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Abstract. The Resource Description Framework (RDF) describes graphs of 
statements about resources. RDF is a fundamental lower layer of the semantic 
web. This paper explores the equality of two RDF graphs in light of the graph 
isomorphism literature. We consider anonymous resources as unlabelled 
vertices in a graph, and show that the standard graph isomorphism algorithms, 
developed in the 1970’s, can be used effectively for comparing RDF graphs. 
The techniques presented are useful for testing RDF software. 

1 Introduction1 

The semantic web is being built on top of an RDF [1] layer. This paper concerns a 
technique useful for testing and debugging within that RDF layer. 

The RDF specification [1] defines a data model and a syntax. The syntax is defined 
on top of the XML syntax [2]. The data model is defined in terms of resources, often 
identified with URIs [3], and literals. Some of the resources are “anonymous”. The 
data model is a set of triples, often thought of as a graph. The anonymous resources 
correspond to blank nodes in the graph [4]. 

The processing of RDF graphs occurs in the lower layers of semantic web 
processing. In practice the correctness of implementations requires the ability to 
perform unit tests within the RDF layer. The ability to compare two RDF graphs for 
equality is a fundamental component of such unit tests. For example, the RDF Test 
Cases Working Draft [5] gives many examples of tests requiring that the graphs read 
in from two different files should be equal. 

Fortunately, the problem of graph equality, usually referred to with the 
mathematical term “graph isomorphism” is a well-understood one, that is solved for 
practical use. Less fortunately, the literature is not very accessible. Mathematical texts 
on graph theory (e.g. [6]) define the concept of graph isomorphism, but do not address 
the algorithmics. There is an excellent study on the problem from the point of 
complexity theory [7], again not a practical guide. Graph isomorphism does appear in 
Skiena’s book of algorithms [8] but space considerations only allows a sketch 
solution. Fortin’s technical report [9] gives an in-depth account of algorithms for the 
graph isomorphism problem. 

                                                           
1 Thanks to anonymous referees and others who have given valuable feedback on earlier 

versions of this paper. 
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A further difficulty presented by RDF graphs is that they do not fit any of the 
standard graph theoretic categories. They are directed graphs with labelled edges and 
partially labelled nodes. The partial node labelling is not addressed in prior work. 

So, the intended contribution of this paper is as a “how to” guide, for developers of 
RDF based systems who need to provide a graph equality function, typically for test 
and debugging purposes. 

Graph equality is not usually required or useful for end users, for whom it is 
believed that inference and entailment are more useful concepts. The model theory of 
Hayes [4] shows that subgraph isomorphism is the important concept for simple 
entailment between RDF graphs. This is, of course, a different concept from graph 
isomorphism. In particular two RDF graphs are semantically equivalent, under Hayes’ 
model theory if they entail one another. This is a weaker condition than that of being 
isomorphic, which is the condition explored in this paper. 

The paper shows how the iterative vertex classification of Read and Corneil [10] 
(section 6, pp 346-347) is applicable to RDF graphs. 

We describe the algorithm and its use within Jena 1-3-0 [11]. 

2 An Example 

If the two data models consist of identical sets of triples then the two data models are 
equal. This is particular useful for graphs with no blank nodes. However, when there 
are blank nodes in the RDF graph it is a mistake to limit equality to only such cases. 

We explore this with a simple RDF/XML file with anonymous resources: 

<rdf:RDF 
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
    xmlns:t="http://example.org/brothers#" 
    xml:base="http://example.org/brothers"> 
    <rdf:Description  t:name="John">   
      <t:child  t:name="Robert"/> 
      <t:child  t:name="Jeremy"/> 
      <t:child  t:name="Terry"/>    
    </rdf:Description> 
</rdf:RDF> 

An RDF processor may produce a corresponding set of triples such as: 

_:a3 <http://example.org/brothers#name> "Robert" . 
_:a1 <http://example.org/brothers#name> "John" . 
_:a1 <http://example.org/brothers#child> _:a9 . 
_:a1 <http://example.org/brothers#child> _:a3 . 
_:a9 <http://example.org/brothers#name> "Terry" . 
_:a6 <http://example.org/brothers#name> "Jeremy" . 
_:a1 <http://example.org/brothers#child> _:a6 . 
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The syntax2 we use for such triples is the “N-triple” syntax being used by the RDF 
working group [5]. The gensyms such as “_:a9”, are identifiers for the blank nodes 
in the corresponding graph.  

With a different gensym algorithm, or by a semantic-free reordering of the XML 
input, the same processor may give a different set of triples: 

_:a3 <http://example.org/brothers#name> "Jeremy" . 
_:a6 <http://example.org/brothers#name> "Terry" . 
_:a1 <http://example.org/brothers#name> "John" . 
_:a1 <http://example.org/brothers#child> _:a9 . 
_:a1 <http://example.org/brothers#child> _:a3 . 
_:a9 <http://example.org/brothers#name> "Robert" . 
_:a1 <http://example.org/brothers#child> _:a6 . 

A naive notion of equality suggests these are unequal, because the anonymous 
nodes have been given different gensyms (for example that with name “Jeremy” is 
_:a6 in the first and _:a3 in the second). 

This is not consistent with the intended reading of anonymous resources being like 
resources but without a name. Nor is it consistent with either the N-triple definition 
[5], and the newer RDF Model Theory [4]. Both are clear that the blank node 
identifiers have file scope, and such cross-file comparisons are inappropriate. Indeed, 
the abstract syntax for RDF is a graph from which the blank node identifiers have 
been erased, thus no identifier of a blank node is significant. So the graph 
isomorphism problem, in this example, amounts to finding the bijection between the 
blank node identifiers that makes the two sets of triples equivalent. The bijection 
being: 

 
 

a1  a1. 
a6  a3. 
a9  a6. 
a3  a9. 

 _:a1 <#name> "John" . 
 
_:a1 <#child> _:a9 . 
              _:a9 <#name> "Terry" . 
 
_:a1 <#child> _:a3 . 
              _:a3 <#name> "Robert" . 
 
_:a1 <#child> _:a6 . 
              _:a6 <#name> "Jeremy" . 
  

_:a1 <#name> "John" . 
 
_:a1 <#child> _:a9 . 
              _:a9 <#name> "Robert" . 
 
_:a1 <#child> _:a3 . 
              _:a3 <#name> "Jeremy" . 
 
_:a1 <#child> _:a6 . 
              _:a6 <#name> "Terry" . 
  

 

Fig. 1. An equivalence mapping between blank nodes 

In very small examples, such as this one, it is plausible that a brute force search 
over all such permutations of anonymous resources will suffice. This has a factorial 

                                                           
2 We use relative fragment URIs for compactness; these are not legal N-triple. 
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complexity and even with a dozen anonymous nodes ceases to provide the interactive 
feedback that is useful in debugging and testing. 

The bijection between the two sets of blank nodes induces a labelled digraph 
isomorphism. 

3 Graph Isomorphism Theory 

In the graph isomorphism literature (e.g. [9], [10]) a graph typically consists of a set 
of unlabelled nodes or vertices, with a set of undirected unlabelled pairs of vertices 
called edges. The graph isomorphism problem is:  “Given two graphs, are they the 
same?” and “If they are, which vertices from one correspond to which vertices in the 
other?” 

 

Fig. 2. Isomorphic graphs from [10]. 

Figure 2 shows three isomorphic graphs; note each has ten vertices shown by the 
small circles. 

Most of the many variants of graphs have equivalent isomorphism problems. These 
included labelled digraphs: in which the edges have a label and a direction. 

Within RDF data models it is possible to encode an unlabelled digraph by using a 
single property label (e.g. rdf:value) for the edges and anonymous resources for 
each vertex. Undirected graphs can be encoded by encoding each edge of the graph as 
two RDF triples, one in each direction. 

In this way it can be seen that RDF data model equality and the graph isomorphism 
problem are equivalent from a theoretical point of view. However, in practice RDF 
data model equality is significantly easier because: 
• most of the vertices are labelled with the URI of a resource. 
• most of the edges have distinctive labels from the URI of the property of the triple. 
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• the XML syntax imposes significant (and unmotivated) restrictions on where 
anonymous resources can occur. 
We view the third point as an error that should be corrected; and regard the other 

two points as important factors in the design of an effective algorithm. 

4 Iterative Vertex Classification Algorithms 

Standard graph isomorphism algorithms are non-deterministic, i.e. they involve 
guessing, e.g. (from [10], section 2). 

1. Label the vertices V1 of G1. 
2. Label the vertices V2 of G2. 
3. If |V1|=|V2| set n = |V1| else the graphs are not isomorphic. 
4. Guess a mapping from V1 to V2 (note: n! choices) 
5. Check all the edges are the same. (at most, n2 checks).  

This is a slow method: brute force search over all the permutations of the vertices. 
There are n! different guesses to make, and maybe only one of them is correct. An 
implementation of this algorithm needs to use backtracking or some similar technique 
to consider the other guesses in the usual case that step 5 finds that the edges are not 
the same. 

It is possible to greatly reduce the amount of guessing by classifying the vertices. 
The underlying idea of this method is to look for distinctive characteristics of the 
vertices, and then to only guess a mapping (in step 4) which maps any vertex in a 
class with some given characteristics to a vertex in the other graph of the equivalent 
class with the same characteristics. For example if a vertex is adjacent to three other 
vertices (i.e. it is at the end of three edges), then it can only map to a vertex that is 
also adjacent to three further vertices (this is a classification by ‘degree’). 

If the two graphs do not have equal numbers of vertices with each class of 
characteristics then the two graphs are not isomorphic. 

Now we can make better guesses, we modify the algorithm above to be: 

1. Label the vertices V1 of G1. 
2. Label the vertices V2 of G2. 
3. If |V1|=|V2| set n = |V1| else the graphs are not isomorphic. 
4. Classify the vertices of both graphs. 
5. For each class c in the classification 

a. Find the sets V1,c and V2,c of nodes which are in c 
b. If |V1,c|=|V2,c| set nc = |V1,c| else the graphs are not isomorphic. 
c. Guess a mapping from V1,c to V2,c (note: nc! choices) 

6. Check all the edges are the same. (at most, n2 checks).  

This is an improvement because the total number of different guesses has been 
(substantially) reduced. (We make a number of small guesses instead of one large 
one). We can improve performance again by evaluating each of the checks of step 6 
as early as possible, during step 5, as soon as both vertices involved in an edge have 
had their mapping assigned. 
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Iterative vertex classification (also known as partition refinement, in e.g. [12]) is 
when we use the information from our current classifications to reclassify the vertices 
producing smaller sets of each classification. In this we don’t see a vertex 
classification as only a function of the vertex and the graph, but also of the current 
classification of the vertices of the graph. So for example, iterating on the degree 
classification above, we can classify a vertex by e.g. “This is adjacent to four vertices 
which have degree three,” (or in more words, “This is adjacent to four vertices which 
are, in turn, adjacent to three vertices”). The typical classification is formed by 
AND-ing lots of classifications like that together. 

Once we have made one guess aligning two vertices, we can re-classify the other 
vertices as to whether they are adjacent to the aligned vertices or not. 

This can also apply after we have guessed. The full algorithm looks like: 

1. Label the vertices V1 of G1. 
2. Label the vertices V2 of G2. 
3. If |V1|=|V2| set n = |V1| else the graphs are not isomorphic. 
4. Classify all the vertices of both graphs into a single class.  
5. Repeat:  

a. Repeat – generate a new classification from the current classification 
i. Reclassify each vertex by the number of vertices of each class in the 

current classification it is adjacent to. 
ii. If the new classification is the same as the current classification go to 

5(b) 
iii. If any of the new classes has different numbers of members from the 

two graphs then fail and backtrack to the last guess [step 5(c)]. 
iv. If any of the new classes is small enough (e.g. size 2) go to 5(b) 
v. Set the current classification as the new classification and go to 5(a)i 

b. If every class has one element from each graph then this defines an 
isomorphism and we are finished. 

c. Choose a smallest class with more than two vertices. Select an arbitrary 
vertex from  V1 in this class.  (Non-deterministically) guess a vertex from V2 
in this class, hence picking a pair of vertices; when we run out of guesses, we 
backtrack to the last guess. 

d. Generate a new classification from the current classification by putting the 
pair of vertices, selected and guessed in 5(c), into its own class and otherwise 
leaving everything unchanged. 

6. If we backtrack through all the guesses in 5 then we have failed and the graphs 
are not isomorphic.  

This is substantially more complicated than the original algorithm but gives much, 
much better performance. Yet better solutions to the graph isomorphism problem can 
be found [12], [13]; typically they use more sophisticated invariants than the 
adjacency one described here, and they use the ‘automorphism group’ of one of the 
graphs to eliminate many redundant guesses. However, for RDF graphs the above 
algorithm will generally be sufficient. 
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5 Vertex Classification for RDF 

The code found in Jena [14] is based on the iterative vertex classification algorithm 
above. It classifies each non-anonymous resource by its URI and each literal by its 
string. It classifies each anonymous resource on the basis of the statements in which it 
appears. The classification considers the role in which an anonymous resource 
appears in a statement, and the other items in the statement.  

This allows substantial use to be made of the labelled vertices and edges. The non-
deterministic parts will not be used except when the labels do not allow us to directly 
distinguish one anonymous node from another. 

The graph isomorphism algorithm above is then used, with minor variation3. The 
principle variation is the use of hash codes in the reclassification process. 

An anonymous resource can play three different roles in an RDF statement: it can 
be subject, object or both. The ModelMatcher code [14] goes further and will allow 
anonymous resources in the predicate position. This gives a further four possibilities 
of where the anonymous resource occurs in the triple. 

The iterative vertex classification then amounts to the following: 
• The reclassification of a statement depends on the current classification of the 

resources in the statement. 
• The reclassification of an anonymous resource depends on the reclassifications of 

all the statements it appears in, and the role it plays in each appearance. 
• The reclassification of a non-anonymous resource or a literal is its original 

classification. 

6 Partition Refinement by Hashcode 

The invariants discussed above seem to have quite complicated representations; 
which suggests that comparing them may be slow. A simple way to proceed is always 
use hash-codes for each invariant value, combining them in commutative and 
associative or non-commutative fashion depending on whether we are discussing a set 
or a sequence at that point. 

Thus the code in Jena ModelMatcher proceeds in this fashion: 
• The code of an anonymous resource is the sum of its relative codes with respect to 

each triple it participates in. Note this means that an anonymous resource that 
participates in two triples of a certain class is distinguished from one that 
participates in three triples of that class.  

• The relative code of an anonymous resource with respect to a triple is the sum of a 
multiplier times the secondary code of the triple’s subject, predicate and object 
excluding those positions filled by the anonymous resource. The multiplier is 
chosen to distinguish the subject, predicate and object. 

• The secondary code of a non-anonymous resource or literal is its Java hashCode. 
• The secondary code of an anonymous resource is its code from the previous 

iteration (which identifies the current classification). 

                                                           
3 A minor variation is that an emphasis is placed on finding singleton classes. 
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The anonymous resources are classified on the basis of their codes. We may, of 
course, get a hash collision. This will have the consequence of combining two 
partitions. While this will decrease the efficiency of the algorithm it does not impact 
its correctness. 

7 Other Equivalences 

We may wish to ask if two RDF graphs are equivalent with a notion of vertex 
equivalence that allows non-anonymous resources with different URIs to be 
identified, or that allows non-anonymous resources to be identified with anonymous 
ones.  

In these cases we need to use a similar approach, the underlying problem is still 
graph isomorphism, but we use a different classification procedure. For example if we 
wish to allow the identification of different reifications of a statement, we would 
initially classify all reifications in a single class, and otherwise use the above 
algorithm. 

Another natural example comes from the use of rdf:Bag which is defined as an 
unordered container, yet the container membership statements are distinguished 
rdf:_1, rdf:_2 etc. This suggests that a statement equivalence that maps all of 
these to the same class would be natural for many applications. 

A further natural equivalence between RDF graphs is given by the model theory 
[4]. Here the relevant notion of equivalence is, “do the two graphs entail one 
another?” This is a weaker condition than graph isomorphism, and the techniques 
described here are not suitable for this problem. 

8 Use of Graph Isomorphism within Jena 

As indicated in the introduction, the primary motivation for graph equality testing is 
for unit testing and debugging of underlying RDF infrastructure. Thus the major use 
of this code in Jena is in testing code: 

• It is used by the RDF Core WG to apply the test cases to a suite of RDF/XML 
parsers [15]. This involves using a parser to convert RDF/XML into N-triple and 
then comparing this N-triple document with a reference N-triple document using 
graph isomorphism. 
It is used within the unit test code for ARP to check its conformance with the RDF 
Test Cases. This involves loading an RDF/XML file with the parser as one graph 
and loading a second graph from the reference N-triple document, and comparing 
the two graphs for isomorphism. 

• It is used for additional parser tests within Jena. 
• It is used for RDF writer tests of the form: 

− take an RDF graph 
− write it out 
− read it in as a new graph 
− compare new with old, if they are not the same then there is an error. 
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Further use can be made whenever operations within an RDF platform are meant to 
leave a graph unchanged. 

The implementation within Jena is itself tested using some pathological cases 
based on slightly distorted unlabelled hypercubes (both directed and undirected). 
Unlabelled graphs are represented within RDF by: 

 
• always using a label rdf:value for every edge 
• always using blank nodes 

Undirected edges are represented by using two directed edges (one in each 
direction). 

As an example consider the 3-dimensional directed hypercube below (the vertex 
labels are only part of the diagram, not part of the graph):  

 

0 

1 

2 

4 

5 

3 

7 

6 
 

Fig. 3. A directed hypercube 

We can distort this by duplicating a vertex:  
 

0 

1 

2 

4 

5 

3 

7 

6 
 

Fig. 4. A distorted directed hypercube 
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Before this distortion vertices 1, 2, and 4 were in the same class. After this 
distortion, the new vertex is indistinguishable from vertex 2, and the distinction 
between vertex 2 and vertex 4 is quite subtle. 

 

0 

1 

2 

4 

5 

3 

7 

6 
 

Fig. 5. An isomorphic distorted directed hypercube 

Moreover, given two graphs differently distorted in this fashion, we know that they 
are isomorphic if and only if the number of bits in the (informal) node label of the 
duplicated nodes is the same. Compare figure 4 with figure 5 and figure 6. 

 

0 

1 

2 

4 

5 

3 

7 

6 

 

Fig. 6. A non-isomorphic distorted directed hypercube. 

Thus we can produce a number of different, moderately difficult test cases for 
graph isomorphism, for which the correct result (isomorphic or not) is known. 

Working on 8 dimensional hypercubes with 256 vertices each test takes less than a 
second on an off-the-shelf PC and Java 1.3. (The measured results are between 75 and 
670 milliseconds, depending on the exact details of the deformity). 

Since realistic uses of this functionality involve RDF graphs for which the 
variation in edge and node labels is much greater, resulting in a much better first 
vertex classification, the algorithm performs adequately for its intended purpose. 
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9 Conclusions 

It is possible to use techniques from the graph isomorphism literature to compare 
RDF graphs while equating anonymous resources. 

It is not necessary to use some of the more sophisticated techniques suggested, due 
to the large amount of labelling found in RDF graphs. Performance problems may be 
experienced if graph theorists use RDF tools to store and communicate pathological 
examples; but standard usages of RDF are not pathological. 

These techniques could be extended to cope with a richer notion of equivalence 
between resources. 
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