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Abstract. This paper introduces a novel probabilistic model for repre-
senting objects that change in appearance as a result of changes in pose,
due to small deformations of their sub-parts and the relative spatial
transformation of sub-parts of the object. We call the model a proba-
bilistic montage. The model is based upon the idea that an image can
be represented as a montage using many, small transformed and cropped
patches from a collection of latent images. The approach is similar to
that which might be employed by a police artist who might represent
an image of a criminal suspect’s face using a montage of face parts cut
out of a ”library” of face parts. In contrast, for our model, we learn the
library of small latent images from a set of examples of objects that are
changing in shape. In our approach, first the image is divided into a grid
of sub-images. Each sub-image in the grid acts as window that crops
a piece out of one of a collection of slightly larger images possible for
that location in the image. We illustrate various probability models that
can be used to encode the appropriate relationships for latent images
and cropping transformations among the different patches. In this pa-
per we present the complete algorithm for a tree-structured model. We
show how the approach and model are able to find representations of the
appearance of full body images of people in motion. We show how our
approach can be used to learn representations of objects in an ”unsuper-
vised” manner and present results using our model for recognition and
tracking purposes in a ”supervised” manner.

1 Introduction

In this paper we address the problem of learning representations of objects that
change in appearance as a result of small non rigid deformations and changes in
appearance arising when objects with rigid sub-components are translated in rel-
ative position. This paper introduces the probabilistic montage, illustrates some
variations of the model, present a compete algorithm for a tree structured model
and presents some results using a tree structured model for recognition tasks ap-
plied to full body images of people in motion. Importantly, the parameterization
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of the probabilistic montages presented in this paper encode few assumptions
specific to human figures. As such, probabilistic montages are applicable to var-
ious learning and classification tasks.

Fig. 1. (left to right) (a) A still image of a person walking, carrying a cup and a
book. (b) The image is broken up into a grid. (c) A montage constructed from four
possible latent images per grid cell randomly selected from different images in a set of
similar images. (d) A montage constructed from four latent images learned from a set
of images.

In our approach, we learn a collection of small latent images from a set of
examples of objects that are changing in shape. First the image is divided into a
grid of sub-images. Each sub-image in the grid acts as window that crops a piece
out of one of the collection of slightly larger images possible for that location in
the image. Additionally a rotation of the image for the patch can also be applied.
Figure 1 illustrates our approach. Figure 1 (a) and (b) show an 80 × 90 image
and a grid of sub-images. Figure 1 (c) and (d) show montages approximating the
image using the best (in the maximum a posteriori or MAP sense) cropping and
transformation of the best image from a small subset of slightly larger images.
Figure 1 (c) shows how how a montage might be created in a simple model where
the collection of slightly larger latent images for each grid cell was gathered by
randomly sampling four different frames of a video sequence. The frame in (a)
was then reconstructed using the best cropping and transformation possible from
the collection of possible latent images for each location. Figure 1 (d) illustrates
the MAP montage when four latent images for each grid cell were learned from
an image sequence. Notice that when latent images are selected randomly, the
model often has ”no choice” but to use a poor approximation (e.g. near the legs
and the book).

In this paper, we discuss how the distribution over latent images and which
transformations and cropping locations to use can be characterized using dif-
ferent probabilistic representations. We then derive an EM algorithm for a tree
structured model and present some results of modelling human figures walk-
ing while carrying and manipulating objects. We will assume that the objects
of interest have been coarsely centered within the image. Figure 2 shows some
80 × 90 pixel greyscale images of a person walking to the left and to the right
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while carrying a book and drinking a cup of coffee. We shall present results in
which our model has clustered images of the walking human subject into poses in
an ”unsupervised” fashion and we shall present some ”supervised” classification
results. In this paper we are not focusing on the task of capturing the dynamics

Fig. 2. Examples of images used to train the model.

of human walking motion. We are interested in the general task of characterizing
different configurations of an object (e.g. poses of a moving person or deforma-
tions of a face) and modelling sub-types of objects for which there may not be
a single object undergoing a dynamic change of its sub-parts (e.g. the tops of
buildings in aerial imagery). In this paper we have used video sequences but
we wish to construct a model that could be used to learn representations from
static images. However, such a model should allow images generated as a result
of the motion of human body parts to be to be efficiently characterized despite
the fact that no highly specific assumptions about human motion are built into
the structure of the model.

2 Other Approaches

We are interested in learning models for the sub-parts of image objects in ad-
dition to the ways in which these sub-parts undergo relative translation and
transformation from example data. Localized image transformations in exam-
ples of objects occur when objects undergo deformations, when classes of objects
naturally vary in configuration and also occur when fairly rigid sub-parts of an
object are able move in relative position. Here we describe some examples of
approaches to these problems that have been described in the literature.

One way to model changes in an objects appearance within an image is to
directly model image transformations such as translations, rotations, shearing
and warping. In [1], these transformations are modelled using random variables
indicating global image transformations. Extending this approach to allow multi-
ple pre-transformation latent images allows these methods to be used to extract
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meaningful data clusters from images in the presence of background clutter.
However, these techniques cannot easily model the fact that numerous spatially
localized transformation of an object often occur simultaneously.

In [2], rigid and non rigid facial motions were represented based on local
parametric models of of image deformations and transformation. Here it was
shown that modelling the majority of the face as a plane provided a reasonable
model. The parameters of the deformation and translation of local image masks
specified for each location were then found using robust regression techniques and
gradient descent optimization. In related work [3], this model was extended to
a cardboard person representation for articulated image motion such as human
walking. Here again, the local images that were used to represents the sub-parts
of the model were specified a priori. In contrast, in our approach, we learn local
images.

In contrast to Active Contour Models [4] and Active Appearance Models
[5], our approach requires less human intervention for the initialization of pa-
rameters encoding shape information. In Active Contour or Active Appearance
modelling approaches relatively specialized parameterizations are used to encode
contour and shape information. In our approach, appearance is modelled within
spatially localized latent images. Information concerning an object’s shape is
encoded within the parameters of a probability model that specifies the distri-
bution for allowable spatially localized transformations of local latent images
and this parameterization does not need significant hand adjustment for new
shapes.

In [6] a decomposition was proposed to model human dynamics in video se-
quences. In this work blobs of pixels corresponding to coherent objects in motion
are found using mixtures of Gaussians applied to spatio-temporal image gradi-
ents and optionally, pixel color values. The motion of the blobs is then modelled
hierarchically, first using a Kalman-Filter and then using Hidden Markov Mod-
els. In contrast to this and other blob based techniques we learn a number of
latent images, their transformations and cropings for spatially localized positions
in the image.

Further, numerous approaches have been described in which stick figure mod-
els are embedded into underlying models of human figures [7,8,9]. The explicit
modelling of the human form used in these techniques allow fewer images to
be required to estimate the parameters of these models. In contrast to these
approaches we are interested in models that are more generally applicable to
images that are not of human figures. But, we wish to be able to learn parame-
ters characteristic of properties such as body joint locations.

3 Montages of Transformed Mixtures of Gaussians

In our approach we extend the Transformed Mixtures of Gaussians (TMG) model
in a number of ways. We briefly review the TMG model as we describe these
extensions. First, we break an image up into a grid of smaller images or patches.
We shall use i and j to denote the locations of these smaller images within
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the rows and columns of the grid. Within each cell of the grid there exists a
TMG model. Each grid location has a model with Cij clusters that consist of
discrete variables indexed by cijε{1, ..., Cij}. For a basic TMG formulation of the
models in each of these grid cells, each cluster cij would have mixing proportions
P (cij) = πcij

. Each class c then indexes a probability distribution over a latent
image zij

p(zij |cij) = N (zij ;µcij
,Φcij ) (1)

Thus, one can consider each mean µcij
as a possible latent image for this grid

position in the montage, with Φcij
representing a diagonal covariance matrix

specifying the variability of each pixel in the latent image. Each position in
the grid also has associated a transformation index lijε{1, ..., Lij} representing
a set of sparse transformation matrices Γ 1, ...,Γ L. These matrices model the
transformations and cropping from the slightly larger latent image clusters µij .
We shall only encode vertical and horizontal translation transformations prior to
cropping of the latent image. However, other more complex transformations such
as rotation and shearing can also be encoded using these sparse transformation
matrices. The conditional density of the observed image xij given the latent
image zij and transformation lij can then be written as

p(xij |zij , lij) = N (xij ;Γ lij
z,Ψ ij), (2)

where Ψ ij is a diagonal covariance matrix that specifies a noise model on the
observed pixels for the patch at location i, j. These transformation matrices shall
be held constant. Finally, a uniform probability distribution is assigned to each
of the possible transformation l. We shall use the following notation p(lij) = plij .
In this simple montage model, the joint distributions for each location in the grid
are independent and take the form

P (x, l, z, c)ij = (p(x|l, z)p(l)p(z|c)p(c))ij
= πcij plij N (zij ;µcij

,Φcij ).N (xij ;Γ lijzij ,Ψ ij)
(3)

Figure 3 illustrates the TMG model as a Bayesian network [10] and contrasts
this with a montage of TMG models.
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Fig. 3. Bayesian Networks for a single TMG model vs. a montage of independent
TMG models.
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4 Extending an Independent TMG Montage Model

Here we discuss a number of ways to relax the independence assumption for the
TMG models in the image grid. We would like to couple the TMG models in each
cell of the image grid so that the transformations and classes are not drawn from
independent distributions. Such prior models are necessary to encode constrains
on the global shape of an object. For this procedure, one could think of grouping
the class and transformation index into one composite variable (cij , lij) as well
as integrating out zij , within each point on the grid. Additionally, to reduce
the number of free parameters in the coupling we propose introducing a ”coarse
scale” version of (cij , lij) labelled (cij , lij)′. We use a convolution of a smoothing
filter

Additionally, to reduce the number of free parameters involved with repre-
senting relationships between classes and transformations within differing grid
locations, we introduce variables (c, l)′ij representing coarse scale spatial trans-
lation variables for finer scale (c, l)ij . In our model we hold the conditional
distribution p((c, l)ij |(c, l)′ij) fixed so that this distribution acts as a smoothing
filter encoding a Gaussian or some other finite extent window. One can think
of this operation as sub-sampling lij , the variables indicating the position of the
sift invariant feature cij . In this way, fewer parameters are needed to encode
the conditional distribution p((c, l)′ij |t) as opposed to a conditional distribution
p((c, l)ij |t) on the finer scale variables (c, l)ij requiring more parameters. This
strategy thus reduces the number of images needed as examples to estimate the
parameters in the model. Figure 4 illustrates graphically (a) the initial TMG
formulation, (b) an illustration of the model used for inference in a standard
TMG, (c) the introduction of a coarse scale variable and (d) a simplified form
of (c) that shall be used to more clearly present our illustrations of how the
independent montage model may be coupled spatially.
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Fig. 4. (a) The initial TMG model. (b) Grouping of c, l and integrating out z. (c)
Introducing a coarse scale position variable. (c) Further simplifying the graph for a
clearer presentation of subsequent coupling techniques.

Our approach of using a shift invariant, spatially localized model followed
by a sub-sampling of the ”likelihood” for the position variable lij for each cij is
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similar to the approach taken in [11]. However in [11], spatially localized feature
detectors and the sub-sampling of the feature detector’s outputs are employed
within a multilayer perceptron architecture. Similar techniques employing this
smoothing approach have also been used in the earlier work of [12]. Our approach
differs in that we use formally defined, graphical probability models [13] as the
underlying architecture. This allows partial computations in the graph to be
interpreted as likelihoods.

There are a number of ways to link the hidden variables of independent TMGs
arranged in a grid using a graphical model. Figure 5 illustrates some possible
types of models. The upper right corner of Figure 5 illustrates the coupling as a
Markov Random Field (MRF) [14]. The lower left and right corners of Figure 5
illustrate tree structured coupling with various degrees of sub-structure. In the
next section we derive the update equations for an EM algorithm in a tree
structured model.
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Fig. 5. A graphical comparison of an independent TMG montage model with various
prior models coupling the independent TMG models.
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5 An EM Algorithm for a Tree Structured TMG
Montage Model

Consider the Bayesian network in the lower left corner of Figure 5 describing
a tree model. Such a model describes a joint distribution and in this particular
tree we shall write this distribution as:

p(X, zij , (c, l)ij , (c, l)′ij , t, d)

=
∏
ij

p(xij |(l, z)ij)p(zij |cij)p((c, l)ij |(c, l)′ij)p((c, l)′ij |t)p(t|d)P (d). (4)

In this model there is a discrete variable d at the root of the tree encoding
the idea that the entire composite image composed of the leaves of the tree could
be assigned the class d. The variable t encodes the notion that there can be sub-
classes or variations of this main class. For example, left, right front and back
profiles of a human subject. We shall use X to denote the complete image and
use xij and zij to denote the observed and latent images or variables for a patch
at location (i, j) in the grid. (c, l)ij is a composite class and position variable. cij

can be thought of as the indices for the possible latent images at each location
(i, j). While the variables lij encode the location of the window that crops a
view out of the latent images encoded within µcij

, the mean parameters for
p(zij |cij). Finally, (c, l)′ij are the coarser scale versions of (c, l)ij as described in
the previous section. We shall now derive the Expectation Maximization (EM)
equations to update the variables in this model.

5.1 The E Step

It is helpful to think of the tree model in terms of a Bayesian Network, so that the
E-step of an EM algorithm can be thought of as an instance of probability prop-
agation within the graph. The resulting computations can then be decomposed
as follows. For each patch on the grid we can compute the likelihoods

p(xij |(c, l)ij) =
∫
zij

p(xij |(c, l)ij , zij)dzij

=
∫
zij

N (xij ;Γ lijzij ,Ψ ij)N (zij ;µcij
,Φcij )dzij

= N (xij ;Γ lij µcij
,Γ lij Φcij Γ

′
lij

+ Ψ ij)

(5)

Given an image and a label dk we can then compute p(t, dk,Xk)

p(t, dk,Xk) =
∑

(c,l)′
ij

∑
(c,l)ij

p(t, dk,Xk, (c, l)ij , (c, l)′ij)

= p(t|dk)
∑

(c,l)′
ij

p((c, l)′ij |t)
∑

(c,l)ij

p((c, l)ij |(c, l)′ij)
∏
ij

p(xijk
|(c, l)ij)

(6)
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Using probabilistic message passing [10], one can also efficiently compute
p((c, l)′nm, t, dk,Xk) for each position (i, j) = (n, m) in the grid.

p((c, l)′nm, t, dk,Xk) =

p(t|dk)p((c, l)′nm|t)
∑

(c,l)′
ij �=nm

p((c, l)′ij |t)
∑

(c,l)ij

p((c, l)ij |(c, l)′ij)
∏
ij

p(xijk
|(c, l)ij)

(7)

We can also compute p((c, l)nm,Xk) efficiently using message passing as fol-
lows:

p((c, l)nm,Xk) =∑
t

p(t|dk)
∑

(c,l)′
ij

p((c, l)′ij |t)
∑

(c,l)ij �=nm

p((c, l)ij |(c, l)′ij)
∏
ij

p(xijk
|(c, l)ij) (8)

From (8) we can obtain:

p(cnm,Xk) =
∑
lnm

p((c, l)nm,Xk),

p(Xk) =
∑

(c,l)nm

p((c, l)nm,Xk),

p((c, l)nm|Xk) = p((c, l)nm,Xk)/p(Xk),
p(cnm|Xk) = p(cnm,Xk)/p(Xk),

p(lnm|cnm,Xk) = p((c, l)nm,Xk)/p(cnm,Xk).

(9)

Additionally, in the M-step we shall need to compute Ω(cl)ij
the covariance

matrices of z given (c, l) and x for each grid location. Importantly, these matrices
are independent of X and can thus be computed once before each E-step.

Ωcl,ij = (Φcij

−1 + Γ lij

′Ψ ij
−1Γ lij )

−1 (10)

We then compute the following expectations:

E[zij |(c, l)ij ,Xt] = Ω(cl)ij
Γ lij

′Ψ ij
−1xtij

+ Ω(cl)ij
Φcij

−1µcij
, (11)

E[zij |cij ,Xt] =
∑
lij

p(lij |cij ,Xk)E[zij |(c, l)ij ,Xk], (12)

E[(zij − µcij
) ◦ (zij − µcij

)|cij ,Xk] =
∑
lij

p(lij |cij ,Xk)

[
(E[zij |(c, l)ij ,Xk] − µcij

) ◦ (E[zij |(c, l)ij ,Xk] − µcij
) + diag(Ω(cl)ij

)
]
,

(13)

and
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E[(xij − Γ lijzij) ◦ (xij − Γ lijzij)|Xk] =
∑
(cl)ij

p((c, l)ij |Xk)

[
(xij − Γ lij

E[zij |(c, l)ij ,Xk]) ◦ (xij − Γ lij
E[zij |(c, l)ij ,Xk])

+ diag(Γ lij
Ω(cl)ij

Γ lij

′)
]

(14)

5.2 The M Step

Using the 〈.〉 notation to denote 1
K

∑
k(.) we can update the parameters of the

tree model in the following way.

p̃((c, l)′nm|t)) = 〈p((c, l)′nm, t, dk,Xk)〉
〈p(t, dk,Xk)〉 (15)

p̃(t|dk) =
〈p(t, dk,Xk)〉
〈p(dk,Xk)〉 (16)

The updates of the other parameters follow in a similar manner to the regular
TMG model.

µ̃nij
=

〈p(cij = n|X)E[zij |cij = n,Xk]〉
〈p(cij = n|X)〉 , (17)

Φ̃nij = diag

[ 〈p(cij = n|Xt)E[(zij − µcij
) ◦ (zij − µcij

)|cij = n,Xk]〉
〈p(cij = n|Xk)〉

]
, (18)

Ψ ij = diag(E[(xkij
− Γ lij

zij) ◦ (xkij
− Γ lij

zij)|Xk]). (19)

To avoid overfitting it is sometimes useful to let entries in Ψ ij and Φij that fall
below some ε be equal to ε. Similarly, one can also let entries in the conditional
probability tables that fall below some ε′ be equal to ε′ and then re-normalize
the conditional distribution.

6 Results and Analysis

In this section we examine the behavior of a tree structured montage trained us-
ing EM as described in Section 5. We illustrate MAP reconstruction images under
various conditions so as to inspect the quality of the representations learned by
the model. We compare MAP reconstruction images for the tree montage with
MAP reconstruction images obtained from a transformed mixture of Gaussians
model applied to the entire image. We then examine the MAP reconstruction
images for the montage applied to test data of the same person walking with
differing articulation of the body parts, slightly different lighting and coarse
alignment of the underlying figure. We present results for a simple pose recogni-
tion task and illustrate the use of the model for tracking people within crowds
possessing significant background activity. We show how the approach could be
used to automate the control of an active security camera.
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6.1 Comparing Montages with Large Transformed Mixture of
Gaussians

In Figure 6 we compare our tree montage using four latent images per patch with
one large TMG trained on the same data using six, global latent classes. The
top row of Figure 6 shows a sequence of 5 images of walking motion. The middle
image shows the MAP TMG approximation. The bottom row shows the MAP
TMG montage with a tree structured prior. For this segment of the sequence the
single large TMG models the images with two of the six latent classes, coarsely
approximating the underlying change in shape. Figure 6 also illustrates how the
classes found by the single large TMG suffer for combinatorial problems when
modelling the complex motions of the sub-parts of an object.

Fig. 6. (top row) Five images from an image sequence. (middle row) The single, large,
six class TMG MAP approximation. (bottom row) The four class per grid cell TMG
tree montage, MAP approximation.

6.2 Behavior of the Model Using Test Data

The top row of Figure 7 illustrates images from the test sequence of a figure
walking to the right. The articulation of the book and cup are differ from the
training data. The global alignment of the figure in the image varies differently
from the training data. Further, the lighting conditions also have been varied
slightly. The middle row consists of the MAP reconstruction of the testing data
using the tree montage with parameters fit using the differing training data of
figures walking to the right. The bottom row illustrates the MAP reconstruction
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images of the figure walking to the right illustrated in the top row. However,
in this bottom row the tree montage was trained on images of figures walking
to the left. This row thus illustrates the way in which the model attempts to
”explain” the right walking pose using features that were learned from the left
walking pose. The fact that these MAP reconstruction images do not fit the data
well and indeed look more like pieces of a left walking figure is a positive sign
that the model has not over-generalized. Notice that the MAP images in the

Fig. 7. (top row) Examples of right facing images used to test the model. (middle
row) the MAP image for the TMG tree montage model trained on different right facing
images. (bottom row) The MAP image for the TMG tree montage model trained on
left facing images.

bottom row are, in almost all cases missing a head, with darker portions of the
image approximated by small feet templates pointing in the opposite direction.
Not surprisingly, the MAP reconstruction images for unseen data significantly
different from the original training data are reminiscent of photomosaics [15,
16]. Photomosaics are produced by combining many small photographs to form
a single larger image that becomes more recognizable when viewed from a dis-
tance. As such, these smaller images act as a form of half-toning [17]. More
importantly, the MAP reconstruction images in Figure 7 provide insight. We
have used a shallow tree for this experiment. Additional sub-structure in the
tree as illustrated in Figure 5 would constrain the model so as to further reduce
the probability of physically unrealistic configurations under the model.
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6.3 Learning Poses from Data

For the task of learning representations for different activities of people from
full body images of people walking, the previous section illustrated how our
model is able to capture features for arms, legs, feet, hands and the head. Our
model also learns likely sub-poses of the underlying object. This information
is embedded within the highest level discrete variable of the tree model. The

Fig. 8. (left) A sample from the first sub-type of the TMG tree montage model. (right)
A sample from the second sub-type of the TMG tree montage model.

left and right figures of Figure 8 illustrate two ”sub-poses” that were learned
by our model when 193 training cases from the video sequence of the figure
walking to the right were used to train the model. The images were of size 80x90
pixels. Four classes were used at the highest level in the tree and EM converged
to two degenerate poses. 16x16 pixel latent images were used with 10x10 pixel
images cropped out of the latent image to compose the montage. The images
were obtained by sampling from the model given the highest level classes. Here
again, a tree with greater depth would likely produce higher quality samples.

6.4 Recognizing Poses

Here we present results on a test image sequences also consisting of human figures
walking while simultaneously manipulating hand held objects. The top row of
Figure 7 illustrates samples of the test data for the figure walking to the right
while Figure 9 illustrates samples of the test data for the figure walking to the
left. As discussed previously, these test images differed from the training images
with respect to the relative articulation of the figure, the coarse alignment of the
figure in the image and the lighting conditions are slightly different.

Using the test sets of 193 images of walking to the left and 193 images of
walking to the right the models trained on the left and right walking images were
used to compute the marginal likelihood for each of test images. Table. 1 shows
a confusion matrix for pose recognition on the test data. Importantly, when the
errors were analyzed further, it was found that most of the misclassifications
occurred at the start and end of the image sequence. This effect is likely due
in part to the higher density of example data for direct side sub-poses versus
example data for sub-poses of the figure facing slightly away from the camera
or slightly toward the camera. In contrast, for the nearest neighbor classifier
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the errors were the most dense in the second half of the sequence walking left
sequence. This can be explained by the fact that the coarse centering of the
data was skewed to the right in the example data, while skewed to the left in
the testing data. This misalignment was less of an issue for the TMG montage
model.

Fig. 9. Images of a figure walking left used to test the model.

Table 1. Confusion matrix for pose classification of the test data using the TMG tree
montage and using nearest neighbors (italics).The vertical column is the actual pose
and the horizontal column is the classified pose.

actual / classified right left
right .83 (.92 ) .17 (.08 )
left .03 (.25 ) .97 (.75 )

6.5 Tracking and the Control of an Active Camera

Consider the task of automating the control of a movable security camera. In
this task the operator of the camera wishes to briefly use the camera to follow
a particular person and then allow an algorithm to take over control of the
camera and continue to track the person. For this task, the subject of the security
camera might be found within a crowd of people who are also in motion. We
have gathered image data from various realistic locations (eg. shopping malls,
busy street corners and train stations) where complex dynamic background are
common.

We have used high resolution wide angle views to allow us to simulate the
movement of a smaller field of view of an active security camera. Figure 10 (left)
illustrates one frame from a wide angle view of a high traffic area outside a
subway station. The subject that we wish to track has been indicated by hand
over the first 60 frames leading up to the occlusion of the subject by another
figure. The subject is indicated using a white rectangle. The four images on the
right half of Figure 10 illustrate the results of a simple greedy tracking algorithm
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Fig. 10. (left) A wide angle view of a survalence area. (right) Tracking a subject
despite substantial background motion and occlusion.

that utilizes a tree montage trained on the initial 60 frames prior to the occlusion.
The model has the same structure as in the previous tests. We use the marginal
likelihood under the model to select one of 24 possible discrete global translations
in x and y of the complete tree model. Our implementation of the same greedy
tracking algorithm using various metrics of simple template based similarity all
have difficulty tracking objects in such scenes.

6.6 Implementation Issues

Our current Matlab implementation of the tree montage with the parameters
describe above requires approximately 45 seconds to evaluate the marginal like-
lihood for a given discrete global transformation. The same amount of time is
required for our code to do an incremental Expectation step (E-step) for one
example of training data. Our incremental M-step requires approximately 2 sec-
onds. Our Matlab research code is inefficient and as such we perform incremental
E-steps and evaluate marginal likelihoods used in our tracking implementation
in parallel using a cluster of networked computers.

7 Conclusions and Discussion

In this paper we have introduced the TMG montage and presented a number of
ways such a montage can be constructed. We have presented Markov Random
Field and Tree structured methods of spatially coupling TMG montages. We
have derived and presented the EM algorithm for a simple tree model with a fixed
structure. We have presented results in which our model has clustered images
of walking human subject into poses and extracted features consisting of body
sub-parts in an ”unsupervised” fashion. We have presented some ”supervised”
classification results and presented an active camera application for which our
model is able to deal with significant background movement and complexity
where simpler tracking approaches would clearly fail.
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The TMG montage model can do a reasonable job of modelling background
as observed in our MAP images. For some applications such as tracking, this
property is not desirable. In cases where there is significant change in the back-
ground relative to changes in the foreground, a variance discrepancy will be
produced and will be observable in the noise parameter of the latent image. The
resulting discrepancy in variance can be used to produce an image ”mask” in-
dicating the boundary of the foreground object. This property allows the model
to do a better job than simpler techniques for tracking figures with complex
backgrounds.

However, for some types of data the background variance is intrinsically
low relative to the foreground. This can also arise when little training data is
available. In these cases, a pre-processing step can be employed to identify static
elements of the background and the EM algorithm for training the model can be
modified relatively easily to account for the boundary of the foreground figure.

To address the issues of the choice of tree structure and size, techniques
such as Structural EM [18] could be used to learn trees with arbitrary size
and structure. Random variables corresponding to lighting conditions, occlusions
and foreground vs. background can be incorporated into such a framework in a
straightforward manner.
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