Skip to main content

Operation of a Purified DNA Nanoactuator

  • Conference paper
  • First Online:
Book cover DNA Computing (DNA 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2340))

Included in the following conference series:

Abstract

During the self-assembly and operation of DNA-based nanomechanical devices like the previously reported molecular tweezers or actuators, unwanted dimerization can occur. Here we show that in the case of the DNA nanoactuator dimerization predominantly occurs at the assembly stage. Correctly formed molecular devices can be purified and subsequently operated without interference by dimers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Chen and N. C. Seeman. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350: 631–633 (1991).

    Article  Google Scholar 

  2. Y. Zhang and N. C. Seeman. The construction of a DNA truncated octahedron. J. Am. Chem. Soc. 160: 1661–1669 (1994).

    Article  Google Scholar 

  3. C. Mao, W. Sun, and N. C. Seeman. Assembly of Borromean rings from DNA. Nature 386: 137–138 (1997).

    Article  Google Scholar 

  4. E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman, Design and self-assembly of two-dimensional DNA crystals. Nature 394: 539–544 (1998).

    Article  Google Scholar 

  5. C. Mao, W. Sun, Z. Shen, and N. C. Seeman. A nanomechanical device based on the B-Z transition of DNA. Nature 397: 144–146 (2000).

    Google Scholar 

  6. A. J. Turberfield, B. Yurke, and A. P. Mills Jr. DNA hybridization catalysts and molecular tweezers. DNA Based Computers V: DIMACS Workshop DNA Based Computers, June 14–15, 1999DIMACS Series vol. 54: 171–182 (2000).

    Google Scholar 

  7. B. Yurke, A. J. Turberfield, A. P. Mills Jr., F. C. Simmel, and J. L. Neumann. A DNA-fuelled molecular machine made of DNA. Nature 406: 605–608 (2000).

    Article  Google Scholar 

  8. F. C. Simmel and B. Yurke. Using DNA to construct and power a nanoactuator. Phys. Rev. E 63: 041913–(1–5) (2001).

    Article  Google Scholar 

  9. J. Mitchell and B. Yurke. Molecular scissors. See article in this volume (2001).

    Google Scholar 

  10. S. B. Smith, Y. Cui, and C. Bustamante. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271: 795 (1996).

    Article  Google Scholar 

  11. B. Tinland, A. Pluen, J. Sturm, and G. Weill. Persistence length of single-stranded DNA. Macromolecules 30: 5763–5765 (1997).

    Article  Google Scholar 

  12. C. Green and C. Tibbetts. Reassociation rate limited displacement of DNA strands by branch migration. Nucl. Acids Res. 9: 1905–1918 (1981).

    Article  Google Scholar 

  13. I. G. Panyutin and P. Hsieh. The kinetics of spontaneous DNA branch migration. Proc. Natl. Acad. Sci. USA 91: 2021–2025 (1994).

    Article  Google Scholar 

  14. Th. Förster, Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 6: 55–75 (1948).

    Article  Google Scholar 

  15. L. Stryer and R. P. Haugland. Energy transfer: a spectroscopic ruler. Proc. Nat. Acad. Sci. USA 58: 719–726 (1967).

    Article  Google Scholar 

  16. H. Jacobson and W. H. Stockmayer. Intramolecular Reaction in Polycondensations. I. The Theory of Linear Systems. J. Chem. Physics 18: 1600–1606 (1950).

    Article  Google Scholar 

  17. A. A. Podtelezhnikov, C. D. Mao, N. C. Seeman, and A. Vologodskii. Multimerization-cyclization of DNA fragments as a method of conformational analysis Biophys J. 79: 2692–2704 (2000).

    Article  Google Scholar 

  18. L. E. Morrison and L. M. Stols. Sensitive Fluorescence-Based Thermodynamic and Kinetic Measurements of DNA Hybridization in Solution. Biochemistry 32: 3095–3104 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Simmel, F.C., Yurke, B. (2002). Operation of a Purified DNA Nanoactuator. In: Jonoska, N., Seeman, N.C. (eds) DNA Computing. DNA 2001. Lecture Notes in Computer Science, vol 2340. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48017-X_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-48017-X_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43775-8

  • Online ISBN: 978-3-540-48017-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics