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Abstract

In this paper, we consider the problem of allocating a large number of indepen-
dent, equal-sized tasks to a heterogeneous "grid" computing platform. We use a
non-oriented graph to model a grid, where resources can have different speeds of
computation and communication, as well as different overlap capabilities. We show
how to determine the optimal steady-state scheduling strategy for each processor
(the fraction of time spent computing and the fraction of time spent communicat-
ing with each neighbor). This result holds for a quite general framework, allowing
for cycles and multiple paths in the interconnection graph, and allowing for several
masters.

Because spanning trees are easier to deal with in practice (there is a single path
from the master to each node), a natural question arises: how to extract the best
spanning tree, i.e. the one with optimal steady-state throughput, out of a general
interconnection graph? We show that this problem is NP-hard. Even worse, we
show that there exist heterogeneous networks for which the optimal spanning tree
has a throughput which is arbitrarily bad in front of the throughput that can be
achieved by the optimal (multiple-path) solution. Still, we introduce and compare
several low-complexity heuristics to determine a sub-optimal spanning tree. Fortu-
nately, we observe that the best heuristics do achieve an excellent performance in
most experiments.

Keywords: heterogeneous processors, master-slave tasking, communication,
spanning trees, complexity.



Résumé

Dans ce rapport, nous nous intéressons au probléme de l’allocation d’un grand
nombre de taches indépendantes et de taille identiques sur des plateformes de cal-
cul hétérogeénes comme la fameuse computing grid. Nous utilisons des graphes non-
orientés pour modéliser les plateformes dont les ressources peuvent avoir des vitesses
de calcul ou de communication différentes les unes des autres ainsi que diverses pos-
sibilités de recouvrement. Nous montrons comment déterminer le régime permanent
optimal pour chaque processeur (c’est-a-dire la fraction de temps passée a calculer
et celles passées a communiquer avec chacun de ses voisins). Ces résultats restent
valables dans un cadre plus général ot I'on autorise les cycles et les chemins multiples
dans le graphe d’interconnexion, ainsi que ’existence de plusieurs maitres.

Les arbres étant cependant plus facile a utiliser en pratique (il n’y a qu’un seul
chemin du maitre & un autre processeur), il est naturel de se demander comment ex-
traire du réseau d’interconnexion le meilleur arbre couvrant, c’est-a-dire celui ayant
le meilleur rendement en régime permanent. Nous démontrons que ce probléme est
NP-difficile et qu’il n’est pas approximable & un facteur constant prés : il existe une
famille de graphes d’interconnexion dont ’arbre couvrant optimal a un rendement
arbitrairement éloigné de celui qu'une solution utilisant plusieurs chemins peut ob-
tenir. Nous introduisons et comparons cependant un certain nombre d’heuristiques
de faible complexité et déterminant un arbre couvrant sous-optimal. Les meilleures
heuristiques donnent d’excellents résultats dans la plupart des expériences.

Mots-clés: Ressources hétérogeénes, maitre/esclaves, communications, arbre
couvrant, complexité.
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1 Introduction

In this paper, we deal with the problem of allocating a large number of indepen-
dent, equal-sized tasks to a heterogeneous “grid” computing platform. We model a
collection of heterogeneous resources and the communication links between them as
the nodes and edges of an undirected graph. Each node is a computing resource (a
processor, or a cluster, or whatever) capable of computing and/or communicating
with its neighbors at (possibly) different rates.

We assume that one specific node, referred to as the master, initially holds (or
generates the data for) a large collection of independent, identical tasks to be allo-
cated on the grid. The question for the master is to decide which tasks to execute
itself, and how many tasks to forward to each of its neighbors. Due to heterogene-
ity, the neighbors may receive different amounts of work (maybe none for some of
them). Each neighbor faces in turn the same dilemma: determine how many tasks
to execute, and how many to delegate to other processors.

The underlying interconnection network may be very complex and, in particular,
may include multiple paths and cycles (just as the Ethernet does). The master may
well need to send tasks along multiple paths to properly feed a very fast but remote
computing resource. The master-slave scheduling problem for a general interconnec-
tion graph is to determine a steady state scheduling policy for each processor, i.e.
the fraction of time spent computing, and the fraction of time spent sending or re-
ceiving tasks along each communication link, so that the (averaged) overall number
of tasks processed at each time-step is maximum. In this paper, we solve the master-
slave scheduling problem for general graphs, using a linear programming formulation
(which nicely encompasses the situation where there are several masters instead of
a single one).

The master-slave scheduling problem is motivated by problems that are addressed
by collaborative computing efforts such as SETI@home [23], factoring large num-
bers [9], the Mersenne prime search [22], and those distributed computing problems
organized by companies such as Entropia [10]. Several papers [25, 24, 14, 12, 31, 3, 2|
have recently revisited the master-slave paradigm for processor clusters or grids, and
we refer to Section 7 for comparison and discussion.

This paper is a follow-on of recent work by Beaumont et al. [2|, who solve the
master-slave scheduling problem for a tree-shaped heterogeneous platform. Given
an oriented spanning tree rooted at the master, they aim at determining the opti-
mal steady-state scheduling strategy. Interestingly, it turns out that this strategy is
bandwidth-centric: if enough bandwidth is available to the node, then all children are
kept busy; if bandwidth is limited, then tasks should be allocated only to children
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which have sufficiently fast communication times, in order of fastest communica-
tion time. Counter-intuitively, the maximum throughput in the tree is achieved by
delegating tasks to children as quickly as possible, and not by seeking their fastest
processing.

In a practical context, there are several reasons that can motivate to only use
tree-shaped platforms. First of all, the unique route from the master to every proces-
sor will ease the implementation. Second, the bandwidth-centric strategy mentioned
above can be computed locally, and is therefore very robust in front of possible vari-
ations in processor speeds and in communication bandwidths. Overall, the situation
is similar to the situation for broadcast algorithms: while optimal solutions may use
multiple paths to route different fragments of the message, practical implementa-
tions, such as the MPI [29] one-to-all routine, typically rely on spanning trees.

Given a network topology (that may well include cycles and multiple paths),
how to extract the “best” spanning tree, i.e. the spanning tree which allows for the
maximum number of tasks to be processed by all the computing resources? Given
a tree, the result by Beaumont et al [2] enables to compute the best scheduling
strategy for that tree, but is of no help to find the tree. Because there may exist
an exponential number of trees rooted at the master, we cannot simply compute the
best scheduling strategy for each tree, and then select the best result.

Given a general interconnection graph, we show that the problem of extracting
the optimal spanning tree is NP-complete. Even worse, we show that there exist
heterogeneous networks for which the optimal spanning tree has a throughput which
is arbitrarily bad in front of the throughput that can be achieved by the optimal
(multiple-path) solution. Still, we introduce and compare several low-complexity
heuristics to determine a sub-optimal spanning tree. Fortunately, we observe that
the best heuristics do achieve an excellent performance in most experiments.

The rest of the paper is organized as follows. In Section 2 we introduce our base
model of communication and computation, and we formally state the master-slave
scheduling problem for a general interconnection graph. We provide the optimal
solution to this problem, using a linear programming approach. In Section 3 we
discuss various extensions, first with several masters, and then with different hy-
potheses on the overlapping capabilities. Section 4 is theoretically oriented and
provides the negative complexity results for the search of an optimal spanning tree:
(i) NP-completeness of the problem and (ii) inapproximability of a general graph
by any spanning tree. Section 5 deals with the design of five low-cost (polynomial)
heuristics to determine a sub-optimal spanning tree. These heuristics are experi-
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mentally compared in Section 6. Fortunately, we are able to report that the best
two heuristics achieve very good performance in most cases, despite the negative
theoretical predictions. We briefly survey related work in Section 7. Finally, we give
some remarks and conclusions in Section 8.

2 The master-slave scheduling problem

In this section, we formally state the optimization problem to be solved. We start
with the architectural model, next we explain how to compute the steady state,
and finally we state the master-slave scheduling problem as a linear programming
problem to be solved in rational numbers (hence a polynomial complexity).

P4 Pﬁ

Figure 1: A graph labeled with node (computation) and edge (communication)
weights.

2.1 Architectural model

The target architectural/application framework is represented by a node-weighted
edge-weighted graph G = (V, E,w, c), as illustrated in Figure 1. Let p = |V| be the
number of nodes. Each node P; € V represents a computing resource of weight w;,
meaning that node P; requires w; units of time to process one task (so the smaller
wj, the faster the processor node F;). There is a master processor, i.e. a node Py,
which plays a particular role. P, initially holds the data for a large (say infinite)
collection of independent tasks to be executed. Tasks are atomic, their computation
or communication cannot be preempted. A task represents the granularity of the
application.
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Each edge e;; : P, — P; is labeled by a value ¢;; which represents the time
needed to communicate the data for one task between P; and P, in either direction:
we assume that the link between P; and P; is bidirectional and symmetric, i.e. that
it takes the same amount of time to send (the data for) one task from P; to P;
than in the reverse direction, from P; to F;. A variant would be to assume two
unidirectional links, one in each direction, with possibly different label values, and
we explain below how to modify the formulas to handle this variant. If there is no
communication link between P; and P; we let ¢;; = +00, so that ¢;; < +00 means
that P; and P; are neighbors in the communication graph. Note that we can include
in ¢;; the time needed for the receiving processor to return the result to the sending
processor when it is finished. For the purpose of computing steady-state behavior, it
does not matter what fraction of the communication time is spent sending a problem
and what fraction is spent receiving the results. To simplify the exposition, we will
henceforth assume that all the time is spent sending the task data, and no time is
needed to communicate the results back. We assume that all w; are positive rational
numbers. We disallow w; = 0 since it would permit node P; to perform an infinite
number of tasks, but we allow w; = +00; then P; has no computing power but can
still forward tasks to other processors. Similarly, we assume that all c;; are positive
rational numbers (or equal to +oo0 if there is no link between P; and Pj).

There are several scenarios for the operation of the processors, which are surveyed
in Section 3. In this section, we concentrate on the full overlap, single-port model,
where a processor node can simultaneously receive data from one of its neighbor,
perform some (independent) computation, and send data to one of its neighbor.
At any given time-step, there are at most two communications involving a given
processor, one in emission and the other in reception.

We state the communication model more precisely: if P; sends a task to P; at
time-step ¢, then

e P; cannot start executing this task before time-step ¢ + ¢;;,

e P; can neither initiate another receive operation nor start the execution of
the task before time-step ¢ + ¢;; (but it can perform a send operation and
independent computation),

e P; cannot initiate another send operation before time-step ¢ + ¢;; (but it can
perform a receive operation and independent computation).

See Figure 2 for an example, where P is the master.
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Figure 2: Example of execution: at most three tasks can be scheduled within 7" = 10
time-units.

2.2 Steady-state operation

Given the resources of a weighted graph G operating under the base model, we aim
at determining the best steady-state scheduling policy. After a start-up phase, we
want the resources to operate in a periodic mode. This makes very good sense if
there is a large number of tasks to process, as typical applications would require:
otherwise why bother dispatching them on the grid?

To formally define the steady-state, we need a couple of notations. Let n(7)
denote the index set of the neighbors of processor P;. During one time unit:

e «; is the fraction of time spent by P; computing

e s;; is the fraction of time spent by P; sending tasks to each neighbor processor
P;, j € n(i), i.e. for each e;; € E

e 7;; is the fraction of time spent by P; receiving tasks from each neighbor pro-
cessor Pj, j € n(i), i.e. for each e;; € &/

We search for rational values of all these variables. The first set of constraints is that
they all must belong to the interval [0, 1], as they correspond to the activity during
one time unit:

Vi,0 < a; <1 (1)
Vi,V € TL(Z),O < Sij <1 (2)
Vi,V € n(i),0 <y <1 (3)
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The second set of constraints is that the number s;;/c;; of tasks sent by P; to P;
is equal to the number of tasks r;;/c;; received by P; from P;:

Veij €k, Sij = Tji (4)

Remember that the communication graph is assumed to be symmetric: e;; €
E = ej; € E, and therefore we also have sj; = r;;. It may well be the case that each
link will only be used in one direction in the final solution, i.e. that either r;; or s;;
will be zero, but we cannot guarantee this a priori.

There are specific constraints for the base model:

One-port model for outgoing communications Because send operations to the
neighbors of P; are assumed to be sequential, we have the equation

Vi, Z sij <1 (5)

Jen(i)

One-port model for incoming communications Because receive operations from
the neighbors of P; are assumed to be sequential, we have the equation

Vi, Z rij <1 (6)

jen(i)

Full overlap because of the full overlap hypothesis, there is no further constraint
on a;: 0 < q; <1, and a; = 1 would mean that P; is kept processing tasks all
the time.

Limited bandwidth This constraint is due to our hypothesis that the same link
e;; may be used in both directions simultaneously. We have to guaranteed that
the link bandwidth is not exceeded. The constraint translates into:

Veij € E,s;5 +1ri; <1 (7)
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We can slightly refine the model, by introducing b;;, the link bandwidth, ex-
pressed in tasks per second. Each time unit, there are % tasks sent by P; to

P;, and % tasks received by P; to Pj, so constraint (7) writes

S; i
Veij € B, 2L + - < py,

Cij  Cij
This amounts to let b;; = 1/¢;; in equation (7).

The last constraints deals with conservation laws: for every processor P; which is
not the master, the number of tasks received by P;, i.e. > . , should be equal

[e7%

jen(i)

to the number of tasks that P; consumes itself, i.e. r plus the number of tasks

SZJ

forwarded to its neighbors, i.e. > . We derive the equation:

jen(i

. Tig _ Qi Sij

jen(i) jen(i)

It is important to understand that Equation (8) really applies to the steady-state
operation. We can assume an initialization phase, during which tasks are forwarded
to processors, and no computation is performed. Then, during each time-period in
steady-state, each processor can simultaneously perform some computations, and
send /receive some other tasks. This is why Equation (8) is sufficient, we do not have
to detail which operation is performed at which time-step, because they all commute.

Equation (8) does not hold for the master processor P, because it holds an
infinite number of tasks. Without loss of generality, we can enforce that r,,; = 0 for
all j € n(m): the master does not need to receive any task from its neighbors.

Note that it would be easy to handle unidirectional links: if e;; : P, — Pj is
unidirectional (that is, if for some reason P; can send tasks to P; but not the other
way round), we let r;; = sj; = 0 and we suppress equation (7), which is automatically
fulfilled. Similarly, it is straightforward to replace each bidirectional link e;; by two
oriented arcs a;; (from P; o P;) and aj; (from P;j to P;), respectively weighted with
Cij and Cji-

The equations above constitute a linear programming problem, whose objective
function is the number of tasks consumed within one unit of time, i.e. the throughput
Niask(G) = 3_; o+ Here is a summary:
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MASTER SLAVE SCHEDULING PROBLEM MSSP(G)

Maximize
nta.sk(G) = ?:1 g_ii’
subject to
( Vi, 0<; <1
Vi, V_] € TL(Z),O < Sij <1
Vi, Vj € n(z’),O < Tij <1
Veij e F, Sij = Tji
{ Vi, D jen(i)Sii <1
Vi, Djen(iyTi <1
Vei]’ € F, Sij + Tij <1
Vigm,  Yien) ay = w T jen) e
[ Vj €n(m), rm; =0

Note that we can enforce ay, = 1, because the master will keep on processing
tasks all the time, but this condition will automatically be fulfilled by the solution.

We can state the first result of this paper:

Theorem 1. The solution to the previous linear programming problem provides the
optimal solution to MSSP(G)

Because we have a linear programming problem in rational numbers, we obtain
rational values for all variables in polynomial time (polynomial in |V| 4 |E|, the size
of the heterogeneous platform). When we have the optimal solution, we take the
least common multiple of the denominators, and thus we derive an integer period T'
for the steady-state operation.

Finally, we point out that we can restrict to solutions where each link is used
only in one direction. Although there may exist optimal solutions of MSSP(G) for
which it is not the case, we can always transform such solutions into solutions where
each link is used only in one direction (without changing the throughput): if both
ri; and s;; are non-zero, with, say, r;; > s;j, use rgj = r;; — 8;; and 3;]. = 0 to derive
an equivalent solution.

2.3 Example

Consider the toy example of Figure 3, with p = 4 processors. If we feed the values w;
and ¢; into the linear program, and compute the solution using a tool like the Maple
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Figure 3: An example with four processors.

simplex package [7], we obtain the optimal throughput nig(G) = g. This means

that the whole platform is equivalent to a single processor with processing capability
= m = %, i.e. capable of processing 7 tasks every 4 seconds.
With the values of «;, s;; and r;; returned in the solution of the linear program,

we retrieve the periodic steady-state behavior. Every 12 time-units:

e The master processor P; computes twelve tasks (a; = 1), sends two tasks to
P, (in 4 time-steps, s;2 = 1/3), and sends seven tasks to P3 (in 7 time-steps,
S§13 = 7/12)

e Processor P3 receives seven tasks from the master P, (in 7 times-steps, r3; =
7/12), computes three tasks (a3 = 1) and sends four tasks to Py (in 12 time-
steps, s34 = 1)

e Processor Py receives four tasks from Ps (in 12 time-steps, r43 = 1), computes
two tasks (s = 1) and sends two tasks to P, (in 6 time-steps, s42 = 1/2)

e Processor P, receives four tasks, two from the master P, (in 4 time-steps,
r91 = 1/3) and two from Py (in 6 time-steps, roa = 1/2), and it computes four
tasks (ag = 1).

This makes a total of 12 + 3 + 2 + 4 = 21 tasks every 12 time-steps, and we do

retrieve the value nygk(G) = % = %. This steady-state is illustrated in Figure 4.
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Note that all processors are executing tasks all the time, so the solution achieves
a full utilization of the computing resources. It is interesting to point out that P
receives its tasks along two paths, the first half directly from the master, and the
second half being forwarded through P; and P;.

I I
I I
AR I I I I I I I }
I I
I I
P S s T — T T T — T -
3R B e e s s s s s B e s s s s s s SO i s
I I
I I
S I I
P
2R | I T } -] I !
I I
I I
P{S‘ e s e s s R o e s s s S s
1 ! !
| |

Figure 4: Steady-state for the example with four processors.

In the introduction, we briefly mentioned the difficulty of extracting a spanning
tree of high throughput out of a given interconnection graph, and we come back to
this point in Section 4. We can perform an exhaustive search for our little example,
because there are only four possible trees rooted in P;. To compute the throughput
of a given tree, we can either use the linear programming approach, or traverse the
tree using the bandwidth-centric algorithm of |2] (with a cost linear in the processor
number). In the example, we obtain the following results:

1. If we suppress the edge between Py and P», the throughput of the corresponding
_ 38

tree T is ngask(T1) = 53
2. If we suppress the edge between P} and Pj3, the throughput of the corresponding

. 36
tree Ty is ntask(T2) — 2

3. If we suppress the edge between P, and Py, the throughput of the corresponding
tree T3 i Miask (T3) = %

4. If we suppress the edge between P3 and Py, the throughput of the corresponding

. 39
tree Ty is nyask(T4) = 33

We see that the third tree T3 is the best one, with a throughput niask (13) = % very
close to the optimal solution niasx(G) = ‘21—?1 for the whole graph.
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3 Extensions

In this section we discuss several extensions: with several masters, and with other
models of operation than the base model.

3.1 With several masters

The extension for several masters is straightforward. Assume that there are k masters
Pp., Py, ..., Pp,, each holding (the initial data for) a large collection of tasks.
For each index mg, 1 < ¢ < k:

1. Suppress equation (8) for i = my (the conservation law does not apply to a
master)

2. Add the constraints r,,,,; = 0 for all j € m(q) (a master does not need to
receive any task)

We then solve the new MSSP(G) problem.

3.2 With other models
We rely on the classification proposed by Beaumont et al [2]:

M(r*||s*||w): Full overlap, multiple-port In this first model, a processor node
can simultaneously receive data from all its neighbors, perform some (indepen-
dent) computation, and send data to all of its neighbors. This model is not
realistic if the number of neighbors is large.

M(r||s|w): Full overlap, single-port In this second model, a processor node can
simultaneously receive data from one neighbor, perform some (independent)
computation, and send data to one neighbor. At any given time-step, there
are at most two communications taking place, one incoming and one outgoing.
This model is representative of a large class of modern machines, and is the
base model which we have already dealt with.

M(r||s,w): Receive-in-Parallel, single-port In this third model, as in the next
two, a processor node has one single level of parallelism: it can perform two
actions simultaneously. In the M(s||r, w) model, a processor can simultane-
ously receive data from one neighbor, and either perform some (independent)
computation, or send data to one neighbor.
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M(s||r,w): Send-in-Parallel, single-port In this fourth model, a processor node
can simultaneously send data to one neighbor and either perform some (inde-
pendent) computation, or receive data from one neighbor.

M(w||r, s): Work-in-Parallel, single-port In this fifth model, a processor node
can simultaneously compute and execute a single communication, either send-
ing to or receiving from one neighbor.

M(r,s,w): No internal parallelism In this sixth and last model, a processor
node can only do one thing at a time: either receiving from one neighbor,
or computing, or sending data to one neighbor. This is really the low-end
computer!

3.2.1 Reduction for M(r*||s*||w), the Full overlap, multiple-port model

In this model, we allow for an unlimited number of simultaneous communications,
either incoming or outgoing. It is quite easy to take this new constraint into account:
simply suppress equations (5) and (6) in the linear program! Indeed, under the
new model, equations (2) and (3) are sufficient to characterize the activity of each
processor.

Instead of allowing an unlimited number of simultaneous communications, we
could be more restrictive and restrict each processor to k; incoming and k3 outgoing
communications. In other words, there are k; receiving ports, and ks sending ports.
Let rfj be the time spent by processor P; to receive tasks from processor P; on
receiving port k£ for 1 < k < ky. Similarly, let si-“j be the time spent by P; to send
tasks to P; on sending port k, for 1 < k < kg, The new constraints simply are

Vi, Yk, 1<k <k, 0<r) <1 (9)
Vi, Vk,1 <k < ke, 0 < s} < 1 (10)

3.2.2 Reduction for M(r||s,w), the Receive-in-Parallel, single port model

This model is less powerful than the base model: processor can simultaneously receive
a task from one of its neighbors, and either perform some computation, or send a
task to one of its neighbors. To take this new constraint into account, simply replace
equation (5) by
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Vi, a; + Z si5 <1 (11)
jen(i)
3.2.3 Reduction for M(s||r,w), the Send-in-Parallel, single port model

In this model, a processor can simultaneously send a task to one of its neighbors,
and either perform some computation, or receive a task from one of its neighbors.
To take this new constraint into account, simply replace equation (6) by

Vioi + Y miy <1 (12)
jen(i)
3.2.4 Reduction for M(w||r,s), the Work-in-Parallel, single port model

In this model, a processor can simultaneously perform some computation, and either
receive from, or send a task to, one of its neighbors, To take this new constraint into
account, simply replace equations (5) and (6) by

Vi, Z Sij + Z rij <1 (13)
jen(i) jen(i)
3.2.5 Reduction for M(r,s,w), the No internal parallelism model

In this model, a processor can only do one thing at a time: receive, send or compute
tasks. This time, we have to replace the three equations (1), (5) and (6) by

Vi, a; + Z Sij +a; + Z si5 <1 (14)
jen(i) jen(i)

3.2.6 Strongly heterogeneous platforms

Finally, it is important to point out that the processor nodes may operate under
different modes. Instead of writing the same equations for each node, we pick up
different equations for each node, those corresponding to the desired operation modes.
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4 Spanning trees

For a general interconnection graph, the solution of the linear program may lead
to the use of multiple paths (this is the case for the toy example of Section 2.3.
As already mentioned, it may be of interest to extract the best spanning tree (the
one with maximum throughput) out of the graph. Using a tree greatly simplifies
the implementation (because of the unique route from the master to any processor).
Also, the bandwidth-centric algorithm presented in [2] is local and demand-driven,
therefore is very robust to small variations in resources capabilities.

This section provides “negative” results: first, extracting the best tree is NP-hard.
But even if we are ready to pay a high (exponential) cost to determine the best tree,
there exist graphs for which the throughput of the best tree is arbitrarily bad in front
of the throughput that can be achieved while the whole graph. In practice however,
low-costs heuristics can be derived to determine sub-optimal but efficient spanning
trees: see Sections 5 and 6.

4.1 Finding the best spanning tree

Our aim is to find the spanning tree that maximizes the throughput, i.e. the number
of tasks that can be processed within one unit of time at steady state. Formally, we
can state the problem as follows.

Definition 1 (BEST-TREE(G)). Let G = (V,E,w,c) be the node-weighted
edge-weighted graph representing the architectural framework. Find the tree T =
(V,E',w,c), sub-graph of G, rooted at the master, such that the number of tasks
Niask(T) that can be processed in steady-state within one time-unit, using only those
edges of the tree, is mazimized.

The associated decision problem is the following:

Definition 2 (BEST-TREE-DEC(G,«)). Let G = (V,E,w,c) be the node-
weighted edge-weighted graph representing the architectural framework. Is there a
tree T = (V, E',w,c), sub-graph of G, rooted at the master, such that nys,(T) > a?

Theorem 2. BEST-TREE-DEC(G,«) is NP-complete.

Proof. The problem BEST-TREE-DEC(G,a) obviously belongs to the class NP.
We prove its NP-completeness by reduction to 2-PARTITION, which is known to
be NP-Complete [11|. Consider the following instance of 2-PARTITION: given
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Figure 5: Instance of BEST-TREE-DEC used for the reduction.

ai,as,...,a, n positive integers, is there a partition of [1,n] into two subsets .4; and
As such that

Z a; = Z a; ?

1€EAL €A

We build the the following instance of BEST-TREE-DEC(G, «). Let G be the
graph depicted in Figure 5. The master node P has two neighbors, PU(I) and P0(2).

The weight of the two edges from F, to its neighbor is 0. PU(I) and P0(2) have the
same n neighbors P;, 1 < 4 < n, which are the only nodes with processing power.
We let w; = w = %Z?:l a; for 1 <4 < n. The weight of the edge between Pél) and
P; is the same as the weight of the edge between P0(2) and P;, and is equal to a;, for
1 <4 < n. Finally, we let @ = 2. Clearly, the size of this instance is polynomial
(even linear) in the size of the original instance of 2-PARTITION.

We prove that there exists a solution to the original instance of 2-PARTITION
if and only if there exists a solution to the instance of BEST-TREE-DEC(G, «)
described above.

Consider a solution of BEST-TREE-DEC such that ny(T) > «. Any tree,
sub-graph of G, and rooted at the master, can be uniquely described by a partition
of the leaves P;, 1 <14 < m, according to their father. Let us denote, for ¢ € {1,2},

by A; the set of indices of the leaves whose father is Po(i), as depicted in Figure 6.
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Figure 6: Description of a tree T" extracted from G.

In order to compute ny,sx (1), we refer the reader to [2], where formulae are given

to compute the optimal throughput for a general tree. Let jy) < < j,(c? be the

set of indices of A;. Let k; and k;l, if they exist, be the indices of A; such hat

kz a.() i Q. ()

Z i <1andz g

w

Then, if T; denotes the subtree of T" rooted in P(i)7 we have for i € {1,2}:

|

o If ]{7; = k;, then nysp (711) =

o “(t)

! ’ @ (i) a n

A /
o If k; < Ky, then nyqe(T;) = % + % and, since Zk 1 J:} + % > 1,
k.
then

) Zk; 0 ) L

_&k=1 w o -~ oand Niask (T}) < i
ak/_/ w

(3

o
Thus nyes, (T;) < El and nygsk (1) = El if and only if Zk N flf <1.

17
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Therefore, since nyqsp (T) = Niask (TI) + Niask (TZ): Ntask (T) < 5 + B — % and

Ntask(T) = % iffvie{1,2), D a;<w.
JEA;

1 . e n . —
Moreover, since Y c 4, @5 + > ic 4, @j = D_j—1 Gj = 2w, then

n . .
Niask (T) = - if and only if jEZA aj = j; aj = w.
1 >

We have therefore proved that if there exists a solution to our instance of BEST-
TREE-DEC, then there exists a solution to the original instance of 2-PARTITION.
Reciprocally, if there exists a solution to the original instance of 2-PARTITION,
then we can check that the tree depicted in Figure 6 is able to process exactly
tasks within a time unit.
This terminates the proof of the NP-completeness of BEST-TREE-DEC. W

4.2 Inapproximability of a graph by a tree

One natural and interesting question is the following: how bad may the approxima-
tion of a graph by a tree be? The following theorem states the inapproximability of
a general graph by a tree, with respect to throughput:

Theorem 3. Given any positive integer K, there exists a graph G such that for any
tree T', sub-graph of G and rooted at the master, we have

Niask (G)
Niask (T)

Proof. Consider the graph depicted in Figure 7.

One can easily check that, using all the communication resources, it is possible
to process one task within each time unit, i.e. ngs(G) = 1. However, any tree
T extracted from G is equivalent to the chain depicted in Figure 8, since P(') is the
only computing resource. Moreover, because of the slow link between P; and Pi,, the
number of tasks that can be processed within one unit of time is bounded by % and

thus
Niask (G)
Ntask (T)

> K.

VT, > K.
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P

I

Figure 7: Graph G used for the proof of the inapproximability.

We have proved that the ratio between the number of tasks that can be pro-
cessed using the graph and the number of tasks that can be processed using any
extracted tree can be arbitrary large. Nevertheless, we show in Sections 5 and 6 that
despite both the NP-completeness of the search of the best spanning tree, and the
inapproximability of a graph by a spanning tree, it is possible to derive very efficient
heuristics in practice.

5 Heuristics

In this section, we present several heuristics to extract a spanning tree with the
highest possible throughput out of a general interconnection graph G = (V, E, w, ¢).
Given a spanning tree, we do not need the linear programming approach to compute
its throughput: instead, we traverse the tree using the bandwidth-centric algorithm
of |2], with a cost linear in |V| + |E)|.
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Figure 8: Description of a tree T" extracted from G.

5.1 Greedy heuristics

Several greedy heuristics come to mind. We have selected (and implemented) the
following:

Naive MST Given G, we compute the minimum spanning tree [8]. The edge
weights are the communication parameters c;;, and we do not use the com-
putation parameters w; at all. Given the non-oriented tree, we root it at the
master and orient the edges accordingly.

Compute Tree We start from the master and take all the edges connecting to its
neighbors. We sort these neighbors by non-decreasing w; (faster processors
first). For each neighbor P; in sorted order, we consider its own neighbors and
add the corresponding edge if that neighbor does not already belong to the
tree. The process goes on until all nodes are included. This is a breadth-first
traversal to grow the tree, where the more powerful neighbors of the current
node are processed first.
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C-to-C Tree This heuristic grows the tree similarly as the previous one, except
that the sorted order is by non-decreasing values of the communication-to-
computation ratios c;;/w;.

BW-centric Tree This heuristic is a variant of the compute tree heuristic: if node
P; is the current node, its neighbors P; are still added according to the order of
non-decreasing w;, but only while the bandwidth-centric condition Z Gi <1
holds. The idea is that the last neighbors will not be added to the tree 1f the
bandwidth is saturated. At the end of the procedure there may remain isolated
nodes, which we then connect to their closest neighbor (smallest value of the
edge weight).

Again, once a tree is constructed, we compute its steady-state and its throughput
using the algorithm in |2].

5.2 Heuristic based on the linear program

Our last heuristic is more costly, because it requires to solve the linear program for
the initial interconnection graph. Once we have the solution, we weight each edge e;;
by the value %, which represents the average number of tasks which transit on the

edge each second (in fact, because edges are bidirectional, we use W) Given
ij

these weights, we extract a minimum spanning tree, which we call the LP Tree, and

we compute its throughput as before.

6 Experiments

We have developed a software simulator that executes the heuristic algorithms of
Section 5 and calculates the throughput for each of them. The inputs of the simulator
are the number of nodes in the graph, the minimum degree, the maximum degree, the
median degree, a probability function for the communication cost, and a probability
function for the computation cost.

A random connected graph based on these parameters is generated. The simu-
lator must also be given a list of communication-to-computation ratios to apply to
computation costs. For each ratio and for each graph, the throughput of each heuris-
tic is computed, and is compared to the optimal throughput that can be reached using
the whole graph.
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The following results are averaged values on 50 random graphs whose minimum
degree is equal to 3, maximum degree is equal to 5 and average degree is equal to 4.
The number of vertices range from 5 to 15.

In the following three simulations, the probability function for the communication
costs follows a uniform distribution on the interval [25, 35], and we let the probability
function for the computation costs vary as

e a uniform distribution on the interval [2.5, 3.5] in Figure 9(a). Communications
are expensive, since the average communication-to-computation ratio is equal
to 10.

e a uniform distribution on the interval [25, 35] in Figure 9(b). Communication
and computation costs follow the same distribution: the average communication-
to-computation ratio is equal to 1.

e a uniform distribution on the interval [250,350] in Figure 9(c). Communica-
tions are cheap, since the average communication-to-computation ratio is equal
to 0.1.

In the three figures, we depict the average ratio between the throughput of each
heuristic and the optimal throughput of the whole graph.

On each figure, LP-Tree and Naive MST are the most efficient heuristic and lead
to trees whose throughput is very close to the optimal throughput of the whole graph.

7 Related problems

We classify several related papers along the following three main lines:

Scheduling task graphs on heterogeneous platforms Several heuristics have
been introduced to schedule (acyclic) task graphs on different-speed processors,
see [20, 21, 30, 26, 6] among others. Unfortunately, all these heuristics assume
no restriction on the communication resources, which renders them somewhat
unrealistic to model real-life applications. Recent papers [15, 16, 28, 27| sug-
gest to take communication contention into account. Among these extensions,
scheduling heuristics under the one-port model [17, 18] are considered in [1]:
just as in this paper, each processor can communicate with at most another
processor at a given time-step.

Collective communications on heterogeneous platforms Several papers deal
with the complexity of collective communications on heterogeneous platforms:
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(a) Computation costs range from
2.5 to 3.5 and communication
costs range from 25 to 35. Since
communications are very expen-
sive, computations are not widely
spread away from the master,
and most optimal communication
trees are a reduced depth.

(b) Both computation and com-
munication costs range from 25 to
35. LP-Tree always leads to an
optimal tree, and Naive MST be-
haves surprisingly well.

(c¢) Computation costs range from
250 to 350 and communication
costs range from 25 to 35. Since
communication are very cheap,
spanning trees are very deep, and
they are suboptimal compared
to the throughput of the whole
graph. Once more, Naive MST
behaves surprisingly well.

LP-Tree, Naive MST, Compute Tree,
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broadcast and multicast operations are addressed in |5, 19|, gather operations
are studied in [13].

Master-slave on the computational grid Master-slave scheduling on the grid
can be based on a network-flow approach [25, 24] or on an adaptive strat-
egy [14]. Note that the network-flow approach of [25, 24] is possible only when
using a full multiple-port model, where the number of simultaneous communi-
cations for a given node is not bounded. Enabling frameworks to facilitate the
implementation of master-slave tasking are described in [12, 31].

Finally, from a theoretical point of view, it could be interesting to try to solve
the complete scheduling problem associated to a general interconnection graph:
instead of optimizing the steady-state throughput, how to maximize the total
number of tasks processed within T' time-units, for any time-bound T'7 Partial
results are available in [3, 4], but the general problem looks quite challenging.

8 Conclusion

In this paper, we have dealt with master-slave tasking on a heterogeneous platform.
We have shown how to determine the best steady-state scheduling strategy for a
general interconnection graph, using a linear programming approach.

On one hand, we have derived negative theoretical results, namely that general
interconnection graphs may be arbitrarily more powerful than spanning trees, and
that determining the best spanning tree is NP-hard.

On the other hand, we have proposed several low-costs heuristics that achieve
very good performances on a wide range of simulations. These positive experiments
show that in practice, it is safe to rely on spanning trees to implement master-slave
tasking.

This work can be extended in the following two directions:

e On the theoretical side, we could try to solve the problem of maximizing the
number of tasks that can be executed within 71" time-steps, where T is a given
time-bound. This scheduling problem is more complicated than the search for
the best steady-state. Taking the initialization phase into account renders the
problem quite challenging.

e On the practical side, we need to run actual experiments rather than sim-
ulations. Indeed, it would be interesting to capture actual architecture and
application parameters, and to compare heuristics on a real-life problem.
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