Skip to main content

Some Applications of Clifford Algebra to Geometries

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1669))

Abstract

This paper focuses on a Clifford algebra model for geometric computations in 2D and 3D geometries. The model integrates symbolic representation of geometric entities, such as points, lines, planes, circles and spheres, with that of geometric constraints such as angles and distances, and is appropriate for both symbolic and numeric computations. Details on how to apply this model are provided and examples are given to illustrate the application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Bayro-Corrochano, J. Lasenby and G. Sommer, Geometric algebra: A framework for computing point and line correspondences and projective structure using nuncalibrated cameras, Proc. of International conference on Pattern Recognition ICPR’96, Vienna, Vol. 1, pp. 334–338, 1996. 157

    Article  Google Scholar 

  2. E. Bayro-Corrochano, K. Daniilidis and G. Sommer, Hand-eye calibration in terms of motions of lines using geometric algebra, Proc. of 10th Scandinavian Conference on Image Analysis, Lappeenranta, Vol. 1, pp. 397–404, 1997. 157

    Google Scholar 

  3. E. Bayro-Corrochano and J. Lasenby, A unified language for computer vision and robotics, Algebraic Frames for the Perception-Action Cycle, G. Sommer and J. J. Koenderink (eds.), LNCS 1315, pp. 219–234, 1997. 157

    Chapter  Google Scholar 

  4. E. Bayro-Corrochano and J. Lasenby, Geometric techniques for the computation of projective invariants using n uncalibrated cameras, Proc. of Indian Conference on Computer Vision, Graphics and Image Processing, New Delhi, pp. 95–100, 1998. 157

    Google Scholar 

  5. W. Blaschke, Anwendung dualer quaternionen auf die Kinematik, Annales Acad. Sci. Fennicae, 1–13, 1958. 157, 175

    Google Scholar 

  6. W. K. Clifford, Preliminary sketch of bi-quaternions, Proc. London Math. Soc. 4: 381–395, 1873. 157, 175

    Article  Google Scholar 

  7. A. Crumeyrolle, Orthogonal and Symplectic Clifford Algebras, D. Reidel, Dordrecht, Boston, 1990. 156

    MATH  Google Scholar 

  8. R. Delanghe, F. Sommen and V. Soucek, Clifford Algebra and Spinor-Valued Functions, D. Reidel, Dordrecht, Boston, 1992. 156

    MATH  Google Scholar 

  9. O. Faugeras, Three-dimensional Computer Vision, MIT Press, 1993. 157

    Google Scholar 

  10. O. Faugeras and B. Mourrain, On the geometry and algebra of the point and line correspondences between N images, Proc. of Europe-China Workshop on Geometrical Modeling and Invariants for Computer Vision, R. Mohr and C. Wu (eds.), pp. 102–109, 1995. 157

    Google Scholar 

  11. C. Doran, D. Hestenes, F. Sommen and N. V. Acker, Lie groups as spin groups, J. Math. Phys. 34(8): 3642–3669, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  12. T. Havel, Some examples of the use of distances as coordinates for Euclidean geometry, J. Symbolic Comput. 11: 579–593, 1991. 157, 159

    Article  MathSciNet  MATH  Google Scholar 

  13. T. Havel and A. Dress, Distance geometry and geometric algebra, Found. Phys. 23: 1357–1374, 1993. 157

    Article  MathSciNet  Google Scholar 

  14. T. Havel, Geometric algebra and Möbius sphere geometry as a basis for Euclidean invariant theory, Invariant Methods in Discrete and Computational Geometry, N. L. White (ed.), pp. 245–256, D. Reidel, Dordrecht, Boston, 1995. 157

    Google Scholar 

  15. D. Hestenes, Space-Time Algebra, Gordon and Breach, New York, 1966.

    MATH  Google Scholar 

  16. D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus, D. Reidel, Dordrecht, Boston, 1984. 156, 158, 162

    MATH  Google Scholar 

  17. D. Hestenes, New Foundations for Classical Mechanics, D. Reidel, Dordrecht, Boston, 1987. 156, 158, 175

    Google Scholar 

  18. D. Hestenes and R. Ziegler, Projective geometry with Clifford algebra, Acta Appl. Math. 23: 25–63, 1991. 156, 157

    Article  MATH  MathSciNet  Google Scholar 

  19. D. Hestenes, The design of linear algebra and geometry, Acta Appl. Math. 23: 65–93, 1991. 156, 167

    Article  MATH  MathSciNet  Google Scholar 

  20. D. Hestenes, Invariant body kinematics I: Saccadic and compensatory eye movements, Neural Networks 7 (1): 65–77, 1994. 157

    Article  MathSciNet  Google Scholar 

  21. D. Hestenes, Invariant body kinematics II: Reaching and neurogeometry, Neural Networks 7(1): 79–88, 1994. 157

    Article  Google Scholar 

  22. D. Hestenes, H. Li and A. Rockwood, New algebraic tools for classical geometry, Geometric Computing with Clifford Algebra, G. Sommer (ed.), Springer, 1999. 157, 158

    Google Scholar 

  23. B. Iversen, Hyperbolic Geometry, Cambridge, 1992. 157

    Google Scholar 

  24. J. Lasenby and E. Bayro-Corrochano, Computing 3D projective invariants from points and lines, Computer Analysis of Images and Patterns, G. Sommer, K. Daniilidis and J. Pauli (eds.), pp. 82–89, 1997. 157

    Google Scholar 

  25. H. Li, Hyperbolic geometry with Clifford algebra, Acta Appl. Math. 48: 317–358, 1997. 158

    Article  MATH  MathSciNet  Google Scholar 

  26. H. Li, D. Hestenes and A. Rockwood, Generalized homogeneous coordinates for computational geometry, Geometric Computing with Clifford Algebra, G. Sommer (ed.), Springer, 1999. 157, 163, 178

    Google Scholar 

  27. H. Li, D. Hestenes and A. Rockwood, A universal model for conformal geometries of Euclidean, spherical and double-hyperbolic spaces, Geometric Computing with Clifford Algebra, G. Sommer (ed.), Springer, 1999. 157

    Google Scholar 

  28. H. Li, D. Hestenes and A. Rockwood, Spherical conformal geometry with geometric algebra, Geometric Computing with Clifford Algebra, G. Sommer (ed.), Springer, 1999. 157

    Google Scholar 

  29. H. Li, Hyperbolic conformal geometry with Clifford algebra, submitted to Acta Appl. Math. in 1999. 157, 162

    Google Scholar 

  30. B. Mourrain and N. Stolfi, Computational symbolic geometry, Invariant Methods in Discrete and Computational Geometry, N. L. White (ed.), pp. 107–139, D. Reidel, Dordrecht, Boston, 1995. 157, 172, 173

    Google Scholar 

  31. B. Mourrain and N. Stolfi, Applications of Clifford algebras in robotics, Computational Kinematics, J.-P. Merlet and B. Ravani (eds.), pp. 41–50, D. Reidel, Dordrecht, Boston, 1995. 157, 173

    Google Scholar 

  32. B. Mourrain, Enumeration problems in geometry, robotics and vision, Algorithms in Algebraic Geometry and Applications, L. González and T. Recio (eds.), pp. 285–306, Birkhäuser, Basel, 1996. 173, 174

    Google Scholar 

  33. G. Peano, Geometric Calculus, 1888 (Translated by L. Kannenberg, 1997) 156

    Google Scholar 

  34. J. Seidel, Distance-geometric development of two-dimensional Euclidean, hyperbolic and spherical geometry I, II, Simon Stevin 29: 32–50, 65–76, 1952. 157, 159

    MathSciNet  Google Scholar 

  35. G. Sommer, E. Bayro-Corrochano and T. Bülow, Geometric algebra as a framework for the perception-action cycle, Proc. of Workshop on Theoretical Foundation of Computer Vision, Dagstuhl, 1996. 157

    Google Scholar 

  36. E. Study, Geometrie der Dynamen, Leipzig, 1903. 157, 177

    Google Scholar 

  37. A. T. Yang and F. Freudenstein, Application of dual number quaternion algebra to the analysis of spatial mechanisms, J. Appl. Mech. 31: 300–308, 1964. 157, 177

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, H. (1999). Some Applications of Clifford Algebra to Geometries. In: Automated Deduction in Geometry. ADG 1998. Lecture Notes in Computer Science(), vol 1669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-47997-X_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-47997-X_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66672-1

  • Online ISBN: 978-3-540-47997-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics