
IPA: A New Class of Power Attacks

Paul N. Fahn?

and Peter K. Pearson??

Certicom Corp.
25801 Industrial Blvd.

Hayward, CA 94545, USA

Abstract. We present Inferential Power Analysis (IPA), a new class of
attacks based on power analysis. An IPA attack has two stages: a pro-
filing stage and a key extraction stage. In the profiling stage, intratrace
differencing, averaging, and other statistical operations are performed on
a large number of power traces to learn details of the implementation,
leading to the location and identification of key bits. In the key extrac-
tion stage, the key is obtained from a very few power traces; we have
successfully extracted keys from a single trace. Compared to differential
power analysis, IPA has the advantages that the attacker does not need
either plaintext or ciphertext, and that, in the key extraction stage, a
key can be obtained from a small number of traces.

1 Introduction

Recent years have seen significant progress in what are called “power attacks”
on cryptographic modules, attacks in which one monitors the power drawn by
the module and from these measurements extracts some secret quantity that
the module manipulates during some cryptographic operation. In 1998, Kocher
et al. [5] described Differential Power Analysis (DPA), in which power measu-
rements from many repeated cryptographic operations are cleverly combined.
More recently, Biham and Shamir [1] showed how to derive key information by
combining power measurements on different cryptographic modules.

This paper describes a class of attacks called Inferential Power Analysis (IPA)
attacks. An IPA attack is characterized by two stages, the first a lengthy pro-
filing stage, and the second a simpler key extraction stage. The profiling step
is typically based on comparisons of repeated parts of a selected cryptographic
operation, such as the different rounds in a DES encryption. These comparisons
can be performed on a single cryptographic module, requiring many measured
operations, and result in a profile that can subsequently be used to extract keys
from other modules using as little as a single cryptographic operation. Unlike
DPA, these attacks do not require knowledge of the operation’s inputs or out-
puts.
? pfahn@certicom.com

?? ppearson@certicom.com

Ç.K. Koç and C. Paar (Eds.): CHES’99, LNCS 1717, pp. 173–186, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



174 P.N. Fahn and P.K. Pearson

More generally, these attacks illustrate a class of attacks in which a one-time
effort requiring just one module produces information with which keys can be
easily extracted from other modules of the same design. Such attacks can be
applied not only by a cardholder against a smartcard in his possession, but also
by a terminal owner against smartcards that use his terminal.

Due to the rapidly advancing state of knowledge about power analysis, we
cannot make conclusive statements about the effectiveness of specific counter-
measures. Nevertheless we suggest several possible defenses in §5 that may make
power attacks more difficult and raise the level of effort and expertise required
of the attacker.

2 Background

More and more cryptographic systems are embedding keys in portable electronic
modules such as smartcards and PC cards. These modules usually provide both
storage for the key and processor power sufficient to allow the key to be used
in situ, so that the key is never exposed to the outside world. When the holder
of the module (which we will henceforth assume is a smartcard) has a stake in
keeping the key secret, such modules provide strong, convenient, and inexpensive
security.

On the other hand, when the cardholder has an incentive to violate the
secrecy of the key, protecting the key is a difficult challenge to the system’s
designer. For example, in the case of stored-value cards, learning the card’s key
may enable the cardholder to defraud a bank. Since the cardholder has physical
possession of the card, many avenues of attack are available:

– The cardholder can subject the card to unusual conditions like out-of-range
supply voltage, out-of-range clock frequency, extreme temperatures, radia-
tion, or unusual commands, in order to induce errors. Some errors may di-
rectly expose keys, while others may produce incorrect cryptographic results
from which keys can be computed [2].

– The cardholder can physically dissect the card and reset protection bits, or
directly read electrical charges in memory cells, or measure voltages on bus
traces while sensitive data are passing between memory and processor [6].

– While the card is performing cryptographic calculations, the cardholder can
measure currents, voltages, electric fields, or execution times [4], any of which
might exhibit correlation with the key being used.

The current drawn through the card’s power connector (Vcc) is easy to mea-
sure with a digital oscilloscope, and provides much revealing information. For ex-
ample, if the smartcard uses a hardware multiplier for modular exponentiations
of large integers, each multiplication is visible as a distinct period of increased
current consumption. The fastest implementations of modular exponentiation
handle ordinary multiplications differently from squarings; but if this technique
is used in a smartcard, squarings and nonsquare multiplications can be distin-
guished in an oscilloscope trace of current consumption. From the order in which
these operations occur, one can deduce the exponent, which is often a vital secret.



IPA: A New Class of Power Attacks 175

Almost all processes display a similarly rich variability in current consump-
tion patterns. In a plot of current consumption versus time during the execution
of a single high-level command, the eye easily discerns several separate compu-
tational phases, distinguished by mean current consumption and by “fuzziness”
(short-term variability in current consumption). Because of such variations, the
16 rounds of a DES encryption are generally easy to recognize as a train of 16
identical boxcars. (On closer inspection, one finds that boxcars 1, 2, 9, and 16
are slightly shorter than the rest, due to key schedule idiosyncrasies.)

Since the current drawn by the smartcard is, at constant voltage, proportional
to the power consumed by the card, attacks based on current measurements are
usually referred to as power attacks. We will henceforth refer to power instead
of current.

Differential Power Analysis (DPA), developed by Kocher et al. [5], is a power-
ful extension of these techniques. In a DPA attack on a DES key, the smartcard is
repeatedly induced to encrypt various plaintexts with the key to be found, while
digitized “traces” of power consumption are recorded along with the plaintexts
of the encryptions.1 When a large number (often on the order of 1000) of tra-
ces and plaintexts have been accumulated, averages of subsets of the traces are
computed and compared in order to test guesses of various key bits.

Specifically, one sorts the traces into two classes according to conjectured
values of a particular bit B computed during the encryption, the conjectured
values being computed from the plaintext and a guess at some subset of key
bits. If the guessed key bits are correct, the conjectured value of B will match
the true value of B in all traces, and the mean B = 1 trace will differ significantly
from the mean B = 0 trace wherever bit B is handled. On the other hand, if the
guessed key bits are wrong, the sorting of traces into subsets is (one expects)
uniformly random, and no significant difference will be observed.

Two beautiful virtues of DPA are the following: (1) although the attacker
makes the assumption that the DES code computes the value B, it is not ne-
cessary to know where that computation occurs; and (2) if chip designers add
random noise to mask power consumption, the attacker can compensate for the
lower signal-to-noise ratio by increasing the number of traces. On the other
hand, practical problems in mounting a DPA attack include: (1) protocols may
be designed to keep the attacker from seeing the plaintext or ciphertext; and (2)
sometimes it is not possible to get enough traces.

More recently, Biham and Shamir [1] described a power attack in which many
traces from each of several different cards are compared to identify when key bits
are being handled. Instants with large same-card power variations are assumed to
be data-handling, not key-handling, instants. Non-data-handling instants with
large between-card power variations are assumed to be key-handling instants.
Once the attacker has located the instructions handling parts of the key, their
power consumptions can be measured to attack the key. Since its “profiling”

1 Decryptions may be used instead of encryptions; and independently, either plaintexts
or ciphertexts can be used.



176 P.N. Fahn and P.K. Pearson

stage can be separated from its key extraction stage, this attack falls into the
class described in the present paper.

3 IPA Attacks

Here we describe an IPA attack. Stage 1, the profiling stage, contains almost all
of the effort. Stage 2, the key extraction stage, is then quick and simple. One
can think of the profiling stage as a long precomputation, after which one can
obtain each subsequent key with only a small incremental effort.

The first steps in the profiling stage are familiar from other sophisticated
power attacks, such as DPA: collecting a large number of power traces, and then
aligning and averaging the traces; the details of these steps need to be specifically
tailored to IPA. Next come the two tasks necessary to finding the key: locating
and identifying the key bits. These steps are described in detail below.

As our primary example we will consider an IPA attack on DES, since DES is
not only well-known but is perhaps the most widely implemented of all crypto-
graphic algorithms. We have successfully performed IPA attacks on DES smart
card implementations and have extracted DES keys from a single power trace in
Stage 2 of our IPA attacks.

3.1 Context and Assumptions

We assume the following: we have a smart card containing a known cryptographic
algorithm but we do not know the details of the implementation, i.e., we do not
possess the source code (knowledge of the source code would enable a far simpler
attack). Furthermore, we can cause hundreds of executions of the algorithm with
different plaintexts (not necessarily uniformly distributed), and we can record
the amount of power (current) used at each step within each such execution.

For the purposes of this exposition, we will assume that the algorithm has
been implemented in a straightforward manner, without introducing elements
designed to thwart power attacks; in particular, the algorithm execution is a
deterministic function of the plaintext and key. If the card did employ defenses,
modified versions of IPA might still work, depending on which defenses were
used; space does not permit discussion of these modified versions. In §5, we
discuss some defensive measures that can be used by system implementers.

These assumptions appear to represent the standard context facing someone
wishing to attack a smart card. In practice we have successfully performed IPA
attacks in this context using only moderate resources, e.g., only a few hundred
power traces and a low sample rate (3.57 million samples per second, or one per
clock cycle) on an oscilloscope.

3.2 Stage 1: Profiling

The goal of the profiling stage is to locate and identify the key bits as they are
used during the computation. To do this, we often need to learn about other



IPA: A New Class of Power Attacks 177

aspects of the implementation we are facing: the order of operations, how key
bits are handled, and other details that were decided by the programmer.

The attacker starts by facing an unknown implementation and then gradually
learns more and more during the course of the profiling stage, until he finds when,
and often how and where, the program engages the key bits. At the end of the
profiling stage, the attacker knows many of the decisions that were made by the
implementer.

The next three sections describe the important steps in the profiling stage.

3.3 Profiling: First Steps

As the attacker, we first cause the smart card (or other device) to execute its
cryptographic algorithm a large number of times to obtain a large number of
traces. In practice, we have found that a few hundred traces usually suffices;
as lower and upper bounds, we estimate that in general the number of traces
needed will be between 100 and 1000.

For simplicity of exposition, we will suppose that the executions are all with
the same key and with varying plaintexts. This is not essential, as the attack
will work even if the keys vary. Of course, if both the key and the plaintext are
constant, then we are merely resampling the same data point and the multi-
ple traces are practically useless. The plaintext needs not be either random or
uniformly distributed, but merely non-constant.

The traces are then averaged together, in order to remove the effects of the
varying data bits while keeping the effects of the constant key bits. Before aver-
aging, we must first align the traces so that the power consumptions of every
operation are matched across all the traces. In practice, we have found that each
implementation of each algorithm requires a slightly different alignment techni-
que, and the alignment effort ranges from quite simple to quite cumbersome.

We now have a single “average” trace containing the average power consumed
throughout the execution. This represents the average, over all plaintexts, of the
power consumed using the constant, unknown key.2

3.4 Profiling: Key Location

The next major task is to locate the key bits within the average trace. We first
describe the basic procedure, followed by a more mathematical description, and
then some mention some implementation notes.

Basic Description
Almost all cryptographic algorithms contain repetitive structures, used with

2 Even if the plaintext is not uniformly distributed, the “data” bits soon become uni-
form, due to the randomizing effect of the rounds; for example, even if the plaintext
into DES has its top 50 bits set to one fixed value, the bits in the L and R registers
become uniform after the first couple of rounds.



178 P.N. Fahn and P.K. Pearson

changing pieces of the overall key. For example, in most symmetric ciphers, re-
peating rounds use differing subkeys. Public key algorithms such as RSA use
different key bits while repeatedly performing modular multiplications. We call
these repeating structures “rounds”, and the corresponding key bits “subkeys”,
with the understanding that in an algorithm such as RSA, the modular multi-
plications play the role of rounds.

Suppose there are n rounds, and let Ki denote the subkey used in round i.
Due to code space limitations on smart cards and other devices, the repeating

structures are generated by the same source code being executed over and over;
therefore, each round’s subkey is handled identically.

The key location proceeds as follows: we chop the average trace into rounds
to obtain traces R1, R2, . . . , Rn, representing “average round 1”, “average round
2”, and so on. Then we average these together to obtain a single “super-average
round” R, i.e., the average of the average rounds.

Next, we take the difference, for each round i, between Ri and R to obtain
the “round i difference trace” ∆i. Finally, we square and then average together
the ∆i’s. These last few steps are equivalent to computing the variances of the
instruction offsets in the Ri’s. The final trace, the mean square of the ∆i’s,
contains peaks that reveal the key bit locations.

Why does this work? At an intuitive level, note that the first averaging (of
different traces) removed the effects of the data bits but left the effects of the key
bits: the only differences between the Ri’s are due to the differences between the
subkeys (see Figure 1 for an example). The second averaging (of different rounds)
removed the effects of the key bits as well, leaving only “code” features. When
we then take the difference between average round Ri and the super-average
round R, the code features cancel out, leaving only the effects of the specific
subkey Ki. The subsequent squaring and averaging produces clean peaks at all
subkey bit locations.

Since we know the algorithm, we know the number of key bits comprising
each subkey, and therefore we know how many peaks to look for. In DES, we
look for 48 peaks in the average of the squared ∆i’s. An example is shown in
Figure 2.

It is a good idea at this point to observe the distribution of power levels
at the detected peaks, in order to verify that the peaks represent key bits and
to determine the power threshold that separates a 0 from a 1 bit value. Since
the actual key bits are presumably 0 or 1 with probability 1

2 , an instruction
that handles a single key bit should exhibit a bimodal distribution, with half
the probability in each mode. An instruction that handles more than one key
bit should exhibit the appropriate binomial distribution. Thus the shape of the
power distribution can reveal the way the key bits are being handled.

In practice, the straightforward cryptographic implementations we have seen
most commonly on smart cards handle key bits individually, and we have the-
refore seen bimodal distributions at the peaks. If key bits are not handled indi-
vidually, one can use the resulting binomial distributions to learn the Hamming



IPA: A New Class of Power Attacks 179

-200

-180

-160

-140

-120

-100

-80

975 980 985 990 995

Fig. 1. A section of two round traces Ri and Rj . They differ only where a key bit is
being handled, at positions 984 through 986.

weights of key bit groupings; one way to proceed in this case is discussed by
Biham and Shamir [1].

Mathematical Description
Let Ti,j(t) denote the power consumed at time t within the i-th round in power

trace j. In general, the power consumed at any time t is a function ft of some
key bits k = 〈k1, . . . , kr〉, and some data bits d = 〈d1, . . . , ds〉. If we write di,j

and ki for the actual bit values of d and k in round i in the j-th trace (k depends
only on the round, not the trace), we have3

Ti,j(t) = ft (di,j ,ki) . (1)

Assuming that the number of traces m is large enough and the numbers of
dependent key bits r and data bits s are small enough,4 we will find that the
power Ri(t) in the average round trace is approximately the same as if we had

3 In all equations we ignore the random power fluctuations due to internal and external
noise. In practice, these effects disappear once we have done the first averaging.

4 We would like to see m > max{2r, 2s}. This is reasonable since typical values might
be m ≈ 300, and r, s ≤ 4.



180 P.N. Fahn and P.K. Pearson

0

5

10

15

20

25

200 400 600 800 1000 1200 1400

Fig. 2. Peaks in ∆2
i in a DES implementation. In this implementation, there are 48

peaks, one for each subkey bit, and they are clustered in 8 groups of 6, for the 8 S-boxes.

averaged over all 2s possible values of d:

Ri(t) =
1
m

m∑

j=1

Ti,j (t)

=
1
m

m∑

j=1

ft (di,j ,ki)

≈ 1
2s

∑

d

ft (d,ki) . (2)

Furthermore, taking the average of the Ri’s to get the super-average trace R
will have the effect of averaging over all 2r values of k, so that R(t) is:

R(t) =
1
n

n∑

i=1

Ri(t)

≈ 1
n

n∑

i=1

1
2s

∑

d

ft (d,ki) from Equation 2

≈ 1
2r+s

∑

k,d

ft (d,k) . (3)

Consider an instruction, at, say, time t1, that does not involve any key bits;
then the power consumption function f1 depends only on the data bits d, and



IPA: A New Class of Power Attacks 181

the value of Ri(t1) from Equation 2 becomes

Ri(t1) ≈ 1
2s

∑

d

f1 (d ) . (4)

The important point about Equation 4 is that Ri(t1) does not depend on i
at all, and is therefore constant among all the rounds and in the super-average
round R, i.e., R(t1) = Ri(t1). So when we take the difference between the average
round i trace, Ri, and the super-average round trace, R, we find, at position t1,

∆i(t1) = R(t1) − Ri(t1) = 0. (5)

Now consider another instruction, at time t2, which handles some key bits k
as well as data bits d; its power consumption function f2 then looks like that
in Equation 1, and the values of Ri(t2) and R(t2) look like Equations 2 and 3,
respectively. In the round i difference trace ∆i we then find, at position t2,

∆i(t2) = R(t2) − Ri(t2)

=
1

2r+s

∑

k,d

f2 (d,k) − 1
2s

∑

d

f2 (d,ki) (6)

which in general is not 0, but some function that depends on the specific values
of the subkey bits ki ⊆ Ki.

The end result is that the difference traces ∆i will be close to zero whenever
key bits are not being handled. Therefore, when we square and average the ∆i’s,
we find peaks exactly at those times (like t2 in our example) when key bits are
being handled.

Implementation Notes
An actual implementation of an IPA attack may encounter difficulties; here we

mention a couple of the most common.
The super-average R will work as planned only if the average rounds Ri

are aligned at use of the key bits. Therefore, in practice, one may need to do
some alignment of the Ri’s before averaging. For example, in DES, some ro-
unds contain more shifts of the key registers than others; therefore the offsets
of instructions at which the key bits are used may differ from round to round,
and this difference must be accounted for before averaging. Depending on the
algorithm, this may mean identifying other features within the round traces; this
is one instance in which the “profiling” can involve learning more than just the
key usage patterns.

Another important point is that the number of spikes in ∆i may differ from
the size of the subkey, depending on exactly how the key bits are being handled in
the (unknown) implementation. However, the number of spikes and the number
of subkey bits should have a simple mathematical relation.

At the end of the key location step, we know the times when the power
consumption depends on the key bits, i.e., we know where to find the key.



182 P.N. Fahn and P.K. Pearson

3.5 Profiling: Key Bit Identification

Given the list of key bit locations, we still can’t read off the key, because we don’t
know which location corresponds to which key bit. This process of determining
the identity of the key bits is the final step in the profiling stage of an IPA attack.

The actual method of key bit identification varies greatly with the algorithm
and the implementation. So rather than give overall rules, we restrict ourselves
to some general comments on algorithmic features, followed by specific remarks
about some of the more common algorithms.

An algorithm’s specification may (or may not) restrict the order in which
the key bits are used. In RSA, for example, the secret key is used as a modular
exponent, and the exponentiation uses the bits of the key sequentially. However,
the programmer’s decisions still affect the order in which the key bits are used:
one can start from either the most significant bit or the least significant bit of
the exponent, and the bits can be used one at a time or two at a time. But these
are a relatively small number of choices, and therefore the key identification step
for RSA is usually fairly simple.

In DES, on the other hand, key identification can be much more difficult,
since there are fewer restrictions on key bit order. A DES subkey consists of
48 bits used as inputs to 8 S-boxes. The S-box operations within a round do
not depend on one another, and thus all 8! orderings of S-boxes are possible.
Furthermore, there is no restriction on the order in which the 6 key bits used
in an S-box are loaded from the key registers. A DES programmer may in fact
choose a key bit order not based on any S-box order, but based on, say, the key
bit locations inside the key registers.

Because of the large subkey size in DES, we have also run into difficulties
when we have found less than 48 key locations. Suppose we find only 32 key
locations. Then the key location step must determine, first, which of the possi-
ble

(48
32

)
subsets, and, second, which of the 32! permutations of that subset, we

are seeing. Of course, in a straightforward implementation, some key bit orde-
rings are much more common than others. The S-box order is more likely to be
12345678 or 87654321 than 53821467, for example. Still, we caution against as-
suming any particular ordering, and after the most obvious guesses have failed,
it may be unclear where to turn next.

When the key identification becomes non-trivial, one can turn to the key
scheduling section of the algorithm’s specification, and select patterns that can
be sought for in the empirical key location data. In DES, for example, the key
schedule specifies the patterns in which individual key bits move from one S-
box position to another in consecutive rounds. This allows a key identification
hypothosis to be tested by comparing the movement from round to round of 1’s
and 0’s in our observed key locations against the movement of fixed key bits in
the DES key schedule.

At the end of a successful key identification step, and thus at the end of the
profiling stage of the attack, we have a table of locations (inside the round traces)
and the corresponding key bit identity. If we are attacking DES, for example,
our table might look something like that in Table 1, where the numbers in the



IPA: A New Class of Power Attacks 183

location column are offsets into the aligned, averaged round traces (Ri) and the
key indices refer to bits within the round subkeys (Ki).

Table 1. The final result of the profiling stage of an IPA attack: the key table.

Location Subkey Bit
380 k4

672 k1

1022 k9

...
...

3.6 Stage 2: Fast Key Extraction

Armed with the key location table, we can easily find the subkey bits and then
the master key bits from the traces we have. But the profiling data depend only
on the software implementation that we are attacking, and not at all on the
key that was used in the traces we processed. Therefore the information in the
table will be equally valid for all other instances of the same software running
on identical hardware, and so we can easily find the key in any such instance,
not just the instance whose power traces we have already recorded.

In short, the profiling stage needs only be done once, and then key extraction
can be done quickly and efficiently from new instances with unknown keys. One
can think of the profiling stage as a long precomputation of the key location
table; after the precomputation we can then quickly solve any similar instance
of the same problem. For example, given a second smart card, identical to the
first except for a different key, the data in our key location table immediately
point us to the new key, without taking hundreds of new traces involving the
new key.

To extract the key from a new instance of the same implementation, we take
a single power trace, chop it into rounds, and measure the power consumed at
the locations specified in the key location table. Using our knowledge of the key
bit power distribution, which we obtained during the profiling stage, we can tell
whether the key bit is a 0 or a 1.

Due to the particularities of the algorithm and the implementation, a single
power trace may not suffice, in which case we would take, say, 5 traces, average
them together, and then measure the power levels at the key locations. The
issue of whether one trace will suffice depends, among other things, on whether
there are instructions that handle key bits separately from data bits. In most
of the implementations that we have seen, each key bit is handled by itself in
at least one instruction (for example, the bit is loaded into a register) without
the interference of data bits; therefore we have been able to extract keys using
a single trace.



184 P.N. Fahn and P.K. Pearson

In any case, the number of traces needed in the key extraction stage is far
less than the number needed during profiling, where we needed enough traces to
average away any effects of the data bits and to ensure that any peaks we found
were due to key bits only. For key extraction, on the other hand, we already
know where the key bits are, and only care about whether data bits may affect
readings at the key bit locations, and can safely ignore the effects of data bits
elsewhere in the trace.

4 Strengths of IPA

There are several aspects of IPA attacks that make them effective in situations
where DPA attacks would be difficult to mount.

First we note that in order to mount a DPA attack an attacker needs the
plaintext (or ciphertext) associated with every trace; but this is not required
for an IPA attack. Thus one of the important defenses against DPA — protocol
designs that hide plaintext and ciphertext when master keys are used — is useless
against IPA.

Also, a DPA attack is restricted to points in the algorithm where the plaintext
(or ciphertext) interacts directly with the key; this is because the differential
traces are based on a “selection function” that predicts a bit value based on a
small number of plaintext bits and a small number of key bits. In practice this
usually means that a DPA attack is restricted to the beginning (if plaintext) or
ending (if ciphertext) of a cryptographic algorithm; for example, DPA attacks
on DES generally concentrate on either the first or last couple of rounds.

In contrast, an IPA attack is as capable of looking at the middle of an al-
gorithm as at the beginning or end. This can be an important advantage in
cases where some intervening processing is applied to the plaintext before the
key is directly applied. For example, in a recent DPA attack on the AES can-
didate cipher Twofish [3], the attackers could only extract a certain “whitening
key,” after which significantly more analysis (including an exhaustive search of
98 possibilities) was needed to derive the master key. An IPA attack, on the
other hand, can focus its attention on any (or all) of the intervening rounds, and
thus extract the round keys without any further analysis.

Another set of advantages of IPA derives from its ability to do fast key
extraction after a single lengthy profiling stage. This means that the cost of
the profiling stage can be amortized over many key extractions, thus making
an IPA attack economically feasible even if the cost of obtaining hundreds of
power traces is large. In a DPA attack, by contrast, the attacker must collect a
large number of traces for every key to be broken. If the cost of obtaining those
traces is greater than the benefit of the key itself, the DPA attack is rendered
impractical, whereas an IPA attack remains viable.

Fast key extraction also overcomes another defense against DPA: a protocol
may disable a card after only a small number of operations, if the operator does
not know the secret. Such a protocol can block DPA, but does not block IPA,
where the many profiling traces can be obtained using a “friendly” card (one



IPA: A New Class of Power Attacks 185

where we are the legitimate owner and know the secret), and only a small number
of traces are needed for each “unfriendly” card being attacked.

5 Defenses

Here are some suggestions to system implementers trying to protect against this
class of attacks.

First, avoid handling key bits one at a time. Some ciphers are more amena-
ble to this approach than others. Still, even a bit-oriented cipher like DES can
sometimes be effectively protected: when a DES master key is inserted, its key
schedule can be computed once for all time, and stored as six bits in each of
16 × 8 bytes, ready to be used with no further bit manipulation. For further
protection, unused bits in any byte may be filled with irrelevant values instead
of being set to zero.

Randomize the execution of the code. Where the order of operations is un-
important, such as S-box evaluation in DES, vary the order instead of using a
fixed order. Insert random delays, even if only one instruction-time in duration.

Randomize the representation of data. Sometimes a quantity can be “blin-
ded” by combining it with a randomly chosen constant; for example, value A
may be maintained as A ⊕ K1, value B as B ⊕ K2, and A ⊕ B computed as
(A ⊕ K1) ⊕ (B ⊕ K2) ⊕ (K1 ⊕ K2). When a single bit must be handled, consider
representing the bits 0 and 1 as “01” and “10”.

Limit the number of times a key can be used without confirmation of legi-
timacy, while simultaneously reducing the attacker’s signal-to-noise ratio with
filters or generators of random noise. The addition of noise will prevent key ex-
traction from a captured trace of a legitimate transaction, and the limit on key
probes will discourage key extraction from a stolen card.

Although no single defense makes a system impervious to IPA, and new
attacks can be expected in the future, adding a variety of these countermeasures
will likely increase the difficulty of IPA attacks, reducing, one would hope, both
the number of potential attackers and the probability of any given attacker’s
succeeding.

References

1. Eli Biham and Adi Shamir. “Power Analysis of the Key Scheduling of the AES
Candidates,” Second Advanced Encryption Standard Candidate Conference, Rome,
March 1999.

2. Eli Biham and Adi Shamir. “Differential Fault Analysis of Secret Key Cryptosy-
stems,” in Advances in Cryptology — Crypto ’97, Lecture Notes in Computer Science
Vol. 1294, p. 513–525. 1997.

3. Suresh Chari, Charanjit Jutla, Josyula R. Rao, and Pankaj Rohatgi. “A Cautionary
Note Regarding Evaluation of AES Candidates on Smart-Cards,” Second Advanced
Encryption Standard Candidate Conference, Rome, March 1999.



186 P.N. Fahn and P.K. Pearson

4. Paul Kocher. “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS
and Other Systems,” in Advances in Cryptology — Crypto ’96, Lecture Notes in
Computer Science Vol. 1109, p. 104–113. 1996.

5. Paul Kocher, Joshua Jaffe, and Benjamin Jun. “Introduction to Differential Power
Analysis and Related Attacks”.
http://www.cryptography.com/dpa/technical/index.html. 1998.

6. Oliver Kömmerling and Markus G. Kuhn. “Design Principles for Tamper-Resistant
Smartcard Processors,” in Proceedings of the USENIX Workshop on Smartcard
Technology (Smartcard ’99), USENIX Association, p. 9–20. 1999.


	Introduction
	Background
	IPA Attacks
	Context and Assumptions
	Stage 1: Profiling
	Profiling: First Steps
	Profiling: Key Location
	Profiling: Key Bit Identification
	Stage 2: Fast Key Extraction

	Strengths of IPA
	Defenses

