

Adaptive Layout Analysis of Document Images

Donato Malerba Floriana Esposito Oronzo Altamura

Dipartimento di Informatica, Università degli Studi di Bari,
via Orabona 4, I-70126 Bari – Italy

{malerba, esposito, altamura}@di.uniba.it

Abstract. Layout analysis is the process of extracting a hierarchical structure
describing the layout of a page. In the document processing system
WISDOM++ the layout analysis is performed in two steps: firstly, the global
analysis determines possible areas containing paragraphs, sections, columns,
figures and tables, and secondly, the local analysis groups together blocks that
possibly fall within the same area. The result of the local analysis process
strongly depends on the quality of the results of the first step. In this paper we
investigate the possibility of supporting the user during the correction of the
results of the global analysis. This is done by allowing the user to correct the
results of the global analysis and then by learning rules for layout correction
from the sequence of user actions. Experimental results on a set of multi-page
documents are reported.

1 Background and motivations

Processing document images, that is bitmaps of scanned paper documents, is a
complex task involving many activities, such as preprocessing, segmentation, layout
analysis, classification, understanding and text extraction [6]. Those activities are all
important, although, the extraction of the right layout structure is deemed the most
critical. Layout analysis is the perceptual organization process that aims at detecting
structures among blocks extracted by the segmentation algorithm. The result is a
hierarchy of abstract representations of the document image, called the layout
structure of the document. The leaves of the layout tree (lowest level of the
abstraction hierarchy) are the blocks, while the root represents the set of pages of the
whole document. A page may include several layout components, called frames,
which are rectangular areas corresponding to groups of blocks.

Strategies for the extraction of layout analysis have been traditionally classified as
top-down or bottom-up [10]. In top-down methods, the document image is repeatedly
decomposed into smaller and smaller components, while in bottom-up methods, basic
layout components are extracted from bitmaps and then grouped together into larger
blocks on the basis of their characteristics. In WISDOM++
(www.di.uniba.it/~malerba/wisdom++/), a document image analysis system that can
transform paper documents into either HTML or XML format [1], the applied page
decomposition method is hybrid, since it combines a top-down approach to segment
the document image, and a bottom-up layout analysis method to assemble basic
blocks into frames.

Some attempts of learning the layout structure from a set of training examples have
also been reported in the literature [2,3,4,8,11]. They are based on ad-hoc learning
algorithms, which learns particular data structures, such as geometric trees and tree
grammars. Results are promising although it has been proven that good layout
structures could also be obtained by exploiting generic knowledge on typographic
conventions [5]. This is the case of WISDOM++, which analyzes the layout in two
steps:
1. A global analysis of the document image, in order to determine possible areas

containing paragraphs, sections, columns, figures and tables. This step is based on
an iterative process, in which the vertical and horizontal histograms of text blocks
are alternately analyzed, in order to detect columns and sections/paragraphs,
respectively.

2. A local analysis of the document to group together blocks that possibly fall within
the same area. Generic knowledge on west-style typesetting conventions is
exploited to group blocks together, such as “the first line of a paragraph can be
indented” and “in a justified text, the last line of a paragraph can be shorter than
the previous one”.
Experimental results proved the effectiveness of this knowledge-based approach on

images of the first page of papers published in either conference proceedings or
journals [1]. However, performance degenerates when the system is tested on
intermediate pages of multi-page articles, where the structure is much more variable,
due to the presence of formulae, images, and drawings that can stretch over more than
one column, or are quite close. The main source of the errors made by the layout
analysis module was in the global analysis step, while the local analysis step
performed satisfactorily when the result of the global analysis was correct.

In this paper, we investigate the possibility of supporting the user during the
correction of the results of the global analysis. This is done by means of two new
system facilities:
1. the user can correct the results of the layout analysis by either grouping or splitting

columns/sections, automatically produced by the global analysis;
2. the user can ask the system to learn grouping/splitting rules from his/her sequence

of actions correcting the results of the layout analysis.
The proposed approach is different from those that learn the layout structure from

scratch, since we try to correct the result of a global analysis returned by a bottom-up
algorithm. Furthermore, we intend to capture knowledge on correcting actions
performed by the user of the document image processing system. Other document
processing systems allow users to correct the result of the layout analysis;
nevertheless WISDOM++ is the only one that tries to learn correcting actions from
user interaction with the system.

In the following section, a description of the layout correction operations is
reported, and the automated generation of training examples is explained. Section 3
briefly introduces the learning system used to generate layout correction rules and
presents some preliminary experimental results.

2 Correcting the results of the global analysis

Global analysis aims at determining the general layout structure of a page and
operates on a tree-based representation of nested columns and sections. The levels of
columns and sections are alternated, which means that a column contains sections,
while a section contains columns. At the end of the global analysis, the user can only
see the sections and columns that have been considered atomic, that is, not subject to
further decomposition (Figure 1). The user can correct this result by means of three
different operations:
� Horizontal splitting: a column/section is cut horizontally.
� Vertical splitting: a column/section is cut vertically.
� Grouping: two sections/columns are merged together.

The cut point in the two splitting operations is automatically determined by
computing either the horizontal or the vertical histogram on the basic blocks returned
by the segmentation algorithm. The horizontal (vertical) cut point corresponds to the
largest gap between two consecutive bins in the horizontal (vertical) histogram.
Therefore, splitting operations can be described by means of a binary function,
namely, split(X,S), where X represents the column/section to be split, S is an ordinal
number representing the step of the correction process and the range of the split
function is the set {horizontal, vertical, no_split}.

The grouping operation, which can be described by means of a ternary predicate
group(A,B,S), is applicable to two sections (columns) A and B and returns a new
section (column) C, whose boundary is determined as follows. Let (leftX, topX) and
(bottomX, rightX) be the coordinates of the top-left and bottom-right vertices of a

Fig. 1. Results of the global analysis process: one column (left) includes two sections (right).
The result of the local analysis process (i.e., the frames) is in reported the background.

column/section X, respectively.1 Then:

leftC= min(leftA, leftB), rightC=max(rightA,rightB),
topC=min(topA,topB), bottomC=max(bottomA,bottomB).

Grouping is possible only if the following two conditions are satisfied:
1. C does not overlap another section (column) in the document.
2. A and B are nested in the same column (section).

After each splitting/grouping operation, WISDOM++ recomputes the result of the
local analysis process, so that the user can immediately perceive the final effect of the
requested corrections and can decide whether to confirm the correction or not.

From the user interaction, WISDOM++ implicitly generates some training
observations describing when and how the user intended to correct the result of the
global analysis. These training observations are used to learn correction rules of the
result of the global analysis, as explained below.

3 Learning rules for layout correction

The inductive learning problem to be solved concerns the concepts
split(X,S)=horizontal, split(X,S)=vertical and group(X,Y,S)=true, since we are
interested to find rules predicting both when to split horizontally/vertically a
column/section and when to group two columns/sections. No rule is generated for the
case split(X,S)=no_split and group(X,Y,S)=false.

The definition of a suitable representation language for the global layout structure
is a key issue. In this work, we restrict this representation to the lowest column and
section levels in the tree structure extracted by the global analysis and we deliberately
ignore other levels as well as their composition hierarchy. Nevertheless, describing
this portion of the layout structure is not straightforward, since the columns and
sections are spatially related and the feature-vector representation typically adopted in
statistical approaches cannot render these relations. In this work the application of a
first-order logic language has been explored. In this language, unary function
symbols, called attributes, are used to describe properties of a single layout
component (e.g., height and width), while binary predicate and function symbols,
called relations, are used to express spatial relationships among layout components
(e.g., part_of and on_top). An example of a training observation automatically
generated by WISDOM++ follows:
split(c1,s)=horizontal, group(s1,s2,s)=false,
split(s1,s)=no_split, split(s2,s)=no_split �

step(s)=1,
type(s1)=section, type(s2)=section, type(c1)=column,
width(s1)=552, width(s2)=552, width(c1)=552,
height(s1)=8, height(s2)=723, height(c1)=852,
x_pos_centre(s1)=296, x_pos_centre(s2)=296,
x_pos_centre(c1)=296,

1 The origin of the coordinate system is at the top left-hand corner; the abscissa increases from

the leftmost to the rightmost column, while the ordinate increases from the uppermost to the
lowest row.

y_pos_centre(s1)=22, y_pos_centre(s2)=409,
y_pos_centre(c1)=426,
on_top(s1,s2)=true,
part_of(c1,s1)=true, part_of(c1,s2)=true,
no_blocks(s1)=2, no_blocks(s2)=108, no_blocks(c1)=110,
per_text(s1)=100, per_text(s2)=83, per_text(c1)=84.

This is a multiple-head ground clause, which has a conjunction of literals in the
head. It describes the first correction applied to a page layout, where two sections and
one column were originally found (Figure 1). The horizontal splitting of the column is
the first correction performed by the user (Figure 2), as described by the first literal,
namely step(s)=1. This column is 552 pixels wide and 852 pixels high, has a center
located at the point (296,426), and includes 110 basic blocks and the two sections s1
and s2, which are one on top of the other. The percentage of the area covered by text
blocks, enclosed by the column, is 84%. It is noteworthy that the multiple-head clause
above also reports that the two sections s1 and s2 should be neither split (literals
split(s1,s)=no_split and split(s2,s)=no_split) nor grouped (literal
group(s1,s2,s)=false) at the first correction step. Many other literals, such as
group(c1,s2,s)=false, group(s1,c1,s)=false, and group(c1,c1,s)=false, have not been
generated, since they do not represent admissible groupings according to the two
constraints specified above.

Rules for the automated correction of the layout analysis can be automatically
learned by means of a first-order learning system. In this work, the learning system
ATRE has been used [9]. It solves the following learning problem:

Fig. 2. Horizontal split of the column (left) and vertical split of column c2 (right). The result
of the layout analysis process is in the background.

Given
� a set of concepts C1, C2, �, Cr to be learned,
� a set of observations O described in a language LO,
� a background knowledge BK described in a language LBK,
� a language of hypotheses LH,
� a generalization model � over the space of hypotheses,
� a user’s preference criterion PC,
Find
a (possibly recursive) logical theory T for the concepts C1, C2, �, Cr, such that T is
complete and consistent with respect to O and satisfies the preference criterion PC.

The completeness property holds when the theory T explains all observations in O
of the r concepts Ci, while the consistency property holds when the theory T explains
no counter-example in O of any concept Ci. The satisfaction of these properties
guarantees the correctness of the induced theory with respect to O.

In ATRE, observations are represented by means of ground multiple-head clauses,
called objects. All literals in the head of the clause are called examples of the concepts
C1, C2, �, Cr. They can be considered either positive or negative according to the
learning goal. In this application domain, the set of concepts to be learned are
split(X,S)=horizontal, split(X,S)=vertical, group(X,Y,S)=true, since we are interested
in finding rules which predict when to split horizontally/vertically or when to group
two columns/sections. Therefore, no rule is generated for the case split(X,S)=no_split
and group(X,Y,S)=false. Moreover, no background knowledge is available.

The generalization model provides the basis for organizing the search space, since
it establishes when a hypothesis explains a positive/negative example and when a
hypothesis is more general/specific than another. The generalization model adopted
by ATRE, called generalized implication, is explained in [7].

The preference criterion PC is a set of conditions used to discard some solutions
and favor others. In this work, short rules, which explain a high number of positive
examples and a low number of negative examples, are preferred.

4 Experimental results

To investigate the applicability of the proposed solution we considered thirteen papers
published as either regular or short, in the IEEE Transactions on Pattern Analysis and
Machine Intelligence, issues of January and February 1996. Each paper is a multi-
page document; therefore we processed 109 document images in all, which were used
for the training phase. The distribution of pages used for training purposes is reported
in Table 1.

The number of training observations for ATRE corresponds to the final, corrected
layout of each page (i.e., 109), plus the number of intermediate global layout
structures, which are subject to corrections (i.e., 106). The total number of examples
in the 215 training observations is 7786, which corresponds to the total number of
literals in the multiple-head clauses. Given the set of concepts to be learned, only 106
out of 7786 examples are positive, which correspond to actual corrective actions
performed by the user (vertical/horizontal splitting or grouping). The average number

of corrections performed by the user is 0.97 (i.e., 106/109) per page. In fact, some
intermediate pages of multi-page documents are the most critical and may require
several operations to correct the column/section structure.

Table 1. Training set: Distribution of pages and examples per document.

Name of the multi-
page document

No. of
pages

No. of
horizontal splits

No. of
vertical splits

No. of
groupings

Total no. of
examples

TPAMI1 14 6 5 4 1004
TPAMI2 8 4 5 0 374
TPAMI5 6 1 3 0 402
TPAMI6 2 0 0 1 83
TPAMI7 7 0 0 1 328
TPAMI8 6 2 1 2 526
TPAMI9 5 1 1 0 114
TPAMI14 10 3 4 12 1035
TPAMI15 15 9 10 0 806
TPAMI16 14 1 4 2 965
TPAMI18 10 2 8 4 1464
TPAMI22 5 2 2 0 181
TPAMI23 7 3 2 1 504
Total (training) 109 34 45 27 7786

ATRE generated a theory with 44 clauses: 19 for vertical split, 11 for horizontal

split and 14 for grouping. Some clauses for the three concepts are reported below:
1. split(X1,S)=horizontal � width(X1) �[540..567],

height(X1) �[848..875], step(S) �[1..1]
2. split(X1,S)=vertical � width(X1) �[536..581],

on_top(X1,X2)=true, x_pos_centre(X1) �[467..467],
step(S) �[1..1]

3. group(X1,X2,S)=true � width(X1) �[408..513],
type(X1)=column, step(S) �[1..6], type(X2)=column

The interpretation of these clauses is straightforward. The first clause states that «at
the first correction step, columns/areas with width between 540 and 567 pixels and
height between 848 and 875 pixels should be horizontally split». The second clause
states that «at the first correction step, columns/areas with a width between 536 and
581 pixels, the baricentre at point 467 on the x axis and below another column/area
should be vertically split». Finally, the third clause states that «at any step between 1
and 6, two columns can be grouped if the left one2 has a width between 408 and 513».
It is noteworthy that the second clause involves the relation on_top and could be
generated only by learning systems that operate on first-order logic descriptions, such
as ATRE.

From the examples above, it is evident that some of the induced clauses (e.g., the
second) are clearly specific and have been generated by the system to explain a
limited number of examples (sometimes only one). Specificity of clauses is due to

2 In this case the area is necessarily a column, since users can only group two columns or two

sections.

two factors: firstly, the limited number of positive examples used in the training set,
and secondly, the fact that ATRE is asked to generate a complete theory, that is a set
of clauses that explain all positive examples. However, other clauses generated by
ATRE are quite general, such as the first example above.

WISDOM++ uses the induced rules to automatically correct a page layout every
time a document image is processed. This operation is quick and totally transparent to
the user. Data on the test set are reported in Table 2. They refer to ten additional
papers published in the issues of January and February 1996 of the IEEE Transactions
on Pattern Analysis and Machine Intelligence. Results of the test examples are
reported in Table 3. Omission errors occur when correct actions on page layout are
missed, while commission errors occur when wrong actions are “recommended” by a
rule. In the case of horizontal (vertical) split, the number of possible commission
errors, that is, 3189 (3200), is the sum of the number of examples of vertical
(horizontal) split plus the number of no split, that is, 3153. In the case of grouping,
possible commission errors equals the number of examples of grouping(X,Y,S)=false.

Table 2. Testing set: Distribution of pages and examples per document.

Name of the multi-
page document

No. of
pages

No. of
horizontal splits

No. of
vertical splits

No. of
groupings

Total no. of
examples

Total (testing) 109 47 36 12 7376

Table 3. Commission and omission errors performed by rules of various concepts.

Rule for No. omission errors No. commission errors
split(X,S)=horizontal 18/47 5/3189
split(X,S)=vertical 10/36 5/3200
grouping(X,Y,S)=true 10/12 14/4128

Unfortunately, the induced set of clauses missed most of the grouping operations,

whereas it was able to correct some page layouts by performing horizontal and
vertical splitting. The percentage of commission errors is very low, whereas the
percentage of omission errors is quite high. This confirms our comments on the
specificity of part of the learned theory, due to the reduced number of training
observations with respect to the complexity of the learning task. It is also noteworthy
that most of the errors occurred in few pages, where the correction process was quite
complex.

5 Conclusions

This work presents a preliminary application of machine learning techniques to the
problem of correcting the result of the global layout analysis process in WISDOM++.
The proposed approach is alternative to inducing the complete layout structure from a
set of training examples The learning problem to be solved has been introduced and
the first-order logic representation of the corrections performed by the user has been
illustrated. Experimental results on a set of multi-page documents showed that the
proposed approach is able to capture relatively simple layout corrections. Inaccuracy
for complex processes can be mainly attributed to the limited size of training

documents. A more extensive experimentation is planned to confirm these initial
conclusions. A further research issue to be investigated concerns the application of a
learning system like ATRE, devised to solve classification problems, to a typical
planning task. Finally, we intend to investigate the problem of incrementally refining
the set of rules generated by ATRE, when new training observations are made
available.

Acknowledgments

This work partially fulfills the research objectives set by the IST-1999-20882 project
COLLATE (Collaboratory for Automation, Indexing and Retrieval of Digitized
Historical Archive Material) funded by the European Union (http://www.collate.de)

References

1. Altamura O., Esposito F., & Malerba D.: Transforming paper documents into XML format
with WISDOM++, Int. Journal on Document Analysis and Recognition, 4(1), pp. 2-17,
2001.

2. Akindele O.T., & Belaïd A.: Construction of generic models of document structures using
inference of tree grammars, Proc. of the 3rd Int. Conf. on Document Analysis and
Recognition, IEEE Computer Society Press, pp. 206-209, 1995.

3. Dengel A.: Initial learning of document structures, Proc. of the 2nd Int. Conf. on
Document Analysis and Recognition, IEEE Computer Society Press, pp. 86-90, 1993.

4. Dengel A., & Dubiel F.: Clustering and classification of document structure – A machine
learning approach, Proc. of the 3rd Int. Conf. on Document Analysis and Recognition,
IEEE Computer Society Press, pp. 587-591, 1995.

5. Esposito F., Malerba D., & Semeraro G.: A Knowledge-Based Approach to the Layout
Analysis, Proc. of the 3rd Int. Conf. on Document Analysis and Recognition, IEEE
Computer Society Press, pp. 466- 471, 1995.

6. Esposito F., Malerba D., & Lisi F.A.: Machine learning for intelligent processing of
printed documents, Journal of Intelligent Information Systems, 14(2/3), pp. 175-198, 2000.

7. Esposito F., Malerba D., & Lisi F.A.: Induction of recursive theories in the normal ILP
setting: issues and solutions, in J. Cussens and A. Frisch (Eds.), Inductive Logic
Programming, Lecture Notes in Artificial Intelligence, 1866, pp. 93-111, Springer: Berlin,
2000.

8. Kise K.: Incremental acquisition of knowledge about layout structures from examples of
documents. Proc. of the 2nd Int. Conf. on Document Analysis and Recognition, IEEE
Computer Society Press, pp. 668-671, 1993.

9. Malerba D., Esposito F., & Lisi F.A.: Learning recursive theories with ATRE, Proc. of the
13th European Conf. on Artificial Intelligence, John Wiley & Sons, pp. 435-439, 1998.

10. Srihari S.N., & Zack G.W.: Document Image Analysis. Proc. of the 8th Int. Conf. on
Pattern Recognition, pp. 434-436, 1986.

11. Walischewski H.: Automatic knowledge acquisition for spatial document interpretation.
Proc. of the 4th Int. Conf. on Document Analysis and Recognition, IEEE Computer
Society Press, pp. 243-247, 1997.

