but
combined into new invariant functions that remove the numerically unstable
determinants. Further investigations into the best way of combining the basis
invariants are currently under consideration.

5 Conclusions

In this paper, we have investigated and compared two ways of describing the
photometric transformations that patterns undergo under varying viewing and
illumination conditions. The simplest one has a different scaling factor and offset
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for each of the three color bands (R,G,B). The more complex one considers a
complete affine transformation between these bands.

The goal was to obtain invariant features better suited to the range of trans-
formations one needs to handle for real scene images. A more complex affine
photometric model was used as compared to our previous work. Perspective
skews were dealt with through a prior normalization.

It turns out that the more complex photometric transformations are a
better model to describe the photometric changes in outdoor images (including
considerations that take model complexity into account), but similar recogni-
tion of planar structures can be obtained when using invariants under the two
photometric models, for both indoor and outdoor images.
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