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Abstract. A new boosting algorithm, called FloatBoost, is proposed to
overcome the monotonicity problem of the sequential AdaBoost learning.
AdaBoost [1, 2] is a sequential forward search procedure using the greedy
selection strategy. The premise oÿered by the sequential procedure can be
broken-down when the monotonicity assumption, i.e. that when adding
a new feature to the current set, the value of the performance crite-
rion does not decrease, is violated. FloatBoost incorporates the idea of
Floating Search [3] into AdaBoost to solve the non-monotonicity problem
encountered in the sequential search of AdaBoost.

We then present a system which learns to detect multi-view faces using
FloatBoost. The system uses a coarse-to-þne, simple-to-complex archi-
tecture called detector-pyramid. FloatBoost learns the component detec-
tors in the pyramid and yields similar or higher classiþcation accuracy
than AdaBoost with a smaller number of weak classiþers. This work leads
to the þrst real-time multi-view face detection system in the world. It
runs at 200 ms per image of size 320x240 pixels on a Pentium-III CPU
of 700 MHz. A live demo will be shown at the conference.

1 Introduction

Pattern recognition problems has two essential issues: (i) feature selection, and
(ii) classiÿer design based on selected features. Boosting is a method which at-
tempts to boost the accuracy of an ensemble of weak classiÿers to a strong one.
The AdaBoost algorithm [1] solved many of the practical diÆculties of earlier
boosting algorithms. Each weak classiÿer is trained one stage-wise to minimize
the empirical error in a given distribution re-weighted according classiÿcation
errors of the previously trained classiÿer. It is shown that AdaBoost is a sequen-
tial forward search procedure using the greedy selection strategy to minimize a
certain margin on the training set [4].

A crucial heuristic assumption made in such a sequential forward search
procedure is the monotonicity, i.e. that when adding a new weak classiÿer to the
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current set, the value of the performance criterion does not decrease. The premise
oÿered by the sequential procedure can be broken-down when the assumption is
violated, i.e. when the performance criterion function is non-monotonic. This is
the þrst topic to be dealt with in this paper.

Floating Search [3] is a sequential feature selection procedure with backtrack-
ing, aimed to deal with non-monotonic criterion functions for feature selection.
A straight sequential selection method like sequential forward search (SFS) or
sequential backward search (SBS) adds or deletes one feature at a time. To make
this work well, the monotonicity property has to be satisþed by the performance
criterion function. Feature selection with a non-monotonic criterion may be dealt
with by using a more sophisticated technique, called plus-`-minus-r, which adds
or deletes ` features and then backtracks r steps [5, 6].

The Sequential Floating Search methods [3] allows the number of backtrack-
ing steps to be controlled instead of being þxed beforehand. Speciþcally, it adds
or deletes ` = 1 feature and then backtracks r steps where r depends on the
current situation. It is such a ýexibility that amends limitations due to the non-
monotonicity problem. Improvement on the quality of selected features is gained
with the cost of increased computation due to the extended search. The SFFS
algorithm performs very well in several applications [3, 7]. The idea of Floating
Search is further developed in [8] by allowing more ýexibility for the determina-
tion of `.

The second topic is an application of booting learning in face detection.
Learning based methods have so far been the most eÿective ones for face de-
tection, e.g. [9{12]. There, face detection is treated as an intrinsically two-
dimensional (2-D) problem. Taking advantage of the fact that faces are highly
correlated, it is assumed that human faces can be described by some low dimen-
sional features which may be derived from a set of prototype face images. Large
amount of variation and complexity brought about by changes in facial appear-
ance, lighting and expression makes the face manifold highly complex [13, 14].
Changes in facial view (head pose) further complicate the situation. From pat-
tern recognition viewpoint, two issues are essential in face detection: (i) feature
selection, and (ii) classiþer design based on selected features.

Applied to face detection [15], AdaBoost is adapted to solving the following
three fundamental problems in one boosting procedure: (1) learning incremen-
tally crucial features from a large feature set, (2) constructing weak classiþers
each of which is based on one of the selected features, and (3) boosting the weak
classiþers into a stronger classiþer using a linear combination derived during the
learning process. The work of Viola and Jones results in the þrst real-time frontal
face detection system which runs at about 14 frame per second for a 320x240
image [15]. This work, like [9{12], deals with frontal faces only.

However, ability to deal with non-frontal faces is important for many real
applications because statistics show that approximately 75% of the faces in home
photos are non-frontal [16]. A reasonable treatment for multi-view is the view-
based method [17], in which several face models are built, each describing faces
in a certain view. This way, explicit 3D modeling is avoided. Feraud et al. [18]
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adopt the view-based representation for face detection, and use an array of 5
detectors with each detector responsible for one view. Wiskott et al. [19] build
elastic bunch graph templates for multi-view face detection and recognition.
Gong and colleagues [20] study the trajectories of faces in linear PCA feature
spaces as they rotate, and use kernel support vector machines (SVMs) for multi-
pose face detection and pose estimation [21, 22]. Huang et al. [23] use SVM's to
estimate facial poses.

The system of Schneiderman and Kanade [24] is claimed to be the ÿrst algo-
rithm in the world for (non-real-time) multi-view face detection. Multi-resolution
information is used for diþerent levels of wavelet transform. The algorithm con-
sists of an array of 5 face detectors in the view-based framework. Each is con-
structed using statistics of products of histograms computed from examples of
the respective view. However, it is slow and takes 1 min to work on a 320x240
image over only 4 octaves of candidate size [24].

In this paper, we propose a new boosting algorithm, called FloatBoost, for
eþective statistical learning. In this work, face detection is posed as a problem
of classifying each scanned sub-window as face or nonface and such a classiÿer is
trained using an AdaBoost learning algorithm, following the earlier works of [24,
15]. AdaBoost [1, 2] is a sequential forward search procedure using the greedy
selection strategy. Its heuristic assumption is the monotonicity. The premise
oþered by the sequential procedure can be broken-down when the assumption is
violated. FloatBoost incorporates the idea of Floating Search [3] into AdaBoost
(the real version of AdaBoost presented in [2, 25] is in this work) to solve the
non-monotonicity problem encountered in the sequential algorithm of AdaBoost.

We then present an application of FLoatBoost in a learning-based system
for real-time multi-view face detection. The system uses a coarse-to-ÿne, simple-
to-complex detector-pyramid architecture. Coarse-to-ÿne [26, 27] refers to the
strategy for view space partition in the pyramid hierarchy from the top (input)
to the bottom (output), which deals with changes in facial view. Simple-to-
complex refers to the complexities of face detectors, which enables the eÆciency
needed for detection of a small number of faces from a vast number of candidate
sub-windows. These go beyond straightforward view-based methods. This work
leads to the ÿrst real-time multi-view face detection system in the world. It runs
at 200 ms per image of size 320x240 pixels on a Pentium-III CPU of 700 MHz.

The rest of the paper is organized as follows: Section 2 presents the Float-
Boost learning methods. Section 3 describes the multi-view face detection sys-
tem. Section 4 provides experimental results.

2 FloatBoost Learning

Multi-view face detection can be done in three steps: First, scan I exhaustively
at all possible locations (u; v) and scales s, resulting in a large number of sub-
windows x = x(u; v; s j I). Second, test for each x if it is a face at pose ÿ

Hÿ(x)
ÿ 0) x is a pattern of face at pose ÿ
< 0) x is a nonface pattern

(1)
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Third, post-process to merge multiple detects.
In this section, we describe boost based learning methods for constructing

face/nonface classiÿers, and propose a new boosting algorithm which improves
boosting learning. Here, we consider face-nonface classiÿcation only and drop the
pose notation ÿ. Multi-view face detection will be tackled in the next section.

2.1 AdaBoost Learning

For two class problems, we are given a set of N labelled training examples
(x1; y1); : : : ; (xN ; yN ), where yi 2 f+1;ÿ1g is the class label associated with
example xi. For face detection, xi is an image sub-window of a ÿxed size (e.g.
20x20) containing an instance of the face (yi = +1) or nonface (yi = ÿ1) pattern.
In the notion of RealBoost (a real version of AdaBoost [2, 25], see Fig.1, as op-
posed to the original discrete one [1]), a stronger classiÿer is a linear combination
of M weak classiÿers

HM (x) =
MX

m=1

hm(x) (2)

where hm(x) 2 R are weak classiÿers. The class label for a test x is obtained
as H(x) = sign[HM (x)] (an error occurs when H(x) 6= y) while the magnitude
jHM (x)j indicates the conÿdence.

In boosting learning [1, 2, 25], each example xi is associated with a weight wi,
and the weights are updated dynamically using a multiplicative rule according
to the errors in previous learning so that more emphasis is placed on those exam-
ples which are erroneously classiÿed by the weak classiÿers learned previously.
This way, the new weak classiÿers will pay more attention to those examples.
The stronger classiÿer is obtained as a proper linear combination of the weak
classiÿers.

The \margin" of an example (x; y) achieved by H(x) (a single or a combi-
nation of weak classiÿers) on the training examples can be deÿned as yH(x) [4].
This can be considered as a measure of the conÿdence of the h's prediction. The
following criterion measures the bound on classiÿcation error [2]

J(H(x)) = Ew(e
ÿyH(x)) =

X

i

eÿyiH(xi) (3)

where Ew() stands for the mathematical expectation with respect to w over the
examples (xi; yi).

AdaBoost construct h(x) by stage-wise minimization of Eq.(3). Given the

current HMÿ1(x) =
PMÿ1
m=1 hm(x), the best hM (x) for the new strong classiÿer

HM (x) = HMÿ1(x) + hM (x) is the one which leads to the minimum cost

hM = argmin
hy

J(HMÿ1(x) + hy(x)) (4)

It is shown in [2, 25] that the minimizer is

hM (x) =
1

2
log

P (y = +1 j x;w(Mÿ1))

P (y = ÿ1 j x;w(Mÿ1))
(5)
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0. (Input)
(1) Training examples Z = f(x1; y1); : : : ; (xN ; yN)g,
where N = a+ b; of which a examples have yi = +1
and b examples have yi = ÿ1;

(2) The number M of weak classiÿers to be combined;
1. (Initialization)

w
(0)
i

= 1
2a

for those examples with yi = +1 or

w
(0)
i

= 1
2b

for those examples with yi = ÿ1.
2. (Forward Inclusion)
For m = 1; : : : ;M :
(1) Choose hm according to Eq.5;

(2) Update w
(m)
i

þ w
(m)
i

exp[ÿyihm(xi)], and

normalize to
P
i
w
(m)
i

= 1;
3. (Output)

H(x) = sign[
P

M

m=1 hm(x)].

Fig. 1. RealBoost Algorithm.

where w(Mÿ1) are the weights given at timeM . Using P (y j x;w) = P (x j y; w)P (y)
and letting

LM (x) =
1

2
log

P (x j y = +1; w)

P (x j y = ÿ1; w)
(6)

T =
1

2

ÿ
log

P (y = +1)

P (y = ÿ1)

þ
(7)

we arrive

hM (x) = LM (x)ÿ T (8)

The half log likelihood ratio L(x) is learned from the training examples of the
two classes, and the threshold T can be adjusted to control the balance between
the detection and false alarm rates in the case when the prior probabilities are
not known.

2.2 FloatBoost Learning

AdaBoost [1, 2] is a sequential forward search procedure using the greedy selec-
tion strategy. Its heuristic assumption is the monotonicity. The premise oÿered
by the sequential procedure can be broken-down when the assumption is vio-
lated. FloatBoost incorporates the idea of Floating Search [3] into AdaBoost
[1, 2, 25] to overcome the non-monotocity problems associated with AdaBoost.
The Sequential Floating Search (SFS) method [3] allows the number of back-
tracking steps to be controlled instead of being þxed beforehand. Speciþcally,
it adds or deletes ` = 1 feature and then backtracks r steps where r depends
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on the current situation. It is such a ÿexibility that amends limitations due to
the non-monotonicity problem. Improvement on the quality of selected features
is gained with the cost of increased computation due to the extended search.
The SFS algorithm performs very well in several applications [3, 7]. The idea of
Floating Search is further developed in [8] by allowing more ÿexibility for the
determination of `.

These feature selection methods, however, do not address the problem of
(sub-)optimal classiþer design based on the selected features. FloatBoost com-
bines them into AdaBoost for both eýective feature selection and classiþer de-
sign.

0. (Input)
(1) Training examples Z = f(x1; y1); : : : ; (xN ; yN)g,

where N = a+ b; of which a examples have
yi = +1 and b examples have yi = ÿ1;

(2) The maximum number Mmax of weak classiÿers;
(3) The cost function J(HM ) (e.g., error rate made by HM ), and

the maximum acceptable cost Jÿ.
1. (Initialization)

(1) w
(0)
i = 1

2a
for those examples with yi = +1 or

w
(0)
i = 1

2b
for those examples with yi = ÿ1;

(2) Jmin
m =max-value (for m = 1; : : : ;Mmax),
M = 0, H0 = fg.

2. (Forward Inclusion)
(1) M þM + 1;
(2) Choose hM according to Eq.4;

(3) Update w
(M)
i þ w

(Mþ1)
i exp[ÿyihM (xi)],

normalize to
P

i w
(M)
i = 1;

(4) HM = HMþ1 [ fhMg;
If Jmin

M > J(HM), then Jmin
M = J(HM );

3. (Conditional Exclusion)
(1) h0 = argminh2HM J(HM ÿ h);
(2) If J(HM ÿ h0) < Jmin

Mþ1, then
(a) HMþ1 = HM ÿ h0;

Jmin
Mþ1 = J(HM ÿ h0); M =M ÿ 1;

(b) if h0 = hm0 , then

re-calculate w
(j)
i and hj for j = m0; : : : ;M ;

(c) goto 3.(1);
(3) else

(a) if M =Mmax or J(HM ) < Jÿ, then goto 4;
(b) goto 2.(1);

4. (Output)

H(x) = sign[
PM

m=1 hm(x)].

Fig. 2. FloatBoost Algorithm.
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Let HM = fh1; : : : ; hMg be the so-far-best set of M weak classiÿers; J(HM )
be the criterion which measures the overall cost of the classiÿcation function
HM (x) =

P
M

m=1
hm(x) build on HM ; Jminm be the minimum cost achieved so far

with a linear combination of m weak classiÿers for m = 1; : : : ;Mmax (which are
initially set to a large value before the iteration starts). As shown in Fig.2, the
FloatBoost Learning procedure involves training inputs, initialization, forward
inclusion, conditional exclusion and output.

In Step 2 (forward inclusion), the currently most signiÿcant weak classiÿer is
added one at a time, which is the same as in AdaBoost. In Step 3 (conditional
exclusion), FloatBoost removes the least signiÿcant weak classiÿer from HM ,
subject to the condition that the removal leads to a lower cost than Jmin

Mÿ1
. Sup-

posing that the removed weak classiÿer was the m0-th in HM , then hm0 ; : : : ; hM
will be re-learned. These are repeated until no more removals can be done.

For face detection, the acceptable cost Jÿ is the maximum allowable risk,
which can be deÿned as a weighted sum of missing rate and false alarm rate.
The algorithm terminates when the cost is below Jÿ or the maximum number
M of weak classiÿers is reached.

FloatBoost usually needs fewer weak classiÿers than AdaBoost to achieve
a given objective Jÿ. One have two options with such a result: (1) Use the
FloatBoost-trained strong classiÿer with its fewer weak classiÿers to achieve
similar performance as can be done by a AdaBoost-trained classiÿer with more
weak classiÿers. (2) Continue FloatBoost learning to add more weak classiÿers
even if the performance on the training data does not increase. The reason for
(2) is that even if the performance does not improve on the training data, adding
more weak classiÿers may lead to improvements on test data [4].

The multi-view face detection task is the following: Given the input image, sub-
windows at all locations and scales are scanned. Face detection is to classify
each sub-window into face or nonface. Multi-view face detection should be able
to detect non-frontal faces. Adopting a coarse-to-ÿne view-partition strategy, the
detector-pyramid architecture consists of several levels from the coarse top level
to the ÿne bottom level.

3.1 Dealing with Head Rotations

Our system deals with three types of head rotations which currently are in the
following ranges: (1) out-of-plane rotations in the range of ÿ = [ÿ90Æ;+90Æ],
(2) in-plane rotations in the range of þ = [ÿ45Æ;+45Æ], and (3) a moderate
amount of up-and-down nodding rotations. We adopt the view-based approach.
A detector-pyramid is constructed to detect the presence of up-right faces, sub-
ject to out-of-plane rotations in ÿ and in-plane rotations in [ÿ15Æ;+15Æ]. The
design of such a detector-pyramid will be described shortly. In-plane rotations
are handled as follows: (1) Divide þ into three sub-ranges þ1 = [ÿ45Æ;ÿ15Æ],
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ÿ2 = [ÿ15Æ;+15Æ], and ÿ3 = [+15Æ;+45Æ] (cf. Fig.3). (2) Apply the detector-
pyramid on two images in-plane-rotated by þ30Æ as well on the original image.
This will eÿectively cover in-plane-rotations in [ÿ45Æ;+45Æ]. The up-and-down
nodding rotations are dealt with by tolerances of the face detectors to them.

Fig. 3. Middle: An image containing frontal faces subject to in-plane rotations. Left

and right: In-plane rotated by ÿ30Æ.

3.2 Detector-Pyramid

The design of the detector-pyramid adopts the coarse-to-þne and simple-to-
complex (top-down in the pyramid) strategy [26, 27]. The architecture is il-
lustrated in Fig.4. This architecture design is for the detection of faces sub-
ject to out-of-plane rotations in þ = [ÿ90Æ;+90Æ] and in-plane rotations in
ÿ2 = [ÿ15Æ;+15Æ]. The full in-plane rotations in ÿ = [ÿ45Æ;+45Æ] is dealt with
by applying the detector-pyramid on the images rotated þ30Æ, as mentioned
earlier.

Fig. 4. Detector-pyramid for multi-view face detection.

Coarse-to-ÿne The full range þ of out-of-plane rotations is partitioned into in-
creasingly narrower ranges, and thereby the whole face space is divided into
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increasingly smaller subspaces. Our current implementation of the detector-
pyramid consists of 3 levels. The partitions of the out-of-plane rotation for the
3 levels is illustrated in Fig.5. Faces detected by the 7 channels at the bottom
level of the detector-pyramid need to be merged to give the ÿnal result.

Fig. 5. Out-of-plane view partition. Out-of-plane head rotations (row 1), the facial
view labels (row 2), and the coarse-to-ÿne view partitions at the three levels of the
detector-pyramid (rows 3-5).

Although there are no overlaps between the partitioned view sub-ranges at
each level, a face detector trained for one view may detect faces of its neighboring
views. Therefore, faces detected by the 7 channels at the bottom level of the
detector-pyramid need to be merged to give the ÿnal result. This is schematically
illustrated in Fig.6.
Simple-to-complex A vast number of sub-windows result from the scan of the
input image. For the purpose of eÆciency, it is crucial to discard as many as
possible nonface sub-windows at the earliest possible stage so that as few as
possible sub-windows will be processed further by later stages. Therefore, the
detectors in the early stages are simpler so as to reject a vast number of nonface
sub-windows more quickly with little computation, whereas those in the later
stage are more complex and spend more time.

Fig. 6. Schematic illustration of merge from diþerent channels. From left to right:
Outputs of fontal, left, right view channels, and the ÿnal result after merge.

3.3 Learning Weak Classiÿers for Face Detection

Each weak classiÿer is constructed based on a simple feature, denoted feature
x(j) (note this notation diþers from xi, the latter being for training example i),
derived from the sub-window x. Three basic types of simple features are used in
this work as shown in Fig.7. These block diþerences are steerable ÿlters similar
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to those used in [28, 15], but are more general in that these features can be non-
symmetrical to cater to non-symmetrical characteristics of non-frontal faces.
Each such feature has a scalar value which can be computed very eÆciently
[29] from the summed-area table [30] or integral image [15]. There are a total
number of 102,979 two-block features for a sub-window of size 20x20 pixels.
There are a total number of 188,366 three-block features (with some restrict to
their freedom).

Fig. 7. The three types of simple Harr wavelet like features x(j) deÿned on a sub-
window x. The rectangles are of size x ÿ y and are at distances of (dx; dy) apart.
Each feature takes a value calculated by the weighted (þ1; 2) sum of the pixels in the
rectangles.

Because we know the form of the optimal weak classiÿer as Eq.(6), we design
a set of candidate weak classiÿers as follows, given that Mÿ1 features have been
selected and the corresponding M ÿ 1 weak classiÿers have been learned: First,
we approximate p(x j y; w) by using the distributions of the M features selected
so far by

p(x j y) þ p(x(1); x(2); : : : ; x(M) j y) (9)

= p(x(1) j y) p(x(2) j y; x(1)) ý ý ý

p(x(Mÿ1) j y; x(1); : : : ; x(Mÿ2))

p(x(M) j y; x(1); : : : ; x(Mÿ1)) (10)

Note that p(x(m) j y; x(1); : : : ; x(mÿ1)) is actually p(x(m) j y; w(mÿ1)) because

w(m) contains the information about entire history of w due to the multiplicative
rule and accounts for the dependencies on x(1); : : : ; x(mÿ1). Therefore, we have

p(x j y) þ p(x(1) j y; w
(0)) p(x(2) j y; w

(1)) ý ý ý (11)

p(x(Mÿ1) j y; w
(Mÿ2))p(x(M) j y; w

(Mÿ1))

While p(x j y) þ p(x(1) j y)p(x(2) j y); : : : ; p(x(M) j y) is simply assumed in [24],
our assumption of the conditional independence in the above equation may be
more justiÿable.

Then denote the conditional probability densities of feature x(j) of sub-

window x by pj(x(j) j y; w
(Mÿ1)) with y = +1 for the face pattern and y = ÿ1

for the non-face pattern. The two densities are estimated using the histograms
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resulting from weighted voting of the training examples. Let

L
(Mÿ1)
(j) (x) =

pj(x(j) j y=+1;w(Mÿ1))

pj(x(j) j y=ÿ1;w(Mÿ1))
, and h

(Mÿ1)
(j) (x) = L

(Mÿ1)
(j) (x)ÿ T . The set of

candidate weaker classiÿers is designed as

H(Mÿ1) = fh
(Mÿ1)
(j) (x) j 8jg (12)

Now, the best hM (x) among all in H(Mÿ1) for the new strong classiÿer HM (x) =

HMÿ1(x) + hM (x) is given by Eq.(4) among all hy 2 H(Mÿ1).

3.4 Summary of the System

To summarize the above, the construction of the detector-pyramid is done as
features ! weak classiÿers ! strong classiÿer ! detectors ! pyramid level !
pyramid as follows:

1. Simple features are designed. There are a number of candidate features.
2. A subset of them are selected and the corresponding weak classiÿers are

learned using FloatBoost.
3. The strong classiÿer is constructed as a linear combination of the weak ones,

as the output of FloatBoost learning.
4. A detector is composed of one, or a cascade of strong classiÿers.
5. At each level of the pyramid, the full range of out-of-plane rotation is par-

titioned into a number of sub-ranges, and the same number of detector are
trained for face detection in that partition, each specialized for a certain
view sub-range.

6. Finally, the detector-pyramid is composed of several levels from the coarsest
view partition at the top to the ÿnest partition at the bottom.

4 Experimental Results

4.1 Frontal Face Detection

About 3000 face examples are collected from various sources, covering the out-
of-plane rotation in the range of [ÿ20Æ;+20Æ] of out-of-plane rotations. They
are roughly aligned by eyes and mouth. For each aligned face example, a syn-
thesized face example is generated by a random in-plane-rotation in the range
of [ÿ15Æ;+15Æ]. This creates a training set of 6,000 face examples. The 6,000
images are then cropped and re-scaled to the size of 20x20. SuÆcient nonface
examples are collected from 100,000 images containing no faces. The ROC curve
for the training set is shown in Fig.8.

The MIT+CMU test set composed of 125 images containing 481 faces, which
is used in [9], is used for test the performance. Our Floatboost (FB) algorithm is
compared with AB (20) (AdaBoost of viola-Jones as implemented by ourselves
using training examples of size 20x20), AB (24) (AdaBoost with training ex-
amples of size 24x24 [15]), and CMU-NN of Rowley et al. [9]. The results are
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Fig. 8. ROC curve of FloatBoost method for the frontal face training set.

Fig. 9. Comparison of ROC curves of FloatBoost and Viola-Jones (20x20) methods on
the MIT+CMU test set.

shown in Table 1, where \N.Fea" stands for number of features and \N.FA"
for number of false alarms. Fig.9 shows ROC curves of FB and AB (20). Our
algorithm using FloatBoost learned a total of 2546 features (weak classiÿers)
from the 20x20 training examples to achieve the performance. This is about 2/3
of 3872 computed the AdaBoost counterpart from the 20x20 training examples.
The reader is also referred to [31] for a more comprehensive comparison with
other systems.

The training set for multi-view face detection is created in the similar way to
that for the frontal faces, except that the out-of-plane rotation covers the full
range of [ÿ90Æ;+90Æ]. The CMU proÿle face set [24] is used to test the algo-
rithm. This test set consists of 208 images with 441 faces of which 347 were

78 S.Z. Li et al.

4.2 Multi-view Face Detection



FB AB (20) AB (24) CMU-NN

N.Fea 2546 3872 6061 N/A

N.FA=10 83.6% 82.7% 76.1% 83.2%

N.FA=31 90.2% 89.2% 88.4% 86%

Table 1. Comparison of FloatBoost, Viola-Jones AdaBoost, and CMU-NN methods
on the MIT+CMU test set.

proÿle views, which are not restricted in terms of subject matter or background
scenery. They were collected from various news web sites. The database can be
downloaded at http://vasc.ri.cmu.edu/idb/html/face/proÿle images
/index.html. Some results are shown in Fig.10. We also provide a video clip show-
ing multi-view face detection at http://research.microsoft.com/ÿszli/Demos/MV-
FaceDet.html.

Fig. 10. Some multi-view face detection results.

5 Conclusion and Future Work

The coarse-to-ÿne and simple-to-complex detector-pyramid leads to the ÿrst
real-time multi-view face detection system. By incorporating the idea of Float-

79Statistical Learning of Multi-view Face Detection



ing Search [3] into AdaBoost [1, 2], FloatBoost eÿectively improves the learning
results. It needs fewer weaker classiþers than AdaBoost to achieve similar or
higher performance. Given that this framework demonstrates good performance
in multi-view face detection, we stress that the underlying architecture is fairly
general and can be applied to other appearance based object detection problems
as well.

In the current version, the forward step is unconditional. This strategy may
cause some problem due to the local minimum problem [8]. In Active Floating
Search [8], the forward step is made conditional too and this may give a better
solution.

The Boosting algorithm may need substantial computation for training. Sev-
eral methods can be used to make the training more eÆcient with little drop in
the training performance. Noticing that only examples with large weigh values
are inýuential, Friedman et al. [25] propose to select examples with large weights,
i.e. those which in the past have been wrongly classiþed by the learned weak
classiþers, for the training weak classiþer in the next round. Top examples within
a fraction of 1ÿ ÿ of the total weight mass are used, where ÿ 2 [0:01; 0:1]. Fan
et al. [32] reduces samples size by random sampling of the training set problem.
Two sampling schemes are adopted: r-sampling (uniform sampling each round),
d-sampling (disjoint subsets).
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