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Abstract. A compact fast elliptic curve scalar multiplier with varia-
ble key size is implemented as a coprocessor with a Xilinx FPGA. This
implementation utilizes the internal SRAM/registers of the FPGA and
has the whole scalar multiplier implemented within a single FPGA chip.
The compact design helps reduce the overhead and limitations associa-
ted with data transfer between FPGA and host, and thus leads to high
performance. The experimental data from the mappings over small fields
shows that the carefully constructed hardware architecture is regular and
has high CLB utilization.
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1 Introduction

The motivation of this work is to develop high-speed elliptic curve scalar multi-
pliers with the least development time, the lowest hardware cost and maximal
flexibility. Recently, elliptic curve (EC) cryptosystems have become attractive
due to their small key sizes and varieties of choices of the curves available. Their
low cost and compact size are critical to some applications, including smart
cards and hand-held devices[1]. In all those applications, an elliptic curve scalar
multiplier serves as a basic building block for secret key exchange, authentica-
tion and certification. Most microprocessors have hardware-supported integer
multiplication and logic functions like AND, OR or XOR, so an elliptic curve
cryptosystem can be implemented on them. However, this is not efficient because
of word size mismatch, less parallel computation, no hardware supported wire
permutation and algorithm/architecture mismatch. As a result, such systems
have low performance/cost ratios.

The solution to this problem is to build a coprocessor as a dedicated com-
puting unit. Moreover, using an FPGA, the coprocessor can be reconfigured for
different application instances or for different computation stages of one particu-
lar application. Thus, the total hardware utilization can be kept at a very high
rate and the computation is speeded up.

Previous work in this area is based on a coprocessor for arithmetic operations
over GF (2155) using a gate array[11]. To accomplish an elliptic curve operation,
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the host controller and the coprocessor have to transfer data between each other
frequently. The control of elliptic curve operations and the storage of interme-
diate variables are provided by the host controller. Therefore, the communication
cost is large and may be a bottleneck for an elliptic curve cryptosystem.

In this paper, a compact fast elliptic curve scalar multiplier coprocessor is
introduced which utilizes the internal SRAM/registers in an FPGA and is im-
plemented within a single FPGA chip. The normal bases for the underlying
finite field are chosen because the field squarings can be done with the bit shifts
in hardware and are virtually free[2]. A pipelined digit-serial modified Massey-
Omura multiplier is constructed and is used in the design. The scalar multiplier is
implemented with a parameterized (in term of key size) VHDL description and is
synthesized/mapped to a Xilinx FPGA. By changing the parameter for key size
and re-doing synthesis, a different instance can be acquired. The architecture
and algorithms adopted here are suitable for massively parallel computation.
Therefore, with larger capacity FPGA chips, higher performance can be easily
obtained with few changes in the underlying design.

2 Algorithm of EC Scalar Multiplier

The basic operation in an EC cryptosystem is the scalar multiplication over the
elliptic curve and the most efficient method for computing EC scalar multipli-
cations is to use an addition/subtraction method[2][4][5]. With this method, the
scalar (or the integer) is decomposed in a non-adjacent format(NAF) and one
scalar multiplication is done with a series of additions/subtractions of elliptic
curve points. In turn, each addition/subtraction of EC points consists of a series
of underlying field additions, squarings, multiplications and inversions. When
the elliptic curve is defined over GF (2m) with an optimal normal basis, these
underlying field operations have the least complexity. The elliptic curve used in
this implementation is defined by Weierstrass equations as:

y2 + xy = x3 + ax2 + b (1)

where a, b ∈ GF (2m) and b 6= 0. The algorithms of EC scalar multiplication and
EC addition/subtraction are shown below respectively[2].

Algorithm 1: EC scalar multiplication
Input:

P−EC point
n−(el−1, el−2, ..., e1, e0) non-adjacent format integer and el−1=1

Output:
Q = nP

Computation:
1. Q = P ;
2. For i = l − 2 downto 0 do
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Set Q = 2Q;
If ei = 1 then set Q = Q + P ;
If ei = −1 then set Q = Q − P ;

3. Output Q;

Algorithm 2: EC addition
Input:

P0 = (x0, y0)
P1 = (x1, y1)

Output:
(x2, y2) = P2 = P1 + P0

Computation:
1. If P0 = 0, then output P2 = P1 and stop;
2. If P1 = 0, then output P2 = P0 and stop;
3. If x0 = x1 then

If y0 = y1 then
λ = x1 + y1/x1;
x2 = λ2 + λ + a;
y2 = x2

1 + (λ + 1)x2;
else output O;

else
λ = (y0 + y1)/(x0 + x1);
x2 = λ2 + λ + x0 + x1 + a;
y2 = (x1 + x2)λ + x2 + y1;

4. Output(x2, y2);

Since −P0 = (x0, x0 + y0) for P0 = (x0, y0) and P1 − P0 = P1 + (−P0),
EC subtraction is as simple as EC addition and can be computed with one
EC addition. The average and maximal number of non-zero bits among NAFs
are about m/3 and m/2, respectively[2]. Therefore the average cost of Alg.1 is
about m point doubles and m/3 point additions/subtractions[2], and the worst
case cost is about m point doubles and m/2 point additions/subtractions. This is
much better than binary decomposition, which has m/2 non-zero bits on average
and m non-zero bits in the worst case.

3 Hardware Architecture

3.1 System Structure

Since the word size (or key size) for a typical elliptic curve cryptosystem is
large, the above algorithm can not be unfolded. Therefore, a folded hardware
architecture is constructed with a controller to sequence the computation. The
underlying field multiplier, a GF (2m) multiplier with optimal normal basis, can
be implemented as either a serial multiplier or a digital-serial multiplier or a
parallel multiplier, depending on the amount of available hardware resources. In
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Fig. 1, the two FIFOs serve as input/output buffers and the dual-port register
file is used to save input parameters and intermediate data. This is realiza-
ble because Xilinx FPGAs have a large amount of internal SRAM and registers.
Alternatively, if we were to use external SRAM, it would take either many exter-
nal user pins with multiple SRAM chips, or multiple cycles to read in one single
word. This would result in low bandwidth data transfers due to the large word
size. The hardware provides GF (2m) arithmetic units GF adder, GF squarer,
GF multiplier and GF inverter. With the finite field of characteristic 2 as the
underlying field, addition is just a bit-wise XOR, and with normal bases repre-
sentation, squaring is a simple cyclic right shift. The internal structures of the
GF multiplier and GF inverter are given in the following sections.

EC Addition/Subtraction Control
EC Scalar Multiplication Control

& GF_Inverter

FIFO

GF_Multiplier

GF_Adder

Register File
Dual_Port

FIFO

GF_Squarer

Controller

MUX

data1

wdata data2

condition word

control word

nP

n,P

Fig. 1. Hardware architecture of EC coprocessor

3.2 GF multiplier Structure

The structure of GF multiplier is a modified form of the Massey-Omura mul-
tiplier. Compared to the implementation in [9], the modified structure redu-
ces the number of AND gates and the wire permutation by 50% in the AND

XOR Tree
AND Plane & c_shift_register

b(0:m-1)

a(0:m-1)

c(0:m-1) (after m clocks)

XOR Plane & 

a_shift_register

b_shift_register

load/rotate

Fig. 2. Structure of GF (2m) serial multiplier
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XOR Tree
AND Plane &

XOR Tree
AND Plane &

XOR Plane & 

b_shift_register

c(0:m-1) (after m/2 clocks)

XOR Plane & 

b(0:m-1)

a(0:m-1)

c_shift_register

a_shift_registerload/rotate by 2 bits

Fig. 3. Structure of GF (2m) digit-serial multiplier
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XOR Tree
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XOR Tree

a_shift_register
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load
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c(m-1)

b_shift_register

a(0:m-1)

c(1)

c(0)

b(0:m-1)

Fig. 4. Structure of GF (2m) parallel multiplier

Plane without changing the total number of XOR gates. A serial multiplier of
such a structure is shown in Fig. 2, which can be simply unfolded to a digital-
serial multiplier in Fig. 3 or a parallel multiplier in Fig. 4. In this serial multi-
plier, at each cycle, a shift register and b shift register make a cyclic right shift,
and one bit of the product is computed and shifted into the product register,
c shift register. Therefore, each multiplication takes m clock cycles. If the serial
multiplier is unfolded to a parallel multiplier, then each multiplication only ta-
kes one clock cycle. However, the required hardware will be m times that of the
serial multiplier. Pipeline techniques are also applied to the XOR Plane—AND
Plane—XOR Tree of the multiplier to reduce the clock cycle time. The modified
Massey-Omura serial multiplier takes m AND gates, 2m XOR gates and 3m
flip-flops, and has a latency of m × (TAND + TXORdlog2(m − 1)e) when it is not
pipelined. However when it is pipelined, the serial multiplier has a latency of
(m+ dlog2(m− 1)e)×Max(TAND, TXOR) and a total cost of m AND gates, 2m
XOR gates and 5m flip-flops. It is obvious that the pipelined multiplier is much
faster than non-pipelined ones when m is large. The same techniques can also
apply to a digit-serial multiplier. The digit-serial multiplier with a digit size of
k will generate k bits of the product simutaneously and thus one multiplication
can be done in kth fold time taken by a serial multiplier. The digit-serial multi-
plier makes a trade-off of the speed and the hardware between a serial multiplier
and a parallel multiplier.
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3.3 GF inverter Structure

The structure of GF inverter is derived from the method introduced by T. Itoh
et al[8] and is shown in Fig. 5. The inverse takes blog2(m−1)c recursive iterations
and a total of blog2(m − 1)c + HW (m − 1) − 2 underlying field multiplications,
where HW (m − 1) is the Hamming weight of (m − 1).

GF_Multiplier

flaghold

down_counter

m1_regw_reg

result_reg

rep_sq_reg

MUX

load/store

zero_count

one_count

Input

flag1 flag2

load/storedone_inv

start_mult

mux1_ctrl

begin_inv

load/store

Fig. 5. Structure of GF (2m) inverter

3.4 Controller Structure

The controller takes advantage of the abundance of internal SRAM and registers
in Xilinx FPGAs. The controller is built up as a finite state machine with table
look-up to implement the logic functions. Since the whole look-up table consists
of small look-up tables from each CLB (configurable logic block), the controller
can be pipelined to have a clock cycle time equal to one CLB delay. A pipelined
structure of the controller is illustrated in Fig. 4. At each cycle, a selector asso-
ciated with the value of PC is generated. It then selects the appropriate bit of
the condition word to make PC either increment or load a new value from the
Branch PC look-up. In case of a branch hazard, the pipeline register is cleared.

control word ctrl 2828

MUX

P
ipeline R

egister

wr/inc

cls/wr

’0’

condition word

7:1
6

3 3

1

1
1

777

selector

7 PC 7Control Word 

P
ipeline R

egister

Lookup

Look-up

Branch PC

Fig. 6. Pipelined structure of the controller
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4 Dataflow of EC Scalar Multiplication

The algorithm and hardware architecture leads to the computation dataflow
chart shown in Fig. 7 and Fig. 8. Each bit of the decomposed scalar is encoded
by 2 bits to represent {1,0,-1}. A total of 9 intermediate storage elements are
needed and it leads to a 4-bit address space for the dual-port register file. Then
each data bit of the dual-port register file can be implemented with one CLB
and the dual-port register file has one CLB delay. It is obvious that the dataflow
has many conditional branches. Therefore, the branch hazard problem has to be
taken care. From the dataflow chart, the schedule and control of computation in
the scalar multiplier is worked out and the corresponding VHDL description is
implemented.

Reset

Output Q

x0 = x1 ?

Q <= Q + P

Q <= P

No

No

Yes

Yes

 Q = 0 ?

y0 = y1 ?
No

Yes

Q <= (0,0) Q <= 2Q

 
Value      Upper_bit     Lower_bit

ei encoding:

                  ei_U               ei_L

  0              0                      1
  1              0                      0
-1             1                      0

(x2, y2) = Q + P

P = (x0, y0), (-P) = (x0, y0+x0)
Q = (x1, y1)

x2 = (a0, a1, ...., am-1)
y2 = (b0, b1,...., bm-1)
n = (e0, e1,....el-1)
GF normal basis = 
        (a, a^2, a^2^2,...,a^2^m-1)

Notations:

cnt_over? Yes
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No
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Q = 0 ?

Q <= 2Q

Read a, #1;  #0<= 0

Read  P, n

 ei_L = 1 ?

        Compute -P

#1     : one
a       : EC parameter
y0     : y part of P

x0     : x part of P  
-Py  : y part of -P

x1     : x part of Q
y1     : y part of Q
t0     : temp cell
t1     : temp cell

Variables:

Fig. 7. Dataflow chart I of EC scalar multiplier

5 Development of EC Scalar Multiplier

All components in the scalar multiplier are implemented according to above
algorithms and hardware architectures. A pipelined digit-serial multiplier is im-
plemented because a serial or a parallel multiplier is only a special case for digit
size of 1 or m respectively. The controller is a finite state machine according to
Fig. 6. The implementation of the controller follows the dataflow charts I & II
in Fig. 7 and Fig. 8, respectively. All operations in the dataflow can be catego-
rized as one of the following atomic operations: unconditional jump, conditional
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Fig. 8. Dataflow chart II of EC scalar multiplier

jump, operand load, operand store, finite field addition, finite field squaring,
finite field multiplication and finite field inversion. Then, each state of the con-
troller consists of one or more such atomic operations because addition, squa-
ring, multiplication/inversion and load/store can be executed concurrently. The
execution schedule is optimized to provide the shortest computing time. These
atomic operations are represented as macros and are re-used in the VHDL code.
One example of the VHDL simulation results is shown in Fig. 9 for m = 39 and
type II optimal normal basis[14]. The example shows two scalar multiplications
which compute

7 × (1A0C3EB323, 2EE60CF558) = (7527E64FAD, 34A9265CF1)

7 × (1A0C3EB323, 34EA32467B) = (7527E64FAD, 418EC0135C)

for a = 1A28CE01DD and b = 1200569A44 in equation (1). The hex encoding
follows the method in [14].

6 Mapping onto Xilinx XC4000XL-Series FPGA

6.1 Synthesis/Mapping Results

After VHDL code simulations, the design is setup with a pipelined GF (2m)
serial multiplier (or digit size of 1) and is mapped onto a Xilinx XC4000XL-
series FPGA for some small values of m. The synthesis is done with Exemplar
synthesis tools and the mapping/layout is done with Xilinx Design Manager.
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Fig. 9. VHDL simulation waveform for m = 39

The results are shown in Table 1 and one example of the layout for m = 29
is shown in Fig. 10. The mapping efficiency is represented with the percentage
of total CLBs in a FPGA that is used by the design and the throughput is
represented with the scalar multiplications per second. Both the throughput
and clock cycles in Table 1 represent the worst case performance. It is shown
that the architecture of the prototype is regular and the designed coprocessor has
very high CLB utilization. The dominant operation in the EC scalar multiplier
is GF (2m) multiplication. Therefore, if the GF (2m) serial multiplier is unfolded
with a factor of 2, then the throughput, in terms of scalar multiplications per
second, will be doubled.

Table 1. FPGA chip area utilization and throughput

Value XC4000XL CLB Usage Clock Cycles Throughput
of m Device (scalar mul/sec)

5 4010XL 272/400 = 68% 126 179856
11 4013XL 478/576 = 83% 825 19230
29 4028XL 962/1024 = 93% 7158 1653
53 4044XL 1626/1936 = 84% 26753 417

6.2 Analysis of the Mapping Results

Since the proposed hardware architecture is regular and simple, the expected
mapping results can also be obtained with an estimation formula. Then, a com-
parison can be made to analyze the mapping results. In order to derive the
formula, two summaries are listed below:
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Fig. 10. FPGA Layout for m=29 with XC4028XL

1. CLB (Configurable Logic Block) structure of Xilinx XC4000XL-series:
– 2 flip-flops(FFs) per CLB
– 2 function generators (FGs) per CLB (4 input/single output logic unit)
– 2 single-port 16x1 RAMs per CLB (using two logic units)
– 1 dual-port 16x1 RAM per CLB (using two logic units)

2. Cost of implementing basic components:
– two m-bit registers take 2m FFs.
– three m-bit shift registers take 3m FFs and FGs.
– four m-bit 2:1 MUXs take 4m FGs.
– one m-bit GF Adder takes m FGs.
– one m-bit dual-port 9 word RAM takes 2m FGs.
– one m-bit 6 word FIFO takes 6(m + 1) FFs and FGs.
– one m-bit 2 word FIFO takes 2(m + 1) FFs and FGs.
– one m-bit GF Multiplier takes 5mFFs and 3m FGs (pipelined bit-serial

multiplier).
– one m-bit GF Inverter takes 3(m + log2m)FFs and FGs (excluding GF Multiplier).

From above basic facts, the cost of one EC scalar multiplier with key size m is
derived as:

– Total FFs = 21m + 3log2m + 48
– Total FGs = 24m + 3log2m + 308
– Minimal value of Total CLBs

= max(Total FFs, Total FGs)/2
= 12m + (3log2m)/2 + 154

– Maximal value of Total CLBs
= (Total FFs + Total FGs)
= 45m + 6log2m + 356

Table 2 is constructed with above estimation formula and the data in Table 1.
In Table 2, the actual CLBs means the CLB count of the mapping obtained
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with Xilinx Design Manager. The Min/Max CLBs comes from the estimation
formulas and puts a lower/upper limit for the total number of CLBs needed
for the design. Using regression, a polynomial curve of degree 2 is fitted with
the data of the actual CLBs and the CLB usage for larger fields are predicted
through extrapolation with the fitted curve. However routing resources are not
taken into account in the extrapolation and they could become a bottleneck for
larger fields. For m=160, the estimated number of CLBs (≈ 4000) is larger than
the capacity of the XC4085XL. However, the design should easily fit onto the
Virtex XCV1000 chip.

Value Expected Actual Min Max
of m Device CLBs CLBs CLBs

5 XC4010XL 272 219 600
11 XC4013XL 478 292 876
29 XC4028XL 962 510 1692
53 XC4044XL 1626 799 2778

Table 2. Mapping analysis
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Fig. 11. Extrapolated mapping analysis

7 Conclusions and Future Work

The experimental results from the mappings over small fields show that the hard-
ware architecture is regular and achieves high CLB utilization and high speed.
The use of an FPGA in the development of an elliptic curve scalar multiplier
demonstrates many advantages:

– Reduced development time and cost.
– Tailorable design for a particular application.
– Reduced hardware overhead and high performance.
– Increased chip area utilization.
– Hardware performance with advantages of software development.
– Simplified hardware architecture and ability to easily add new functions.

The effectiveness and eventual performance/cost ratio of applying reconfigu-
rable hardware to cryptography depends on many factors and research in this
area is highly experimental. Therefore, future work remains in many areas and
is summarized as follows:

– To map the design onto more types of FPGA chips to show the usefulness
of the design and to reveal the relationship between the algorithm and the
architecture/resources of FPGAs.
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– To build some EC application systems, such as an EC digital signature or an
EC Diffie-Hellman key exchange[1][14][15], by using reconfigurable hardware,
such that a direct comparison can be made with other implementations using
microprocessors[12][13].
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