
Efficient Finite Field Basis Conversion Involving
Dual Bases

Burton S. Kaliski Jr. and Moses Liskov

RSA Laboratories
20 Crosby Drive, Bedford, MA 01730

{burt, moses}@rsa.com

Abstract. Conversion of finite field elements from one basis represen-
tation to another representation in a storage-efficient manner is crucial
if these techniques are to be carried out in hardware for cryptographic
applications. We present algorithms for conversion to and from dual of
polynomial and dual of normal bases, as well as algorithms to convert to
a polynomial or normal basis which involve the dual of the basis. This
builds on work by Kaliski and Yin presented at SAC ’98.

1 Introduction

Conversion between different choices of basis for a finite field is an important
problem in today’s computer systems, particularly for cryptographic operati-
ons [1]. While it is possible to convert between two choices of basis by matrix
multiplication, the matrix may be too large for some applications, hence the mo-
tivation for more storage-efficient techniques. The most likely such application
would be in special-purpose hardware devices, but there are others as well.

The paper of Kaliski and Yin [2] introduced the shift-extract and technique
of basis conversion, and also gave several storage-efficient algorithms based on
those techniques for converting to a polynomial or normal basis. In this paper,
we introduce techniques involving the dual of a polynomial or normal basis, in-
cluding storage-efficient generation of a dual basis and storage-efficient shifting
in such a basis. The new techniques result in several new storage-efficient algo-
rithms for converting to and from the dual of a polynomial or normal basis, as
well as additional algorithms for converting to a polynomial or normal basis.

2 Background

Elements of a finite field can be represented in a variety of ways, depending on
the choice of basis for the representation [3]. Let GF (qm) be the finite field, and
let GF (q) be the ground field over which it is defined, where q is a prime or a
prime power. We say that the characteristic of the field is p where q = pr for
some r ≥ 1. For even-characteristic fields, we have p = 2. The degree of the field
is m; its order is qm.

Ç.K. Koç and C. Paar (Eds.): CHES’99, LNCS 1717, pp. 135–143, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



136 B.S. Kaliski Jr. and M. Liskov

A basis for the finite field is a set of m elements ω0, . . . , ωm−1 ∈ GF (qm)
such that every element of the finite field can be represented uniquely as a linear
combination of basis elements. We write

ε = B[0]ω0 + B[1]ω1 + · · ·+ B[m− 1]ωm−1

where B[0], . . . , B[m− 1] ∈ GF (q) are the coefficients.
Two common types of basis are a polynomial basis and a normal basis. In

a polynomial basis, the basis elements are successive powers of an element γ,
called the generator:

ωi = γi.

In a normal basis, the basis elements are successive exponentiations of an element
γ, again called the generator:

ωi = γqi

.

Another common type of basis is a dual basis. Let ω0, . . . , ωm−1 be a basis
and let h be a nonzero linear function from GF (qm) to GF (q), i.e., a function
such that for all ε, φ ∈ GF (qm) and c ∈ GF (q), h(ε + φ) = h(ε) + h(φ) and
h(cε) = ch(ε). The dual basis of the basis ω0, . . . , ωm−1 with respect to the
function h is the basis η0, . . . , ηm−1 such that for 0 ≤ i, j ≤ m− 1,

h(ωiηj) = 1 if i = j, 0 otherwise.

Duality is symmetric: the dual basis with respect to h of the basis η0, . . . , ηm−1
is the basis ω0, . . . , ωm−1. A dual basis can be defined for a polynomial basis,
a normal basis, or any other choice of basis, and with respect to a variety of
functions.

The basis conversion or change-of-basis problem is to compute the represen-
tation of an element of a finite field in one basis, given its representation in
another basis. The problem has two forms, where we distinguish between the
internal basis in which finite field operations are performed, and the external
basis to and from which we are converting:

– Import problem. Given an internal basis and an external basis for a finite
field GF (qm) and the representation B of a field element in the external basis
(the external representation), determine the corresponding representation A
of the same field element in the internal basis (the internal representation).

– Export problem. Given an internal basis and an external basis for a finite
field GF (qm) and the internal representation A of a field element, determine
the corresponding external representation B of the same field element.

Normally, the import and export problem could be solved by using a change
of basis matrix, which requires storage for O(m) field elements. Since each field
element consists of m base field coefficients, this is O(m2) coefficients. In constrai-
ned environments, this may be too large. What we want are algorithms which
require storage for O(1) field elements or O(m) coefficients. The algorithms given
in this paper for dual bases satisfy this requirement.



Efficient Finite Field Basis Conversion Involving Dual Bases 137

3 Overview of Techniques

In the following, the dual of a polynomial basis is called a polynomial* basis,
and the dual of a normal basis is called a normal* basis.

3.1 Import Algorithms

Given an internal basis and an external basis for a finite field and the represen-
tation B of a field element in the external basis, an import algorithm determines
the corresponding representation A of the same field element in the internal
basis.

Two general methods for determining the internal representation A are de-
scribed: the generate-accumulate method and the shift-insert method.

Generate-Accumulate method The generate-accumulate method computes
the internal representation A by accumulating the products of coefficients B[i]
with successive elements of the external basis. The basic form of the algorithm
for this method is as follows:

proc ImportByGenAccum
A← 0
for i from 0 to m− 1 do

A← A + B[i]×Wi

endfor
endproc

As written, this algorithm requires storage for the m values W0, . . . , Wm−1, which
are the internal representations of the elements of the external basis. To reduce
the storage requirement, it is necessary to generate the values as part of the
algorithm. This is straightforward when the external basis is a polynomial basis
or a normal basis. For polynomial* and normal* bases, algorithms are given in
this paper.

Shift-Insert method The shift-insert method computes the internal represen-
tation A by “shifting” an intermediate variable in the external basis and inserting
successive coefficients between the shifts. This follows the same concept as the
shift-extract method below. Let Shift be a function that shifts an element in the
external basis, i.e., a function such as one which given the internal representation
of an element with external representation

(B[0], B[1], . . . , B[m− 2], B[m− 1])

computes the internal representation of the element with external representation

(B[m− 1], B[0], . . . , B[m− 3], B[m− 2]).

(Other forms of shifting are possible, including shifting in the reverse direction,
or shifting where the value 0 rather than B[m− 1] is shifted in.)

The basic form of algorithm for this method is as follows ([2], Sec. 3.2, 3.3):



138 B.S. Kaliski Jr. and M. Liskov

proc ImportByShiftInsert
A← 0
for i from m− 1 downto 0 do

Shift(A)
A← A + B[i]×W0

endfor
endproc

The direction of the for loop may vary depending on the direction of the shift.
One advantage of the shift-insert method over the generate-accumulate method
is that with a minor increase in storage, this algorithm can be parallelized. That
is, if W0 and Wm/2 are available, two elements can be inserted per shift. Since
the shift is the most work-intensive part of the algorithm, this aids efficiency.
This improvement is further discussed in [2].

3.2 Export Algorithms

Given an internal basis and an external basis for a finite field and the represen-
tation A of a field element in the internal basis, an export algorithm determines
the corresponding representation B of the same field element in the internal
basis.

Two general methods for determining the external representation B are de-
scribed: the generate*-evaluate method and the shift-extract method.

Generate*-Evaluate method The generate*-evaluate method computes the
external representation B by evaluating products of A with successive elements
of a dual of the external basis. For example, the following equation gives the ith
coefficient of the external representation:

B[i] = h(AXi)

where h is a linear function and X0, . . . , Xm−1 are the internal-basis representa-
tions of the elements of the dual of the external basis with respect to the function
h. The basic form of algorithm for this method is as follows:

proc ExportByGen*Eval
for i from 0 to m− 1 do

T ← A×Xi

B[i]← h(T )
endfor

endproc

This algorithm requires storage for the m values X0, . . . , Xm−1, which are the
internal represenations of the dual of the external basis. As was the case for
ImportByGenAccum, to reduce the storage requirement, it is necessary to
generate the values as part of the algorithm.



Efficient Finite Field Basis Conversion Involving Dual Bases 139

Shift-Extract method The Shift-Extract method computes the external re-
presentation A by shifting an intermediate variable in the external basis and ex-
tracting successive coefficients between the shifts. This follows the same concept
as the shift-insert method above, with a similar Shift function and an Extract
function that obtains a selected coefficient of the external representation. (The
Extract function is similar to the h function in the previous method.)

The basic form of algorithm for this method is as follows ([2], Sec. 3.4, 3.5):

proc ExportByShiftExtract
for i from m− 1 downto 0 do

B[i]← Extract(A)
Shift(A)

endfor
endproc

Again, the direction of the for loop may vary depending on the direction of the
shift. As with the shift-insert method above, the shift-extract method can be
parallelized to extract multiple coefficients per iteration.

3.3 Summary

For these methods to accomplish our goal of being storage efficient, we depend
on the efficiency of some additional functions. For the generate*-evaluate and
generate-accumulate methods, we need an efficient dual basis generator. For the
shift-insert and shift-extract methods, we need an efficient Shift function that
works when the external basis is a normal* or polynomial* basis. An efficient
Extract function (and hence an efficient method of evaluating a linear function
h) is given in [2] (cf. Lemma 3).

4 Polynomial* Basis Techniques

This section discusses the structure of a polynomial* basis, and presents an
efficient basis generation function and an efficient external shift function.

Theorem 1. Let 1, γ, . . . , γm−1 be a polynomial basis for GF (qm), and let h(ε)
be a linear function from GF (qm) to GF (q). Let h0(ε) be the 1-coefficient of the
representation of the element ε in the polynomial basis. Let ζ be the element of
GF (qm) such that h0(ζε) = h(ε). A formula for the dual basis η0, . . . , ηm−1 of
this polynomial basis with respect to h is

ηi = ζ−1ξi,

where ξ0 = 1 and ξi = γ−1ξi−1 − h0(γ−1ξi−1).

Proof. We first observe that the value ζ exists since there is a one-to-one corre-
spondence between linear functions and field elements (cf. Lemma 3 of [2]). To
prove the correctness of the formula, we use the definition of the dual basis and



140 B.S. Kaliski Jr. and M. Liskov

induction. First, we consider η0 and observe that h(γiη0) = h0(γi), which is 1 if
i = 0 and 0 if 1 ≤ i ≤ m− 1, meeting the definition. Now suppose we know that
for j > 0 the first j− 1 elements are correct elements of the dual basis. Then we
get the following for the jth element:

h(γiηj) = h0(γiξj)
= h0(γi−1ξj−1)− h0(γih0(γ−1ξj−1)).

For i = 0, this reduces to h0(γ−1ξj−1)−h0(γ−1ξj−1) = 0. For 1 ≤ i ≤ m−1, the
equation becomes h0(γi−1ξj−1), which by induction is 1 if i = j and 0 if i 6= j.
In both cases the definition is met.

In the following algorithms, Z will be the internal representation of ζ, G will
be the internal representation of γ, and I will be the internal representation
of the identity element. The value V0 corresponds to the element such that
(A × V0)[0] = h0(A). The value Z corresponds to the function h(ε) = h0(ζε),
and contains the information specific to the choice of dual basis in the following
algorithms. Note that if Z is 0, h(ε) = h0(0) = 0, and therefore, h would not be
a nonzero linear function. Thus, we can assume Z is nonzero.

4.1 GenPoly*

The algorithm GenPoly* generates the internal representation of the dual basis
elements. GenPoly* is an iterator; it is meant to be called many times in
succession. The first time an iterator is called, it starts from the iter line. When
a yield statement is reached, the iterator returns the value specified by the yield.
The next time the iterator is called, it starts immediately after the last yield
executed; all temporary variables are assumed to retain their values from one
call to the next. An iterator ends when the enditer line is reached.

iter GenPoly*
W ← I
yield Z−1

for i from 1 to m− 1 do
W ←W ×G−1

T ←W × V0
W ←W − T [0]× I
yield W × Z−1

endfor
enditer

4.2 ShiftPoly*

With our knowledge of the formula for a polynomial* basis, we can also devise
a method for shifting an element’s representation in the polynomial* basis. The
algorithm simply uses the recursive formula for generating ξi from ξi−1, namely

s(ε) = γ−1ε− h0(γ−1ε).



Efficient Finite Field Basis Conversion Involving Dual Bases 141

Theorem 2. s performs an external shift in the polynomial* basis with respect
to h0, such that s(ξi) = ξi+1 for 0 ≤ i ≤ m− 2 and s(ξm−1) = 0.

Proof. First we observe that s is linear, i.e., that for all ε, φ ∈ GF (qm), c ∈
GF (q), s(ε+φ) = s(ε)+s(φ) and s(cε) = cs(ε). Since s is linear, we only have to
show that applying it to basis elements is correct. Since s is merely the recursive
formula for generating ξi from ξi−1, we know it is correct for all basis elements
except ξm−1. Thus, it remains to show that s(ξm−1) = 0. To see this, define ξm

as s(ξm−1) and apply the equation from the proof above:

h0(γiξm) = h0(γi−1ξm−1)− h0(γih0(γ−1ξm−1)).

For i = 0, this cancels to 0. For 1 ≤ i ≤ m − 1, the equation becomes
h0(γi−1ξm−1), which is 0. Since the values h0(γiξm) as i varies correspond to
coefficients of the representation of ξm in the basis ξ0, . . . , ξm−1 and they are all
zero, it follows that ξm = 0.

Since the dual basis η0, . . . , ηm−1 is just the basis ξ0, . . . , ξm−1 scaled by
ζ−1, shifting in the dual basis η0, . . . , ηm−1 is accomplished by computing the
function ζ−1s(ζε). The following is an algorithm for shifting in the polynomial*
basis based on this technique.

proc ShiftPoly* (A)
A← A× ZG−1

T ← A× V0
A← A− T [0]× I
A← A× Z−1

endproc

Also note that we can use ShiftPoly* to make a new version of GenPoly*
that generates by repeated shifting.

5 Techniques Involving the Dual of a Normal Basis

This section discusses the structure of a normal* basis, and presents an efficient
basis generation function and an efficient external shift function.

Theorem 3. Let γ, . . . , γqm−1
be a normal basis for GF (qm), and let h(ε) be

a linear function from GF (qm) to GF (q). Let h0(ε) be the γ-coefficient of the
representation of the element ε in the normal basis. Let ζ be the element of
GF (qm) such that h0(ζε) = h(ε). A formula for the dual basis η0, . . . , ηm−1 of
this normal basis with respect to h is

ηi = ζ−1ξi,

where ξ0 = 1 and ξi = σξq
i−1, and where σ is the element such that h0(γqi

σ) is
1 for i = 1 and 0 for i = 0 and 2 ≤ i ≤ m− 1.



142 B.S. Kaliski Jr. and M. Liskov

Proof. First, we observe that ζ and σ exist, the latter being an element of the
dual basis with respect to h0. We also observe that h0(σεq) = h0(ε) for all
ε ∈ GF (q). To prove that the formula is correct, we use the definition of the dual
basis and induction. First, we consider η0 and observe that h(γqi

η0) = h0(γqi

),
which is 1 if i = 0 and 0 if 1 ≤ i ≤ m − 1, meeting the definition. For the
induction step, we get the following for the jth element, where j > 0:

h(γqi

ηj) = h0(γqi

ξj)

= h0(γqi

σξq
j−1).

For i = 0, the equation becomes h0(γqm−1
ξj−1), which by induction is 0. (Note

that γ = γqm

.) For 1 ≤ i ≤ m− 1, it becomes h0(γqi−1
ξj−1), which by induction

is 1 if i = j and 0 if i 6= j. In both cases the definition is met.
In the following algorithms, G will be the internal representation of γ, S will

be the internal representation of σ, and Z will be the internal representation of
ζ. As before, we can assume Z is nonzero.

5.1 GenNormal*

Now that we know the general formula for the dual of a normal basis, we can
demonstrate a technique for efficiently generating the dual of a normal basis.
Like GenPoly*, GenNormal* is written as an iterator.

iter GenNormal*
T ← Z−1

W ← S
yield T
for i from 1 to m− 1 do

T ← T ×W
W ←W q

yield T
endfor

enditer

Theorem 4. The iterator GenNormal* generates the elements of the normal*
basis.
Proof. After the first iteration, GenNormal* outputs the internal representa-
tion of ζ−1. At each successive step, the basis is multiplied by successively higher
powers of q of σ, so we get ζ−1, ζ−1σ, ζ−1σq+1, ζ−1σq2+q+1, and so on. By our
formula, this is the correct list of normal* basis elements.

5.2 ShiftNormal*

There is also an efficient method for doing a rotation of an element in the normal*
basis. The algorithm simply uses the recursive formula for generating ξi from
ξi−1, namely

s(ε) = σεq.



Efficient Finite Field Basis Conversion Involving Dual Bases 143

Theorem 5. s performs an external shift (actually, a rotation) in the normal*
basis with respect to h0, such that s(ξi) = ξi+1 for 0 ≤ i ≤ m− 2 and s(ξm−1) =
ξ0.

Proof. As before, we first observe that s is linear. We again only have to show
that that the formula is correct for ξm−1. To see this, define ξm as s(ξm−1) and
apply the equation from the proof above:

h0(γqi

ξm) = h0(γqi

σξq
m−1).

For i = 0, the equation becomes h0(γqm−1
ξm−1), which is 1. For 1 ≤ i ≤ m− 1,

it becomes h0(γqi−1
ξm−1), which is 0. Since the values h0(γqi

ξm) as i varies
correspond to coefficients of the representation of ξm in the basis ξ0, . . . , ξm−1
and they are all zero except for the ξ0-coefficient, which is 1, it follows that
ξm = ξ0.

Shifting in the dual basis η0, . . . , ηm−1 is accomplished by computing the fun-
ction ζ−1s(ζε), as before. Based on this, we have the algorithm ShiftNormal*.

proc ShiftNormal* (A)
A← Aq

A← A× SZq−1

endproc

Note that this only requires storage for one value, as SZq−1 can be precom-
puted. Also note that we can use ShiftNormal* to make a new version of
GenNormal*.

6 Conclusion

We have demonstrated efficient algorithms for external shifting and efficient ba-
sis generation in the polynomial* and normal* bases. Using these algorithms
in the storage-efficient basis conversion methods described above, we can imple-
ment the following basis conversion methods: ImportByShiftInsert, Import-
ByGenAccum, and ExportByShiftExtract for a polynomial* or normal*
external basis, and ExportByGen*Eval for a polynomial or normal basis.

References

1. IEEE P1363: Standard Specifications for Public-Key Cryptography, draft 11, July
1999. http://grouper.ieee.org/groups/1363/draft.html.

2. B.S. Kaliski Jr. and Y.L. Yin. Storage-efficient finite field basis conversion. In S. Ta-
vares and H. Meijer, editors, Selected Areas in Cryptography ’98 Proceedings, volume
1556 of Lecture Notes in Computer Science, pages 81–93. Springer, 1999.

3. R. Lidl and H. Niederreiter. Finite Fields, volume 20 of Encyclopedia of Mathematics
and Its Applications. Addison-Wesley, 1983.


	Introduction
	Background
	Overview of Techniques
	Import Algorithms
	Export Algorithms
	Summary

	Polynomial* Basis Techniques
	sc GenPoly*
	sc ShiftPoly*

	Techniques Involving the Dual of a Normal Basis
	sc GenNormal*
	sc ShiftNormal*

	Conclusion

