
ar
X

iv
:0

70
5.

14
55

v1
 [

cs
.D

B
]

 1
0

M
ay

 2
00

7

Decision tree modeling with relational views

Fadila Bentayeb and Jérôme Darmont

ERIC – Université Lumière Lyon 2
5 avenue Pierre Mendès-France

69676 Bron Cedex
France

{bentayeb | jdarmont}@eric.univ-lyon2.fr

Abstract. Data mining is a useful decision support technique that can
be used to discover production rules in warehouses or corporate data.
Data mining research has made much effort to apply various mining
algorithms efficiently on large databases. However, a serious problem in
their practical application is the long processing time of such algorithms.
Nowadays, one of the key challenges is to integrate data mining meth-
ods within the framework of traditional database systems. Indeed, such
implementations can take advantage of the efficiency provided by SQL
engines.

In this paper, we propose an integrating approach for decision trees
within a classical database system. In other words, we try to discover
knowledge from relational databases, in the form of production rules,
via a procedure embedding SQL queries. The obtained decision tree is
defined by successive, related relational views. Each view corresponds to
a given population in the underlying decision tree. We selected the clas-
sical Induction Decision Tree (ID3) algorithm to build the decision tree.
To prove that our implementation of ID3 works properly, we successfully
compared the output of our procedure with the output of an existing
and validated data mining software, SIPINA. Furthermore, since our ap-
proach is tuneable, it can be generalized to any other similar decision
tree-based method.

Keywords: Integration, Databases, Data Mining, Decision trees, Rela-
tional views.

1 Introduction

Recently, an important research effort has been made to apply data mining
operations efficiently on large databases. Indeed, data mining tool vendors tend
to integrate more and more database features in their products. However, in
practice, the long processing time required by data mining algorithms remains a
critical issue. Current systems consume minutes or even hours to answer simple
mining queries on very large databases. On the other hand, database vendors
recently began to integrate data mining methods in the heart of their systems.
Hence, integrating data mining algorithms within the framework of traditional

http://arxiv.org/abs/0705.1455v1

database systems [2] becomes one of the key challenges for research in both the
databases and data mining fields.

A first step in this integration process has been achieved by the rise of data
warehousing, whose primary purpose is decision support rather than reliable
storage. A closely related area is called On-Line Analytical Processing (OLAP)
[3]. There has also been an impressive amount of work related to association
rules, their generalization, and their scalability [6,11]. Relatively, less work has
been done in the context of other classical data analysis techniques from the
machine learning field, e.g., clustering or classification. In this area, most research
focused on scaling data mining techniques to work with large data sets [1,4].

To truly integrate data mining methods into their systems, database vendors
recently developed extensions to SQL and Application Programming Interfaces
(APIs) [5,7,9,12]. These tools allow client applications to explore and manipulate
existing mining models and their applications through an interface similar to that
used for exploring tables, views and other first-class relational objects.

In this paper, we propose to integrate classical data analysis techniques
(namely, decision tree-based methods) within relational database systems. To
achieve this goal, we only use existing structures, namely, relational views that
we exploit through SQL queries.

To illustrate our approach, we chose to integrate the ID3 decision tree-based
method [10], which is a supervised learning method generating knowledge in
a production rule-set form. We selected ID3 mainly because it is quite simple
to implement. However, we plan to take other, more elaborate methods into
account, since our approach is now validated.

Such algorithms as ID3 generate a decision tree that is a succession of smaller
and smaller partitions of an initial training set. Our key idea comes from this
very definition. Indeed, we can make an analogy between building successive, re-
lated partitions (different populations) and creating successive, related relational
views. Each node of the decision tree is associated with the corresponding view.
Since SQL database management systems provide a rich set of primitives for
data retrieval, we show that data mining algorithms can exploit them efficiently,
instead of developing all requirement functionality from scratch.

To achieve this goal, we designed a PL/SQL stored procedure that uses SQL
queries to generate the decision tree. Note that the views that are successively
created can be stored and thus queried or analyzed after the tree is generated, if
needed. The main differences between our approach and the existing ones are: (1)
existing methods extend SQL to support mining operators when our approach
only uses existing SQL statements and structures; (2) existing methods use APIs
when our approach does not; and (3) existing methods store the obtained mining
models into an extended relational table as in [8]. In our approach, the mining
model we obtain is defined as a traditional table representing the decision tree
and a set of successive, related views representing the nodes of the tree.

The remainder of this paper is organized as follows. Section 2 explains the
principle of our approach. Section 3 details our implementation of ID3 and the
functionality of our stored procedure. Section 4 presents the experiments we

performed to validate our approach. We finally conclude this paper and discuss
research perspectives in Section 5.

2 Principle of our approach

Induction graphs are data mining tools that produce ”if-then”-like rules. They
take as input a set of objects (tuples, in the relational databases vocabulary)
described by a collection of attributes. Each object belongs to one of a set of
mutually exclusive classes. The induction task determines the class of any ob-
ject from the values of its attributes. A training set of objects whose class is
known is needed to build the induction graph. Hence, an induction graph build-
ing method takes as input a set of objects defined by predictive attributes and
a class attribute, which is the attribute to predict.

Then, these methods apply successive criteria on the training population to
obtain groups wherein the size of one class is maximized. This process builds a
tree, or more generally a graph. Rules are then produced by following the paths
from the root of the tree (whole population) to the different leaves (groups
wherein the one class represents the majority in the population strength). Fig-
ure 1 provides an example of decision tree with its associated rules, where p(Class
#i) is the probability of objects to belong to Class #i.

Class #1: 50 (50%)
Class #2: 50 (50%)

Class #1: 38 (95%)
Class #2: 02 (05%)

Class #1: 20 (33%)
Class #2: 40 (67%)

att1 = A att1 = B

Class #1: 05 (25%)
Class #2: 15 (75%)

Class #1: 02 (05%)
Class #2: 38 (95%)

att2 = 0 att2 = 1

Rule #1: if att1 = A and att2 = 0 then p(Class #2) = 95%
Rule #2: if att1 = A and att2 = 1 then p(Class #2) = 75%
Rule #3: if att1 = B then p(Class #1) = 95%

Node #0

Node #1.1 Node #1.2

Node #2.1 Node #2.2

Fig. 1. Example of decision tree

In our approach, the root node of the decision tree is represented by a re-
lational view corresponding to the whole training dataset. Since each sub-node
in the decision tree represents a sub-population of its parent node, we build for
each node a relational view that is based on its parent view. Then, these views
are used to count the population strength of each class in the node with sim-
ple GROUP BY queries. These counts are used to determine the criteria that helps
either partitioning the current node into a set of disjoint sub-partitions based

on the values of a specific attribute or concluding that the node is a leaf, i.e.,
a terminal node. To illustrate how these views are created, we represented in
Figure 2 the SQL statements for creating the views associated with the sample
decision tree from Figure 1. This set of views constitutes the decision tree.

Node #0: CREATE VIEW v0 AS SELECT att1, att2, class FROM training set

Node #1.1: CREATE VIEW v11 AS SELECT att2, class FROM v0 WHERE att1=’A’

Node #1.2: CREATE VIEW v12 AS SELECT att2, class FROM v0 WHERE att1=’B’

Node #2.1: CREATE VIEW v21 AS SELECT class FROM v11 WHERE att2=0

Node #2.2: CREATE VIEW v22 AS SELECT class FROM v11 WHERE att2=1

Fig. 2. Relational views associated with sample decision tree

3 Implementation

We used Oracle 8i to implement the ID3 method, under the form of a PL/SQL
stored procedure named BuildTree. Its full, commented code, installation and
de-installation scripts, the sample datasets we used to validate our code, and a
short user manual are freely available on-line1.

3.1 Data structures

To build a decision tree, we need to manage: (1) the nodes of the tree; and (2)
the candidate attributes for splitting a node, and the associated new nodes each
attribute would generate. Hence, we implemented the following data structures.

Stack of nodes. The stack structure for nodes is justified by the fact we en-
countered system errors when coding our tree building procedure recursively.
Hence, we handled recursivity ourselves with a stack.

An individual node is a record composed of the following fields: num, node
number; nview, name of the relational view that is associated with the node;
rule, the explicit rule that lead to the creation of the node, e.g., GENDER=FEMALE
(this is only stored for result output); entrop, node entropy (which variation
expresses the discriminating power of an attribute); and pop, node population
strength.

List of candidates. Our list of candidates must contain a set of attributes,
the information gain associated with these attributes (expressed as a difference
in entropy weighted averages), and a list of the nodes that would be generated

1 http://eric.univ-lyon2.fr/∼jdarmont/download/buildtree.zip

http://eric.univ-lyon2.fr/~jdarmont/download/buildtree.zip

if the current attribute was selected for splitting the current node. Hence, we
need a list of lists. Such a data structure is impossible to achieve with the usual
PL/SQL collections. The solution we adopted in this first implementation is
using the extented relational features of Oracle. We used a relational table as
our principal list, with an embedded table (collection) as the list of nodes.

As a consequence, our table of candidates is composed of the following fields:
att name, considered attribute name; gain, information gain; and nodes, em-
bedded list of associated nodes.

3.2 Algorithm

Input parameters. The input parameters of our algorithm are given in Table 1.

Parameter Name Default value

Data source table name table name —

Class attribute (attribute to predict) class —

Result table name res name BTRES

(Strict) minimum information gain for node building min gain 0

Root node view name root view BTROOT

Clean-up views after execution (True/False) del TRUE

Table 1. Algorithm input parameters

Pseudo-code. We suppose we can call a procedure named Entropy() that
computes both the entropy and the population strength of a node. These data
are used when computing the information gain. Entropy() has actually been
coded in PL/SQL. Our algorithm pseudo-code for the BuildTree procedure is
provided in Figure 3.

3.3 Result output

The output of our stored procedure, namely a decision tree, is stored into a
relational table whose name is specified as an input parameter. The table struc-
ture reflects the hierarchical structure of the tree. Its fields are: node, node ID
number (primary key, root node is always #0 — note that there is a direct link
between the node ID and the associated view name); parent, ID number of par-
ent node in the tree (foreign key, references a node ID number); rule, the rule
that lead to the creation of this node, e.g., GENDER=FEMALE; and for each value V
of attribute E, a field labelled E V, population strength for the considered value
of the attribute in this node.

Such a table is best queried using Oracle SQL hierarchical statements. The
result is directly a textual description of the output decision tree. A sample query

Create result table

Create root node using the data source table

Compute root node entropy and population strength

Push root node

Update result table with root node

While the stack is not empty do

Pop current node

Clean candidate list

For each attribute but the class attribute do

Create a new candidate

For each possible value of current attribute do

Build new node and associated relational view

Compute new node entropy and population strength

Update information gain

Insert new node into current candidate node list

End for (each value)

End for (each attribute)

Search for maximum information gain in candidate list

For each candidate do

If current attribute bears the greater information gain then

For each node in the list of nodes do

Push current node

Update result table with current node

End for (each node)

Else

For each node in the list of nodes do

Destroy current node

End for (each node)

End if

End for (each candidate)

End while (stack not empty)

Fig. 3. Pseudo-code for the BuildTree stored procedure

is provided in Figure 4. From this representation, it is very easy to deduce the
corresponding set of production rules.

4 Tests and results

The aim of these experiments is to prove our implementation of the ID3 de-
cision tree generation method functions properly. For this sake, we compared
the output of our procedure with the output of a validated data mining tool,
SIPINA [13], which can be configured to apply ID3 as well, on several datasets.
Due to space constraints, we only present here our most significant experiment.
However, the full range of our experiments is available on-line1.

The dataset we selected is designed to test decision tree building methods. It
is aimed at predicting which classes of passengers of the Titanic are more likely to

SELECT LEVEL, node, parent, rule, E 1, E 2, ... FROM btres

CONNECT BY node = parent START WITH node = 0

Fig. 4. Hierarchical SQL query for decision tree display

survive the wreck. The attributes are: CLASS = {1ST | 2ND | 3RD | CREW}; AGE =

{ADULT | CHILD}; GENDER = {FEMALE | MALE}; and SURVIVOR = {NO | YES} (class
attribute). There are 2201 tuples. Since the CLASS attribute has four modalities
(distinct values), it can generate numerous nodes, and thus a relatively dense
tree.

The results provided by our procedure, BuildTree, are provided in Figure 5.
Note that we added in our result query the computation of the relative popula-
tions in each node (in percentage). Due to the tree width, the results provided by
SIPINA are split-up in Figures 6 and 7. The common point in these two figures
is the root node. As expected, the results provided by SIPINA and BuildTree

are the same.

LEVEL NODE PARENT RULE SURVIVOR NO P NO SURVIVO YES P YES

----- ---- ------ ------------- ----------- ---- ---------- -----

1 0 1490 68% 711 32%

2 1 0 GENDER=FEMALE 126 27% 344 73%

3 13 1 CLASS=CREW 3 13% 20 87%

3 14 1 CLASS=1ST 4 3% 141 97%

4 21 14 AGE=CHILD 0 0% 1 100%

4 22 14 AGE=ADULT 4 3% 140 97%

3 15 1 CLASS=2ND 13 12% 93 88%

4 19 15 AGE=CHILD 0 0% 13 100%

4 20 15 AGE=ADULT 13 14% 80 86%

3 16 1 CLASS=3RD 106 54% 90 46%

4 17 16 AGE=CHILD 17 55% 14 45%

4 18 16 AGE=ADULT 89 54% 76 46%

2 2 0 GENDER=MALE 1364 79% 367 21%

3 3 2 CLASS=CREW 670 78% 192 22%

3 4 2 CLASS=1ST 118 66% 62 34%

4 11 4 AGE=CHILD 0 0% 5 100%

4 12 4 AGE=ADULT 118 67% 57 33%

3 5 2 CLASS=2ND 154 86% 25 14%

4 9 5 AGE=CHILD 0 0% 11 100%

4 10 5 AGE=ADULT 154 92% 14 8%

3 6 2 CLASS=3RD 422 83% 88 17%

4 7 6 AGE=CHILD 35 73% 13 27%

4 8 6 AGE=ADULT 387 84% 75 16%

Fig. 5. BuildTree result for TITANIC

Fig. 6. SIPINA result for TITANIC (GENDER=MALE)

Fig. 7. SIPINA result for TITANIC (GENDER=FEMALE)

5 Conclusion and perspectives

Major database vendors have all started to integrate data mining features into
their systems, through extensions of the SQL language and APIs. In this paper,
we presented a slightly different approach for integrating data mining operators
into a database system. Namely, we implemented the ID3 method, which we
selected for its simplicity, as a stored procedure that builds a decision tree by
associating each node of the tree with a relational view. It is very easy to deduce
a set of production rules from the output of our procedure. This approach has
three advantages over the ”black box” tools currently proposed by database
vendors: (1) no extension of the SQL language is needed; (2) no programming
through an API is required; and (3) the views associated with the nodes of a
decision tree can be stored for further analysis (descriptive statistics or clustering
on the sub-population, deployment of a new decision tree from this node, etc.).
The concurrent splitting alternatives could even be retained if needed.

We sucessfully checked that the results provided by our implementation of
ID3 were correct by comparing the output of our procedure to the output of the
SIPINA software, which is a well-known and reliable data mining platform, on
several test datasets of growing complexity.

The perspectives opened by this study are numerous. From a technical point
of view, the performance of our solution could be improved at least at two
levels. First, there is room for code optimization, e.g., by replacing the relational
table with an embedded collection by more efficient, in-memory data structures.
Second, a more global optimization scheme could be achieved by indexing the
source table so that building and exploiting the views is faster.

We also need to test the results obtained by BuildTree on very large databases.
This would help us determining how well our procedure scales up. We also plan
to compare the performances (i.e., response time) of BuildTree and SIPINA on
such very large databases (that do not fit into a computer’s main memory) in
order to check out that our approach indeed takes advantage of the host DBMS
capabilities.

Eventually, we chose to first implement a very simple decision tree build-
ing method (ID3). It would be interesting to enrich our stored procedure with
other, more elaborate methods. Our idea is to make them available through sim-
ple parameterization and keep the tree building as transparent to the user as
possible. We could also integrate other procedures for helping users to complete
the machine learning process, e.g., scoring and cross-validation procedures.

References

1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Verkamo. Fast discovery
of association rules. In Advances in Kowledge Discovery and Data Mining, pages
307–328, 1996.

2. S. Chaudhuri. Data mining and database systems: Where is the intersection? Data
Engineering Bulletin, 21(1):4–8, 1998.

3. E. F. Codd. Providing olap (on-line analytical processing) to user-analysts: An it
mandate. Technical report, E.F. Codd and Associates, 1993.

4. J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest - a framework for fast
decision tree construction of large datasets. In 24th International Conference on
Very Large Data Bases (VLDB 98), New York City, USA, pages 416–427. Morgan
Kaufmann, 1998.

5. IBM. Db2 intelligent miner scoring. http://www-
4.ibm.com/software/data/iminer/scoring, 2001.

6. R. Meo, G. Psaila, and S. Ceri. A new sql-like operator for mining association
rules. In 22th International Conference on Very Large Data Bases (VLDB 96),
Mumbai, India, pages 122–133. Morgan Kaufmann, 1996.

7. Microsoft. Introduction to ole-db for data mining.
http://www.microsoft.com/data/oledb, July 2000.

8. A. Netz, S. Chaudhuri, J. Bernhardt, and U. Fayyad. Integration of data mining
and relational databases. In 26th International Conference on Very Large Data
Bases (VLDB 00), Cairo, Egypt, pages 719–722. Morgan Kaufmann, 2000.

9. Oracle. Oracle 9i data mining. White paper, June 2001.
10. J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.
11. S. Sarawagi, S. Thomas, and R. Agrawal. Integrating mining with relational

database systems: Alternatives and implications. In ACM SIGMOD International
Conference on Management of Data (SIGMOD 98), Seattle, USA, pages 343–354.
ACM Press, 1998.

12. S. Soni, Z. Tang, and J. Yang. Performance study microsoft data mining algo-
rithms. Technical report, Microsoft Corp., 2001.

13. D. A. Zighed and R. Rakotomalala. Sipina-w(c) for windows: User’s guide. Tech-
nical report, ERIC laboratory, University of Lyon 2, France, 1996.

	Decision tree modeling with relational views

