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Abstract. Retinal exudates are a characteristic feature of many retinal diseases
such as Diabetic Retinopathy. We address the development of a method to
quantitatively diagnose these random yellow patches in colour retinal images
automatically. After a colour normalisation and contrast enhancement pre-
processing step, the colour retinal image is segmented using Fuzzy C-Means
clustering. We then classify the segmented regions into two disjoint classes,
exudates and non-exudates, comparing the performance of various classifiers.
We also locate the optic disk both to remove it as a candidate region and to
measure its boundaries accurately since it is a significant landmark feature for
ophthalmologists. Three different approaches are reported for optic disk lo-
calisation based on template matching, least squares arc estimation and snakes.
The system could achieve an overall diagnostic accuracy of 90.1% for
identification of the exudate pathologies and 90.7% for optic disk localisation.

1 Introduction

Diabetic-related eye diseases affect the blood vessels in the retina and are the most
common cause of blindness. In non-proliferative retinopathy damaged retinal vessels
leak fatty and protein-based particles referred to as exudates (EXs). These appear as
spatially random yellow pathologies with varying sizes and shapes as shown in Figure
1(c). When the EXs accumulate in the central part of the retina, the visual acuity is at
risk [1]. Therefore, it is necessary to have a mass-screening retinal examination
system for the early detection of diabetic-related retinal diseases and to assist the
ophthalmologist to make the diagnosis faster and more efficiently. The aim of our
work is to develop a decision support system that could be installed at GP clinics and
high-street opticians alike that can act as an early warning system. In this paper, we
report on our work towards this goal. We identify the EX regions of the colour retinal
image using Fuzzy C-Means clustering and neural network classification following
some key pre-processing steps. During an initial segmentation stage, the optic disk is
also segmented as (one or more) candidate EX regions due to the similarity of its
colour to the yellowish EXs. Far from being a disadvantage, the benefits of this are
two-fold. Since optic disk localisation in retinal image analysis is of critical
importance, the segmentation process provides us with an opportunity to identify the
optic disk using a separate processing step. In turn, this allows us to remove the optic
disk from the candidate regions for both better training and testing of a classifier for
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EX region classification. Our experimental results indicate that we are able to achieve
90.1% accuracy, 93.4% sensitivity and 82.7% specificity in identifying the EX
pathologies and 90.7% accuracy in localising the optic disk boundary.

Few investigations in the past have identified retinal EXs based on colour
information. In many of the cases reviewed below only sensitivity and specificity
figures were supplied. Philips et al. [2] separated all bright objects (including EXs)
from the dark objects and background after noise removal, contrast enhancement, and
simple thresholding with a sensitivity of 87%. Gardner et al. [3] used an artificial
neural network for identification of EXs by classifying regions of size 20x20 pixels in
greylevel images where the authors reported a sensitivity of 93.1%. However, this
was the result of classifying the whole 20x20 region rather than a pixel-level
classification. Sinthanayothin [4] applied a recursive region growing technique based
on a manually-selected threshold value in greylevel images. The author reported
88.5% sensitivity and 99.7% specificity, but this was measured on a 10x10 window.
Wang et al. addressed the same problem in [5] by using a Bayesian statistical
classifier, based on colour features, to classify each pixel into lesion or non-lesion
classes. However, other yellowish lesions (e.g. cotton-wool spots) were classified
incorrectly at the same time. They reported 100% sensitivity and 70% specificity, but
this was measured purely on whether EXs were present anywhere in the image. They
did not report their quantification of the EX regions on a pixel-by-pixel level
accuracy. One novelty of the proposed method here is that we locate EXs at pixel
resolution in colour images and evaluate the performance using manually labelled
groundtruth produced by an expert.

There have also been relatively few works for the detection of the optic disk. Liu et
al. [6] applied an edge detection stage followed by a circular Hough transform to
locate the disk. This approach failed when there were large areas of EXs interference
in the image or when the boundary between the optic disk region and the background
was not well defined. Li and Chutatape [7] produced a training set using the brightest
pixels that were firstly clustered as candidate optic disk regions. Then principle
component analysis was applied to project a new image to the ‘disk space’ specified
by the eigenvectors of the training images and calculating the distance between the
image and its projection. Sinthanayothin et al. [8] used an 80x80 subimage to evaluate
the intensity variance of adjacent pixels, marking the point with the largest variance
as the optic disk location. This technique could fail when there is a large area of EXs
in the retinal image. The methods introduced in both [7] and [8] produce an optic disk
centre but do not address optic disk boundary identification. The optic disk boundary
was found in Mendels et al. [9], using mathematical morphology and an active
contour approach in greylevel images. We have drawn inspiration from [9] and
propose a similar snake-based method. However, our proposed method is
implemented on colour images pre-processed using colour-based mathematical
morphology. Additionally, our snake is automatically initialised.

In this study, we used 60 colour retinal images obtained from a non-mydriatic
retinal camera with a 45° field of view. The image resolution was 760x570 at 24bit
RGB. This paper is organised as follows. Section 2 describes our proposed automatic
method for identification of the EX pathologies in colour retinal images. In Section 3,
three different approaches for identification of the optic disk are presented. Results
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are outlined as the algorithms are described, but in Section 4 we present further results
to compare the proposed methods with [9]. The paper is concluded in Section 4.

2 Detecting Exudates

We put our data through two pre-processing steps before commencing the detection
of EXs. The retina’s colour in different patients is variable being strongly correlated
to skin pigmentation and iris colour. The first step is therefore to normalise the retinal
images. We selected a retinal image as a reference and then used histogram
specification [10] to modify the values of each image in the database such that its
frequency histogram matched the reference image distribution. Figure 1(c) shows the
result of this normalisation. In the second pre-processing step, the contrast between
the EXs and retina background is enhanced to facilitate later segmentation. The
contrast is not sufficient due to the internal attributes of lesions and decreasing colour
saturation, especially in the areas around the retina. We applied local contrast
enhancement [8] to distribute the values of pixels around the local mean. In this way a
pixel p in the centre of a small running window w, was changed to a new value p,:
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Max and Min are the maximum and minimum intensity values in the whole image,
while g, and ¢, indicate the local window mean and standard deviation. The
exponential produces significant enhancement when the contrast is low (g, is small),
while it provides little enhancement if the contrast is high (g, is large). Figure 1(d)
shows the result of local contrast enhancement on a typical retinal image.

(b) (d)

Fig. 1. Colour normalisation and local contrast enhancement: (a) reference image, (b) typical
retinal image (including EXs), (c) colour normalised version, (d) after contrast enhancement.
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2.1 Colour Image Segmentation

The ideal segmentation of an image is usually application-dependent. Unlike hard
segmentation methods, which force pixels to belong exclusively to one class, colour
Fuzzy C-Means (FCM) clustering allows pixels to belong to multiple classes with
varying degrees of membership [11-12]. The segmentation approach is based on a
coarse and a fine stage. The coarse stage is responsible for evaluating Gaussian-
smoothed histograms of each colour band of the image in order to produce an initial
classification into a number of classes (call it K). Then, in the fine stage, FCM
clustering is applied to find an optimum solution for the following objective function,
with respect to U (a fuzzy K-partition of the data set) and V (a set of K prototypes):

N K 4q
HoV)I=XXlu) |x,-v] 5 k<N 3)
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where ¢ is the weighting exponent which controls the fuzziness of the resulting
clusters, X, is the jth feature vector, V, is the centroid of the ith cluster, N is the number
of data points, and g, is the degree of membership of X, to cluster i. These
memberships must lie between 0 and 1, and £, must sum to 1 for all i. Then the fuzzy
partitioning is carried out through an iterative optimisation of (3) using the following
algorithm:

1) Choose primary centroids (prototypes)

2) Compute the degree of membership of all feature vectors in all the clusters:
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and update the membership values g, to ¢, according to (4).

4)if || g, - p°, || < & where & is a termination criterion between 0 and 1, stop,
otherwise continue from step 3. We fixed g=2 and &= 0.5 for all experiments and the
algorithm was iterated until FCM could distinguish three different clusters. Figure
2(b) illustrates an example result after this colour segmentation stage. Figure 2(c)
shows the candidate EX regions overlaid on the original image.

We performed K-means clustering on the image as an alternative segmentation
technique but with limited success. We also experimented with the method described
by Comaniciu and Meer [13], but for our images the results were inconsistent and
unsatisfactory. The FCM approach was straightforward to implement, fast and, had
fixed parameters, but most importantly it allowed us to segment colour images. To
assess the accuracy of the proposed segmentation technique, an expert clinician
marked the EX regions in all 60 of our retinal images. Accurate, manual, pixel by
pixel registration of small pathologies like EXs is very difficult due to the wide
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(a) (b) (©)

Fig. 2. Colour image segmentation: (a) a typical normalised image, (b) FCM segmented image,
and (c) candidate EX regions overlaid on the original image.

variability in their colour. FCM could achieve 98% accuracy compared to the
groundtruth for identification of EXs. Only extremely faint EXs were not identified
Also a simple and effective overlap measure of the match between two regions was
used to investigate the accuracy of the FCM in producing an EX contour:

_NRNT)
N(RUT) ©®

where R and T are two regions being compared and N (.) is the number of pixels in the
set. Using this measure FCM could achieve 96.4% accuracy compared to the
groundtruth. Figure 3 shows typical regions used for applying the metric in (6), i.e.
the groundtruth and the segmentation result.

Fig. 3. Segmentation performance evaluation: (a) overlaid candidate EXs, (b) a close-up of
some EXs (c) groundtruth of EXs as determined by a clinician, (d) FCM result.

After the candidate EX regions are located, they must be classified. To perform this
accurately, it is crucial to extract efficient features that produce the best class
separability. It is worth noting that after FCM, false positive EX candidates arise due
to both general reflections in the retina and the similar characteristics of the optic
disk. The optic disk regions were removed prior to classification using the automatic
optic disk localisation method described later in Section 3.
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2.2 Feature Extraction

Clinically, ophthalmologists use colour to differentiate various pathological
conditions. Similarly coloured objects like cotton-wool spots and EXs are
differentiated with further features such as size, edge strength and texture. Indeed, we
found features such as average intensity and standard deviation of intensity were
enough to encode appearance in terms of brightness and texture. After a comparative
study of our training dataset (more in section 2.4), to investigate the relative
discriminative power of a small set of features for use in the classification process, ten
were selected: R;,G;,B; (representing mean RGB values inside a region), R, G,,B;
(representing mean RGB values outside a region), region size, mean and standard
deviation of intensity, and edge strength. The within-class matrix (S,) and between-
class scatter matrix (S,) were computed. The value J = trace(Sy/S,,) was used as a
measure of feature-set efficiency. This metric increases when between-class scatter is
larger or within-class scatter is smaller. Therefore the feature subset, which yields the
largest J, is considered to be the best subset to use for classification.

Table 1. Discriminative importance of the feature set employed.

Features in subset
Number Metric
of G; G, B; B, Average R;R, Standard Edge size J
Features Intensity Deviation Sharpness
1 oo - - - - - - - - 0.5675
2 *ook o - - - - - - 1.1346
3 ® ok ok _ - - - - - 1.6752
4 * % ok % _ - - - - 2.2155
5 sk ES % k * - - - - - 27404
6 % %k ok % * * _ - - 3.2340
7 * %k %k * %k %k %k _ - _ 37187
8 * %k %k * % * * % - - 41455

Table 1 represents the relative importance of the selected features, as the number of
features allowed is increased. A ‘*’ indicates that a feature was used and a ‘-°
indicates that it was not. As expected, features that provide colour information seem
to contribute significantly more than the other features. The class separability can
naturally improve by including additional features, but at the expense of extra features
and classifier complexity.

2.3 Classification

In this study we investigated various classifiers including Linear Delta Rule (LDR),
K-Nearest Neighbours (KNN), Quadratic Gaussian classifier (QG), and Neural
Networks (NN) [14]. We opted for a NN due to its superior performance, however a
comparison with the other methods will be presented later. FCM processing of our
database of our 60 colour images resulted in 4037 segmented regions. These were
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labelled by a consultant ophthalmologist as EX or non-EX to create a fully labelled
groundtruth dataset. Then, they were divided into a training set, a validation set and a
test set in a 64:10:26 ratio. Therefore, the training and validation set contained around
3000 candidates, of which 1205 were labelled as EX. The remaining 1037 (of which
417 were labelled as EXs) were used as an independent testing set. A 10—fold cross-
validation was used for the network generalisation. The three-layer perceptron NN
employed had a 10-node input layer corresponding to our feature vector. We
experimented with a hidden layer with a range of 2 to 35 hidden units to find the
optimum architecture. A single output node gave the final classification probability.
The network was trained using two different learning methods, standard Back-
Propagation (BP) and Scaled Conjugate Gradient (SCG) descent [15]. The classifier
error was calculated using regions from validation set after each iteration of training.
Training was terminated when this error began to rise as it signified over-training.
The NN performance was measured using the previously unseen regions from the test
set in the usual terms of detecting the presence or absence of a pathology in an image,
i.e. sensitivity and specificity. Sensitivity is the ratio of the true positive (TP) decisions
to all positive decisions, while specificity is the ratio of true negative (TN) decisions
to all negative decisions. Another reported measure, the accuracy, is the ratio between
the total numbers of correctly classified instances to all the instances that exist in the
test set. Table 2 summarises the results obtained on the test set where the best
classifiers, including 30 hidden units for SCG and 10 for BP learning method, have
been chosen on the basis of validation error. These results are just a selection out of a
number of configurations used for training the classifiers. For each network the
optimum threshold value giving the best balance between sensitivity and specificity is
shown.

Table 2. Performance comparison of different neural network based classifiers.

Classifier Tglllets%l(l)tl d A(z;el;:lcly Sensitivity | Specificity
SCG (10) 0.4 81.2% 70.3% 91.4%
SCG (20) 0.5 84.0% 84.0% 82.8%
SCG (30) 0.3 90.1% 93.4% 82.7%
BP (10) 0.3 89.6% 89.0% 89.8%
BP (20) 0.5 82.0% 77.5% 84.6%
BP (30) 0.5 87.0% 80.3% 91.7%

The classical tool to achieve tradeoffs between sensitivity and specificity criteria is
the Receiver Operating Characteristic (ROC) curve [16]. This curve is typically
plotted with the TP fraction against the FP fraction. The bigger the area under the
ROC curve (A) the higher the probability of making a correct decision. Figure 4
compares the behaviour of the NN classifiers for the full range of output threshold
values. The best performance for the BP network was achieved using 10 hidden units
with A, = 0.897. Similarly, for the SCG network, 30 hidden units achieve the best
performance with A, = 0.916. These show that these performances are very close and
comparable. These conclusions also match the results shown in Table 2.
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Table 3 illustrates comparative classification performances for three other classi-
fiers along with the best results from the NN. These were the LDR, KNN and QG
classifiers. The combination of the selected features provides a good classification
performance for all the classifiers with the KNN classifier performing the best out of
the three new methods. Overall, the classification analysis indicates that the best
suitable classifier for distinguishing the EX pathologies from the other non-EXs is a
NN classifier based on the SCG learning method.

ROC Curves for BP Learning ROC Curves for SCG Learning
. Method 1- Method
0.9 0.9
] 0.8 [} 08
2 07 2 07
P O 06 ® @ 06 /
0 ® O ® o5
® 05 s
R < s & o4 .
g 03 — 10 hidden, Az=0.897 S 031 — 0 hidden, Az=0.832
= 0.2 20 hidden, Az=0.847 = 0.2 1 20 hidden, Az=0.865
0.1 30 hidden, Az=0.873 0.1 30 hidden, Az=0.916
0 o
0 0102 0304 050607 0809 1 0 01020304 0506070809 1
False Positive Rate False Positive Rate
(a) (b)

Fig. 4. NN classifier ROC curves analysis, (a) BP learning method, (b) SCG learning method.

Table 3. Comparion of the performance of different classifiers.

Classifier Accuracy (%) | Sensitivity (%) Specificity (%)
SCG (30) 90.1 93.4 82.7
BP (10) 89.6 89.0 89.8
LDR 81.8 65.3 93.7
KNN (K=4) 87.1 80.2 93.1
QG 81.3 64.4 93.0

3 Locating the Optic Disk

The optic disk is the entrance region of blood vessels and optic nerves to the retina.
Localising it is crucial, for example, to identify anatomical and pathological parts in
retinal images (e.g. the fovea), for blood vessel tracking, and as a reference length for
measuring distances in retinal images. The optic disk is a brighter region than the rest
of the choroids due to the absence of retina layer and its shape is approximately
round. Another motivation for identification of the optic disk is to remove it as a
(false positive) candidate EX region. We investigated three different approaches:
template matching, least squares regression arc estimation, and snakes. The first
strategy provided an approximate location of the optic disk centre, while the second
method estimated the optic disk as a circle. Either of these were enough to remove the
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optic disk as a candidate EX region. However, as a precise localisation is of more use
in clinical analysis, the snake technique was developed to produce a more accurate
boundary.

3.1 Template Matching

We generated a 110x110 template by averaging the optic disk region in 16 normalised
retinal images selected randomly. The normalised correlation coefficient [10] was
evaluated to present an indication of the match between the template image and each
individual pixel in the image under consideration. We applied the method to our 60
retinal images. In all cases the template image could provide a good approximate
match of the optic disk centre even when large, albeit scattered, areas of similarly
coloured EX pathologies existed in the image. Figure 5 shows the template and three
typical results. The main weakness of this approach is that the largest correlation
coefficient value does not necessarily correspond to the true optic disk centre as can
be seen easily in Figure 5.

(a) (b)

Fig. 5. (a) Close up view of the template image (b-d) examples of optic disk centre estimation
using template matching.

()

3.2 Least Squares Regression Arc Estimation

In this section, we report on a faster and more accurate estimation of the optic disc
region. After the FCM segmentation stage, we performed connected component
labelling [17] to identify the size and extent of each separate region (Figure 6(b)).
The optic disc region is often fragmented into smaller regions due to blood vessels
running across it, including a main large region on the temporal side and some smaller
ones on the nasal side. We used a very conservative connected region size threshold
of 1000 to select all possible candidate regions. This step removed small minor
regions and preserves computation time, but was not strictly necessary since our
application is not time-critical. Next, we selected the best optic disk region candidate
by applying a compactness criterion [17] that rejected all EX regions, since they have
an irregular shape and are non-circular. In contrast a real candidate optic disk region
exhibits a more regular shape like the fragmented half-circle in Figure 6(b). We then
used the boundary of the candidate object to apply an iterative algorithm [18] for
estimating the centre of a circular arc and its radius. This algorithm (see Appendix A)
is based on minimization of the error between a set of pixels (arc points) and the
estimated arc using least squares regression, with an area-based measure of best fit.
Figure 6 illustrates the results of locating the optic disk based on arc estimation.
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The method was applied to 16 retinal images and could achieve acceptable
estimation of the optic disk region which will be reported later in Section 4. This
simple approach is more than adequate to enable us to locate the optic disc
approximately and exclude it from the candidate EX regions found by FCM. In turn,
that allows us to train the network for EX classification more accurately. However, it
still only approximates the boundary of the optic disk. Indeed, in some eye diseases, it
is necessary to identify the exact boundary of the optic disk.

(b) (d)

Fig. 6. (a) Typical retinal image including EXs, (b) connected component labelling of EX
candidates after FCM, (c) optic disk candidate partial boundary, (d) estimated optic disk area.

3.3 Accurate Localisation of the Optic Disk Using Snakes

In [9], Mendels et al. introduced a method based on greylevel morphological smooth-
ing of the optic disk region followed by a manually-placed snake implementation to
localise the optic disk. Here, we use a very similar approach, except we introduce two
novel improvements. Firstly, we place the initial snake automatically using our earlier
levels of processing. Secondly, we improve on the morphological step by using colour
morphology which results in a more homogeneous inner disk area and aids the
accuracy of the optic disk localisation. The initial contour for a snake must be close to
the desired boundary otherwise it can converge to the wrong resting place. We can
use either of the methods described in sections 3.1 and 3.2 to automatically position
an initial snake. In all our experiments this was performed successfully. In general, a
snake is a set of points initially placed near the contour of interest, which are
gradually brought closer to the exact shape of the desired region in the image [19].
This is carried out through iterative minimization of an energy function comprising an
internal and an external term:

(a|X’(s)|2 + B|x ”(s)|2)+ E,, (X (s))ds 7

ext

| =

1
E snake = J
0

where X(s) is a parametric curve and the coefficients o and [ control the snake’s
tension and rigidity respectively. The last term E_, (X(s)) is the external energy and
can be defined by an edge map, for example f{x,y)=|V[G (x,y)*I(x,y)]', where I is the
image, and G is a Gaussian smoothing filter with standard deviation ¢, and V and *
are the gradient and convolution operators respectively. The disadvantage of this
external energy field is that it may lead to many local energy minima that do not
represent the desired boundary. Snakes also have difficulties progressing into
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boundary concavities. To overcome these problems, we used the Gradient Vector
Flow (GVF) field [20] which replaces the standard formulation of the external energy
with a GVF field, V(x,y)=(u(x,y),v(x,y)). This vector field is evaluated by applying
generalised diffusion equations to both components of the gradient of an image edge
map. Then, the external energy is defined to minimise the following energy function:

}/=”,u(uf+u§ +v2 +v§)+|Vf|2|V—Vf|2dxdy (8)

where (s a parameter that determines the trade-off between smoothness of the vector
field and how much the snake is attracted to the edges. It should be set according to
the amount of noise in the image (more noise, bigger ). In optic disk images, a snake
would be significantly affected by the blood vessels present in the optic disk region.
Hence, a preparation step is necessary. Morris and Wood [21] used a median filter
with size 52x52. This technique is slow and would heavily blur the boundaries of the
disk. Mendels et al. [9] applied a closing grey morphology operation to smooth the
vascular structures while keeping the actual edges of the optic disk. A symmetrical
disk-structuring element of size 13 was used since the blood vessels are not wider
than 11 pixels. An example of this is shown in Figure 7(b).

(b) (©

Fig. 7. Morphology closing results: (a) close-up of typical optic disk region, (b) greylevel
morphological closing, and (c) proposed colour morphological closing.

As Figure 7(a) indicates, all the vessel structures should be eliminated properly and
without using morphological filtering it is unlikely that a snake can converge to the
optic disk boundary appropriately. Using greylevel morphology, the operation can be
applied to the intensity or lightness channel. In colour, the optic disk has quite a
bright, sometimes near-saturated characteristic. More importantly, a pixel is multi-
valued and must be treated as a vector. There has been relatively little research on
colour morphology with the most significant and practical work being Hanbury and
Serra [22]. We devised a more basic definition of colour morphology, in which the
definitions of maximum and minimum operations on colour pixels reduce to the
maximum and minimum of the set of vectors in the structuring mask. As we are
looking to remove dark vascular regions against the bright, near-saturated optic disk
region, we use as our point of reference the origin of the colour space to compare
colour vectors against. Hence, the definitions for dilation (Z,) and erosion (/,) in our
simple colour morphology domain become:

L,(x)={1(): 1(y)= max[1(z)] , z€ s, )
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1,()=1(y): 1(y) = min[1(2)] .ze 5, } (10)

where s is the structuring mask. To perform such operations, a more metric colour
space is appropriate and hence we used the L*a*b colour space. Figure 7(c) shows a
closing operation using the same structuring mask size. This approach preserves the
edges better and, as will be shown later, results in a more accurate localisation of the
optic disk.

4 Final Processing and Comparison

After the colour morphological pre-processing step, the snake was applied. Several
different values were tested for the regularisation parameter of the GVF and we found
1= 0.27 as the best for our images. The number of iterations during the evaluation of

the GVF field was set to 40. We used = 0.7 and = 0.1 which control the snake’s
tension and rigidity respectively. Finally, the number of iterations for the snake
convergence was determined experimentally and set to 175. All these parameters
were kept constant throughout the experiments. We initialised the snake as a circle
with a centre at the point found through template matching and with a circular radius
set to half of the width of the template. In a number of cases this initial snake
intersected the real optic disk boundary, but the GVF snake has the ability to shrink or
grow towards the final boundary. Figures 8(a)-8(f) illustrate the optic disk boundary
localisation showing the initial and final snake. Figure 8(b) displays the
morphological result, but the rest of the images show the snake overlaid on the
original image for better visual analysis. Both full and close-up views are shown of
the initial and final snake.

Next, we evaluate the accuracy of our localisation compared to manually labelled
groundtruth produced by a clinician (e.g. see Figure 8(g)). We also demonstrate the
improvement obtained using the proposed simple colour morphological closing over
greylevel morphology for this application. We applied closing in greylevel and L*a*b
colour space to a set of 16 colour retinal images selected randomly. Then a GVF
snake was automatically positioned to localise the boundary of the optic disk in each
case. The same measure of accuracy as in (6) was used to compare a groundtruth
region with that inside a snake. In this case R and 7T correspond to the groundtruth and
the final snake-localised optic disk region respectively (e.g. Figure 8(h)).

Table 4 outlines the evaluated performance for all the 16 images as well as their
overall average accuracy. The first column shows the accuracy when the boundary
estimation method from section 3.2 was applied. The second and third columns show
the accuracy of the snake after using greylevel morphology and the proposed colour
morphology respectively. The least squares arc estimation method clearly performed
worse than the snake (whatever the morphological pre-processing step) except in case
10. The general success of this method is still significant and is due to the precision of
the regions segmented by the FCM algorithm. The best optic disk localisation
performance was achieved in 14 of the 16 images by employing a snake after
morphological operations in the colour space. Again, it should be taken into account
that our clinician agreed that the final snake results represent an accurate boundary for
almost all the images compared to his manually determined groundtruth.
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(© ® (® (h)

Fig. 8. Optic disk localisation results, (a) a typical retinal image, (b) vessel elimination in
L*a*b, (c) initial snake, (d) final snake, (e) close up of optic disk region and initial snake, (f)
close up of final snake, (g) close up of hand-drawn groundtruth, and (h) overlay of (f) and (g).

Table 4. Performance evaluation for different optic disk approaches.

RETINAL LEAST GREY L*A*B
IMAGE SQUARES MORPHOLOGY MORPHOLOGY
ARC BASED SNAKE BASED SNAKE
ESTIMATION

1 68.00 89.40 91.07

2 78.66 92.14 92.78

3 82.73 91.89 92.92

4 84.24 92.66 92.72

5 78.80 86.40 90.65

6 83.37 88.70 89.00

7 89.21 92.96 92.16

8 85.70 86.14 89.20

9 80.37 87.74 87.83
10 92.27 89.30 89.72
11 83.08 85.26 88.84
12 84.67 90.41 90.51
13 73.77 87.00 90.63
14 86.48 88.03 89.93
15 81.42 77.93 90.32
16 63.54 86.57 92.62

Overall Accuracy 81.02% 88.28 % 90.68 %
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5 Conclusion

In this study we investigated various classifiers including K-Nearest Neighbours,
quadratic Gaussian classifier, Linear Delta Rule, and neural networks. We found a
NN based on the SCG learning method could represent the best overall diagnostics
with 90.1% accuracy, 93.4% sensitivity, and 82.7% specifity, where the trade-off
between sensitivity and specificity was appropriately balanced for this particular
problem. Due to the importance of optic disk localisation in retinal image analysis and
in order to be able to separate the optic disk regions from the EX candidate region list,
three different approaches were investigated. Template matching could only provided
an approximate location of the optic disk centre, but the least squares regression arc
estimation technique could localise the optic disk region to 81% accuracy. However,
the third approach localised the optic disk boundary based on the active contours
concept to 90.7% accuracy after applying a colour morphology based step.

Another useful by-product of the proposed FCM approach is that it also segments
the blood vessels. We hope to turn our attention to these in our future work. The
study presented here indicates that automated diagnosis of exudative retinopathy
based on colour retinal image analysis is very successful in detecting EXs. Even
though not all exudates may sometimes be found in a retinal image, it is important
that some are found. This helps in bringing the problem to the attention of the
opthalmologist. Hence, the system could be installed as a mass-screening tool in
optician shops and used by non-experts. We have shown that we can detect the
majority of exudates, and in all cases when the disease was present, it was detected.

APPENDIX A

This simple algorithm is taken from [18]. Suppose the coordinates of the data in the
image are Q = {q, = (x,y,), i= 1,...,NJ}. In our case, these are the candidate optic disk
points. The estimated circle is (x — x.)* + (y —y.)’=R’, where (x_y,) and R represent the

centre and radius of the circle respectively. These parameters are estimated based on
least squares regression as follows:

1 aby —coby 416y — Ay
R =— 223 x +Nx 2+ L) ANy x, = =—
N (2 ©r Zy Zy( % ) ¢ aby —a,b, Ye ab, —ayb

where g :{(Zx)z —NZxZ) ) ay = Z(ZXZy—NZ)cy) . by = 2(2 xz y _NZ xy)
DS SR YD Y YD IO W) 7o
RO V) M0 30 M) ¥
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