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Abstract. Image segmentation is a fundamental problem in Image Pro-
cessing, Computer Vision and Medical Imaging with numerous applica-
tions. In this paper, we address the atlas-based image segmentation prob-
lem which involves registration of the atlas to the subject or target image
in order to achieve the segmentation of the target image. Thus, the tar-
get image is segmented with the assistance of a registration process. We
present a novel variational formulation of this registration assisted image
segmentation problem which leads to solving a coupled set of nonlinear
PDEs that are solved using efficient numerical schemes. Our work is a
departure from earlier methods in that we have a unified variational prin-
ciple wherein registration and segmentation are simultaneously achieved.
We present several 2D examples on synthetic and real data sets along
with quantitative accuracy estimates of the registration.

1 Introduction

Segmentation of noisy image data is fundamental to the fields of Computer Vi-
sion and Image Processing. There are numerous existing methods in literature
for achieving this goal. In Medical Imaging applications, segmentation can be a
daunting task due to possibly large inhomogeneities in image intensities across an
image e.g., in MR images. These inhomogeneities combined with volume averag-
ing during the imaging and possible lack of precisely defined shape boundaries for
certain anatomical structures complicates the segmentation problem immensely.
One possible solution for such situations is atlas-based segmentation where the
atlas is a given ground-truth segmentation. The atlas can be constructed in vari-
ous ways and it allows one to incorporate prior information about the anatomical
structure of interest and this information can be input from one or more experts.
The atlas once constructed can be used as a template and can be registered non-
rigidly to the image being segmented (henceforth called a target image) thereby
achieving the desired segmentation. This approach has been quite popular in
the recent past for segmenting cortical and sub-cortical structures in the human
brain from MRI images. We will now briefly review some of these approaches
in the following. Note that the atlas-based registration problem assumes that
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the ground truth segmentation is given and requires the subject/target image
be segmented using the information in the atlas. Assuming a given atlas i.e.,
segmented source image is the only way to solve this problem since, the shape
of interest in the source image for our application is at times not well defined in
terms of having well defined contrast boundaries at any scale. Approaches that
try to simultaneously achieve segmentation of the shape of interest in both the
source and target images as in [1,11] are unsuitable for such problems because,
the source shape must be learnt over a population of pre-identified shapes where
the pre-identification is achieved with the aid of an expert. The reader is however
warned that in this paper, we have not included examples where the atlas was
obtained via a rigorous training process. However, our research is well poised
to proceed in this direction with the acquisition of such population of shapes in
the case of a hippocampus in the human brain. The data ground truth shape
acquisition for a reasonable number of data sets with the aid of an expert is
quite tedious and should not be underestimated.

1.1 Previous Work: Brief Review

Many of the methods that achieve atlas-based segmentation are based on esti-
mating the non-rigid deformation field between the atlas image and the target
image and then applying the estimated deformation field to the desired shape
in the atlas to achieve the segmentation of the corresponding structure in the
target/subject image. In the following, we will briefly review some of these meth-
ods.

In Chen et.al., [3], an atlas-based segmentation scheme is described that uses
expert input to define the atlas and then warp it to the subject brain MRI
to segment the subject brain which is then followed by morphometrics. The
coordinate warp was determined using the popular sum of squared differences
(SSD) measure defined over the image pair intensity functions. The warp was
computed only at the control points and interpolated elsewhere using B-spline
basis, thus accruing computational savings because the number of control points
is dramatically smaller than the original grid points. The vector field describing
the coordinate warp was then improved using a simple but ad-hoc heuristic
iterative improvement technique. The computed vector field was then used to
warp the given segmentation in the source image on to the target image. The
governing equations in this iterative improvement are almost identical to the
non-rigid deformation estimation equations reported in Dawant et.al., [6] which
are in turn identical to the governing equation of non-rigid registration in Thirion
[19]. All these methods are not strictly derived from a variational principle and
hence can not be interpreted as minimizers of any cost functionals. Moreover,
they do not achieve registration and segmentation simultaneously in a unified
mathematical framework.

Among the image registration methods, one popular approach is based on
maximizing mutual information reported simultaneously in Viola and Wells [22]
and Collignon et al. [5]. Mutual information between the model and the image
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that are to be registered is maximized using a stochastic analog of the gra-
dient descent method. Impressive experiments have been reported using this
scheme for rigid as well as non-rigid registration [9,13,18]. Recently, MI-based
non-rigid registration methods have been used in [7] for constructing statistical
deformation models. These models are then used in constructing atlases along
with information about the variability in the population used for constructing
the atlas. Once again, these methods do not use a unified framework for regis-
tration and segmentation but instead they first estimate the deformation field
and then apply it to the atlas/mask to detect the corresponding shape in the
target/subject image.

Another popular non-rigid registration method that has been used in the
context of achieving segmentation is based on the fluid-flow model introduced in
Christensen et.al., [8]. In this approach the registration transformation is mod-
eled by a viscous fluid flow model expressed as a partial differential equation
(PDE). The model primarily describes the registration as a local deformation
expressed as a fluid flow via a nonlinear PDE. In the fluid-flow based meth-
ods, the reported computational times for registration of 2D and 3D data sets
on uniprocessor workstations are very large. The fastest implementation of the
viscous fluid flow model by Schormann et al. [15] using a multi-grid scheme
takes 200 mins. of CPU time on a Sparc-10 for registering two 64 × 128 × 128
images. This fluid flow based non-rigid registration has been used quite widely
in achieving atlas-based segmentation and we refer the reader to [23,4,10]. A
more mathematically thorough treatment of the non-rigid registration which
subsumes the fluid methods was presented in Trouve [20]. In his technique, the
transformation between the two images is treated as a mapping an appropriate
metric is defined to characterize the deviation of this map from the identity. The
formulation is very interesting and yields a diffeomorphic mapping unlike most
other approaches. Examples of large deformation mappings are shown for 2D
synthetic images and real images of size (128,128). The method in Trouve [20]
has however not been used in atlas-based segmentation. It should however un-
doubtedly yield segmentations that are as good as or better than those obtained
using the fluid-flow model of Christensen et.al. [8].

In [2], a level-set based image registration algorithm was introduced that
was designed to non-rigidly register two 3D volumes from the same modality
of imaging. This algorithm was computationally efficient and was applied to
achieve atlas-based segmentation. Examples of application of this non-rigid de-
formation estimation scheme were shown for hippocampal segmentation from
human brain MRI. Although, this scheme was mathematically well grounded,
the task of atlas-based segmentation was achieved in two separate stages, one
in which the deformation field was determined and another where the target
image was segmented via an application of the estimated deformation field to
the atlas-segmentation. This is the the same two stage approach philosophy fol-
lowed by earlier researchers and can be effected by a cumulation of errors from
each stage and the achieved segmentation may not be very accurate. The target
shape could be either under or oversegmented due to registration errors and it
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is desirable to improve on this segmentation by using any available information
(global/local) in the target image over and above what was used during the
registration process. One possibility is to drive the warped segmentation using
some type of active modeling framework which would use the warped segmenta-
tion as an initialization. This might possibly yield the desired solution but the
approach itself would be a combination of two disjoint approaches. Instead, in
this paper, we present a novel variational formulation of this registration assisted
image segmentation problem which leads to solving a coupled set of nonlinear
PDEs that are solved using very efficient numerical schemes. In this framework,
the registration of the template with the target image and the segmentation of
the desired shape from the target image are simultaneously achieved by solving
the coupled PDEs. We present several 2D examples on synthetic and real data
sets.

The rest of the paper is organized as follows: In section 2, we present the
mathematical model for achieving the simultaneous registration and segmen-
tation as well as the numerical algorithm used in the minimization. Section 4
contains several examples of algorithm performance on 2D images. Finally, sec-
tion 5 draws some conclusions.

2 Registration+Segmentation Model

Our model for registration-assisted segmentation achieves registration and seg-
mentation in one unified framework. The problem is posed in a variational frame-
work as a single variational principle and its solution is obtained by solving
the associated Euler Lagrange equations, which are nonlinear partial differential
equations (PDEs). Let I1(x, y) and I2(x, y) be the two given images and let C
be the boundary or boundaries of the given segmentation (either a single closed
contour or several contours) of I1. For simplicity, we use a modified version of the
SSD registration model [17] wherein the modification allows for the two image
pairs being registered to differ in contrast and brightness. This measure however
can be replaced by any other match metric (normalized cross-correlation etc.) in
the framework proposed here, of course, the Euler-Lagrange equations need to
be changed appropriately. The image segmentation aspect of our model includes
an image smoothing component as in the work reported in [21]. The basic idea of
the smoothing and segmentation aspect is a curve evolution form of the classical
Mumford-Shah model of image smoothing and segmentation as described in [21]
but with the added twist that the segmentation is dependent on the non-rigid
registration between the image pairs. The variational principle describing our
formulation of the registration assisted segmentation problem is given by,

E(v, Î2, α, β) =
∫

Ω/C

{
λ1‖∇Î2(v(x))‖2 + λ2‖Î2(v(x))− I2(v(x))‖2

+ λ3‖I1(x)− α ∗ Î2(v(x))− β‖2
}
dx+

∫
Ω

λ4‖∇v(x)‖2dx. (1)
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Here, Î2 denotes the desired unknown smooth approximation to the target
image, α accounts for a constant contrast variation between the two image pairs
and β accounts for the brightness differences between the image pairs. The two
images are assumed to be non-rigidly mis-aligned by a vector field transformation
v(x). Ω is the image domain in I1. λi, i = 1, .., 4 are parameters that weight the
importance of each term in the variational principle. At this time, we have chosen
to keep the smoothing of the vector field and the image I2 simple by using the
L2 norm which leads to computationally efficient algorithms. L1 norm based
smoothing in this context will be the focus of our future work.

Let, Xc(x) be a characteristic function of the curve C, i.e., Xc(x) = 0, if
x ∈ C, and Xc(x) = 1, otherwise. Then, the Euler-Lagrange equation of the
variational principle (1) is given by,

∆Î2(v(x)) + λ2(Î2(v(x))− I2(v(x))) + λ3α(αÎ2(v(x)) + β − I1) = 0
∂Î2(v(x))
∂N

= 0, x ∈ C (2)

λ4∆v1 = Xc

{
λ1
Î2xÎ2xx + Î2y Î2xy

‖∇Î2‖
+ λ2(Î2 − I2)(Î2x − I2x

)+

λ3α(αÎ2 + β − I1)Î2x

}

λ4∆v2 = Xc

{
λ1
Î2xÎ2xy + Î2y Î2yy

‖∇Î2‖
+ λ2(Î2 − I2)(Î2y − I2y )−

λ3α(αÎ2 + β − I1)Î2y

}
∫

Ω/C

(αÎ2(v(x)) + β − I1)Î2dx = 0∫
Ω/C

(αÎ2(v(x)) + β − I1)dx = 0 (3)

These equations are a coupled system of nonlinear PDEs and can be solved
numerically as described in the following section.

3 Numerical Solution

Equations (2) and (3) can be solved numerically by discretizing them using
the central finite differences. Since these are nonlinear PDEs, they need to be
linearized and then solved. Our approach here will be somewhat different in that,
we will use the PDE in (2) to solve for the smooth approximation Î2. In order
to solve for the vector field transformation and the parameters α and β, we will
directly discretize the variational principle (1) and solve it using the nonlinear
preconditioned conjugate gradient algorithm. More on this in the subsequent
paragraphs. This works out to be simpler to linearize and hence justifying the
approach.
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The linearization of the first PDE which involves image smoothing is done by
using the vector field transformation and the contrast as well as the brightness
estimates obtained from the previous iteration. Once the v(x), α, β is fixed, we
can compute the inverse transformation of v(x) as u(x), then the first PDE
becomes:

∆Î2(x) + λ2
[
Î2(x)− I2(x)

]
+ λ3α

[
αÎ2(x) + β − I1(u(x))

]
= 0

∂Î2(x)
∂N

= 0, x ∈ v(C) (4)

The above equation when discretized is a linear system which can be solved
very efficiently using an incomplete-LU (ILU) preconditioned conjugate gradient
(PCG) algorithm [14].

Once the smoothed image Î2 is obtained, we solve the registration parameters
v, α, β by using the discretized equation (1). We use the nonlinear preconditioned
conjugate gradient with the incomplete LU preconditioning to efficiently solve
the discretized variational problem.

3.1 Discrete Variational Principle

In this section, we present the details of the nonlinear PCG used in minimizing
the discretized variational principle. Let v1 ∈ Rn and v2 ∈ Rn denote the vector
fields defined on the entire image mesh of size n, corresponding to the compo-
nents v1,i and v2,i at each mesh point respectively. The discretized variational
principle (1) for fixed Î2 denoted by f(.) is given by,

f(v1,v2, α, β) =
∑

(xi,yi)∈Ω/C

{
λ1‖∇Î2(xi + v1,i, yi + v2,i)‖2

+ λ2‖Î2(xi + v1,i, yi + v2,i)− I2(xi + v1,i, yi + v2,i)‖2

+ λ3‖αÎ2(xi + v1,i, yi + v2,i) + β − I1(xi, yi)‖2
}

+
∑

(xi,yi)∈Ω

λ4(v21x,i + v
2
1y,i + v

2
2x,i + v

2
2y,i) (5)

This functional is minimized using the nonlinear preconditioned conjugate gra-
dient (NPCG) technique with an incomplete-LU preconditioner.

The general nonlinear preconditioned conjugate gradient method is outlined
as follows [16]:

1. Solve Pz0 = r0 = −f ′(u0) and set d0 = z0.
2. Find γi that minimizes f(ui + γidi).
3. ui+1 = ui + γidi.
4. ri+1 = −f ′(ui+1). Solve Pzi+1 = ri+1

5. ηi+1 =
rT

i+1zi+1

rT
i zi

or ηi+1 = max{ rT
i+1(zi+1−zi)

rT
i zi

, 0}.
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6. di+1 = zi+1 + ηi+1di.
7. If ri+1 
 0, stop; else go to step 2.

Where, ui is the unknown parameter vector being solved for and in our case, it
consists of (v1,v2, α, β). Step 2 requires a line search method to minimize the
function f(ui+γidi) at ui along the direction di. The Newton-Raphson method
and the Secant method are two popular line search schemes to approximate the
best γi. We employ the Newton-Raphson method in the nonlinear PCG. The
Taylor series approximation of the function f up to the second-order terms is
used to derive the approximate γi, giving

γi = − f ′(ui)di

dT
i f ′′(ui)di

. (6)

In step 5, there are two ways for choosing η. The first is Fletcher-Reeves formula
and the other is the Polak-Ribiere formula [12]. We adopt the latter since it
usually converges much more quickly, although the nonlinear PCG needs to
restart when η = 0. Note that f ′(u) and f ′′(u) in this algorithm denote the
gradient vector and the Hessian matrix of the function f given in Eq. (5). The
following are the approximations for f ′(u) and f ′′(u) where u ∈ R2n+2 and
u = (v1 v2 α β)T :

f ′(u) =



f ′

1
f ′

2
f ′

α

f ′
β


+ λ4


Ks 0

0 Ks

0 0


u (7)

f ′′(u) =


K11 + λ4Ks K12 K13

K12 K22 + λ4Ks K23
KT

13 KT
23 K33


 (8)

where the matrix Ks is the discrete Laplacian matrix obtained from the mem-
brane smoothness constraint, the vectors f ′

1 and f
′
2 are obtained by concatenating

the components f ′
1,i and f ′

2,i respectively, K11, K12 and K22 are all diago-
nal matrices with the i-th diagonal entries K11,i, K12,i and K22,i respectively,
The components f ′

1,i, f ′
2,i, K11,i, K12,i and K22,i corresponding to the i-th

(1 ≤ i ≤ n) location are defined as:

f ′
1,i = 2Xc,i

[
λ1(Î2x,iÎ2xx,i + Î2y,iÎ2xy,i) + λ2(Î2,i − I2,i)(Î2x,i − I2x,i)

+ λ3α(αÎ2,i + β − I1,i)Î2x,i

]
f ′
2,i = 2Xc,i

[
λ1(Î2x,iÎ2xy,i + Î2y,iÎ2yy,i) + λ2(Î2,i − I2,i)(Î2y,i − I2y,i)

+ λ3α(αÎ2,i + β − I1,i)Î2y,i

]
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K11,i = 2Xc,i

[
λ1(Î22xx,i + Î

2
2xy,i) + λ2(Î2,i − I2,i)(Î2xx,i − I2xx,i)

+ λ2(Î2x,i − I2x,i)2 + λ3α(αÎ2,i + β − I1,i)Î2xx,i + λ3α2Î22x,i

]
K12,i = 2Xc,i

[
λ1(Î2xy,iÎ2xx,i+Î2xy,iÎ2yy,i)+λ2(Î2,i−I2,i)(Î2xy,i−I2xy,i)

+ λ2(Î2x,i−I2x,i)(Î2y,i−I2y,i)+λ3α(αÎ2,i+β − I1,i)Î2xy,i+λ3α2Î2x,iÎ2y,i

]
K22,i = 2Xc,i

[
λ1(Î22xy,i + Î

2
2yy,i) + λ2(Î2,i − I2,i)(Î2yy,i − I2yy,i)

+ λ2(Î2y,i − I2y,i)2 + λ3α(αÎ2,i + β − I1,i)Î2yy,i + λ3α2Î22y,i

]
(9)

K13 and K23 ∈ Rn×2, and the i-th element in the first and second columns
of each of these matrices are denoted by K13,1,i, K13,2,i, K23,1,i and K23,2,i

respectively. These values are presented as:

K13,1,i = 2λ3Xc,i(2αÎ2,i + β − I1,i)Î2x,i

K13,2,i = 2λ3Xc,iαÎ2x,i

K23,1,i = 2λ3Xc,i(2αÎ2,i + β − I1,i)Î2y,i

K23,2,i = 2λ3Xc,iαÎ2y,i (10)

f ′
α and f

′
β are scalar values, K33 is a 2× 2 matrix, they are specified as:

f ′
α = 2λ3

∑
i

Xc,iÎ2,i(αÎ2,i + β − I1,i)

f ′
β = 2λ3

∑
i

Xc,i(αÎ2,i + β − I1,i)

K33 = 2λ3

[∑
i Xc,iÎ

2
2,i

∑
i Xc,iÎ2,i∑

i Xc,iÎ2,i

∑
i Xc,i

]
(11)

In the above two equations, all values related to Î2 and I2 are computed at
(xi + v1,i, yi + v2,i), which can be computed using any interpolation techniques.
And all values related to I1 are computed at (xi, yi). Note that the second-
order partial derivatives of the discretized energy function,K11,i, K12,i, K22,i are
obtained by ignoring the terms involving third-order partial derivatives, which
are more sensitive to the high-frequency noise.

4 Implementation Results

In this section, we present several examples of application of our algorithm to
achieve registration and segmentation. Results of this application are presented
for synthetic as well as real data in 2D. We present one synthetic and three real
data examples. The synthetic data example contains a synthetically generated
source image and a target image which was generated from the source image by
a known non-rigid field that was procedurally generated. In this case, we present
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Fig. 1. Results of application of our algorithm to synthetic data (see text for details).

the error in the estimated non-rigid field using our algorithm as an indication of
the accuracy of the algorithm.

The segmentations in all the examples that are to be used as the “atlas”
segmentation was semi-automatically estimated using an active contour model.
More sophisticated methods involving use of statistical information outlined in
literature discussed in section 1 can be used to create these atlas-segmentations
and we will use such methods in our future work. All the figures are organized
as follows, from left to right: the first row depicts the source image with the
atlas-segmentation superposed in white, the target image which is to be seg-
mented followed by the target image with the unregistered atlas-segmentation
superposed to depict the amount of mis-alignment; second row depicts smoothed
target, registered target followed by the segmented and registered target; third
row depicts the difference between the source and the unregistered target to show
the degree of discrepancy between the unregistered image pairs followed by the
difference between them after registration and finally the estimated non-rigid
vector field.

Figure 1 depicts the results obtained for the noisy synthetic data. The source
image was generated with sufficient texture in the region of interest. The target
was then obtained by applying a synthetically generated non-rigid deformation
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field to the source image. The results are organized as described earlier. As
evident, the registration+smoothing+segmentation are quite accurate from a
visual inspection point of view. As a measure of accuracy of our method, we
estimated the average and the standard deviation of the error in the estimated
non-rigid deformation field. The error was estimated as the angle between the
ground truth and estimated displacement vectors. The average and standard
deviation are, 1.8742 and 4.5061 (in degrees) respectively, which is quite accurate.
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40

50

60

70

80

90

Fig. 2. Results of application of our algorithm to a pair of slices from a human brain
MRI (see text for details).

For each of the first two real data experiments, we selected two image slices
that were two slices apart from an MR brain data set. The two slices depict
considerable changes in shape of the ventricles, the region of interest in the data
sets. One of the two slices was arbitrarily selected as the source and segmentation
of the ventricle in the source was achieved using an active contour model. The
goal was then to automatically find the ventricle in the target image using our
algorithm given the input data along with the segmented ventricles in the source
image. The results as organized as before. As evident from figures 2 and 3, the
accuracy of the achieved registration+segmentation visually very good. Note
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that the non-rigid deformation between the two images in these two examples
is quite large and our method was able to simultaneously register and segment
the target data sets quite accurately.
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Fig. 3. Results of application of our algorithm to another pair of slices from a human
brain MRI (see text for details).

Finally, the last real data example is obtained from two brain MRIs of differ-
ent subjects and the segmentation of the cerebellum in the source image is given.
We selected two “corresponding” slices from these volume data sets to conduct
the experiment. Note that even though the number of slices for the two data sets
are the same, the slices may not correspond to each other from an anatomical
point of view. However, for the purposes of illustration of our algorithm, this is
not very crucial. We use the corresponding slice of the 3D segmentation of the
source as our atlas-segmentation. The results of an application of our algorithm
are organized as before. Once again, as evident, the visual quality of the seg-
mentation and registration are very high. In the first experiments, the parameter
values used in our model are: λ1 = 0.1, λ2 = λ3 = 1, λ4 = 0.2, for the rest of the
experiments, we use: λ1 = 0.2, λ2 = λ3 = 1, λ4 = 0.4.
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Fig. 4. Results of application of our algorithm to a pair of corresponding slices from
distinct subjects.(see text for details)

5 Conclusions

Image segmentation is a fundamental problem in Image Processing, Computer
Vision and Medical Imaging with numerous applications. There are numerous
existing methods in literature for achieving this goal. One of the most successful
scheme for achieving image segmentation in Medical Imaging has been atlas-
based or model-based methods. We dub this a registration assisted segmentation
scheme because the atlas-segmentation is non-rigidly registered to the target. In
this paper, we present a novel variational formulation of this registration assisted
image segmentation problem which leads to solving a coupled set of nonlinear
PDEs that are solved using efficient numerical schemes. Our work is a departure
from earlier methods in that we have a unified variational principle wherein reg-
istration and segmentation are simultaneously achieved. We presented several
2D examples on synthetic and real data sets along with quantitative accuracy
estimates of the registration in the synthetic data case. More extensive experi-
mentation under different amounts of noise and varying degrees of non-rigidity
needs to be performed prior to drawing conclusions on the accuracy of the pro-
posed model. This will be the focus of our future efforts.
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