Skip to main content

DNA-based Parallel Computation of Simple Arithmetic

  • Conference paper
  • First Online:
Book cover DNA Computing (DNA 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2340))

Included in the following conference series:

Abstract

We propose a model for representing and manipulating binary numbers on a DNA chip which allows parallel execution of simple arithmetic. As an example we describe how addition of large binary numbers can be done by using a DNA chip. The number of steps is independent of the size (bits) of the numbers. However, the time for some biochemical reactions is still large, and increases with the size of the sequences to be assembled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl, editors. Current Protocols in Molecular Biology. Wiley and Sons, 2001.

    Google Scholar 

  2. L.M. Adleman. Molecular computation of solutions to combinatorial problems. Science, 266:1021–1024, November 11, 1994.

    Google Scholar 

  3. L.M. Adleman. Computing with DNA. Scientific American, 279(2):54–61, August 1998.

    Google Scholar 

  4. A. Atanasiu. Arithmetic with membranes. In Workshop on Multiset Processing, Curtea de Arges, Romania, August 2000, pages 1–17. C. S. Calude and M. J. Dinneen and Gh. Păun, 2000.

    Google Scholar 

  5. D. Faulhammer, A. R. Cukras, R. J. Lipton, and L. F. Landweber. Molecular computation: RNA solutions to chess problems. Proc. Natl. Acad. Sci. USA 97, pages 1385–1389, 2000.

    Google Scholar 

  6. A. G. Frutos, Q. Liu, A. J. Thiel, A. M. Sanner, A. E. Condon., L. M. Smith, and R. M. Corn. Demonstration of a word design strategy for DNA computing on surfaces. Nucleic Acids Res, 25(23):4748–4757, 1997.

    Article  Google Scholar 

  7. P. Frisco. Parallel arithmetic with splicing. Romanian Journal of Information Science and Technology (ROMJIST), 2000. to appear.

    Google Scholar 

  8. F. Guarnieri, M. Fliss, and C. Bancroft. Making DNA add. Science, 273(5272):220–223, July 12 1996.

    Google Scholar 

  9. V. Gupta, S. Parthasarathy, and M.J. Zaki. Arithmetic and logic operations with DNA. In Proceedings of the 3rd DIMACS Workshop on DNA Based Computers, held at the University of Pennsylvania, June 23–25, 1997 [RW99], pages 212–220.

    Google Scholar 

  10. V.R. Iyer, M.B. Eisen, D.T. Ross, G. Schuler, T. Moore, J.C. Lee, J.M. Trent, L.M. Staudt, J. Hudson, M.S. Boguski, D. Lashkari, D. Shalon, D. Botstein, and P.O. Brown. The transcriptional program in the response of human fibroblasts to serum. Science, 283:83–87, 1999.

    Article  Google Scholar 

  11. R. J. Lipton. DNA solution of hard computational problems. Science, 268:542–545, April 28, 1995.

    Google Scholar 

  12. Q. Liu, L. Wang, A. G. Frutos, A. E. Condon, R. M. Corn, and L. M. Smith. DNA computing on surfaces. Nature, 403:175–179, 2000.

    Article  Google Scholar 

  13. Q. Ouyang, P. D. Kaplan, S. Liu, and A. Libchaber. DNA solution of the maximal clique problem. Science, 278:446–449, 1997.

    Article  Google Scholar 

  14. M. Ogihara and A. Ray. Simulating boolean circuits on a DNA computer. Technical Report TR 631, University of Rochester, Computer Science Department, August 1996.

    Google Scholar 

  15. Z. F. Qiu and M. Lu. Arithmetic and logic operations for DNA computers. Second IASTED International Conference on Parallel and Distributed Computing and Networks, pages 481–486, December 1998.

    Google Scholar 

  16. J. H. Reif. Local parallel biomolecular computing. In Proceedings of the 3rd DIMACS Workshop on DNA Based Computers, held at the University of Pennsylvania, June 23–25, 1997 [RW99], pages 243–264.

    Google Scholar 

  17. H. Rubin and D. Wood, editors. Proceedings of the 3rd DIMACS Workshop on DNA Based Computers, held at the University of Pennsylvania, June 23–25, 1997, volume 48 of DIMACS: Series in Discrete Mathematics and Theoretical Computer Science., Providence, RI, 1999. American Mathematical Society.

    Google Scholar 

  18. K. Sakamoto, H. Gouzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yokomori, and M. Hagiya. Molecular computation by DNA hairpin formation. Science, 288:1223–1226, 2000.

    Article  Google Scholar 

  19. P.A. Sharp. Nobel lecture: Split genes and RNA splicing. Cell, 77:805–815, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hug, H., Schuler, R. (2002). DNA-based Parallel Computation of Simple Arithmetic. In: Jonoska, N., Seeman, N.C. (eds) DNA Computing. DNA 2001. Lecture Notes in Computer Science, vol 2340. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48017-X_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-48017-X_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43775-8

  • Online ISBN: 978-3-540-48017-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics