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Abstract. In this paper, the modelling of a Crypto-processor in a FPGA chip
based on the Rapid Prototyping of Application Specific Signal Processors
(RASSP) design concept is described. By using this concept, the modelling is
carried out in a structural manner from the design capture in VHDL code to
design synthesis in FPGA prototype. Through this process, the turnaround time
of the design cycle is reduced by above 50% compare to normal design cycle.
This paper also emphasises on the crypto-processor architecture for space and
speed trade-off; design methodology for design insertion and modification; and
design automation from virtual prototyping to real hardware. In which above
60% of spatial and 75% of timing reduction is reported in this paper.

1 Introduction

The design flow and the techniques of modelling a crypto-processor [1] in FPGA chip
based on the RASSP [2,3,4,5] are described in this paper. The modelling is made use
of the VHDL platform. This platform has provided the perfect simulation and
synthesis media for rapid prototyping. As well as, it also facilitated the design
methodology of RASSP which promoting the design upgrades and re-uses. The
modelled crypto-processor is designed for use in embedded digital systems which
requiring area/speed/power trade-off, as crypto-processor is now commonly used in
nowadays’ digital devices, such as in Electronic Fund Transfer (EFT) systems and
electronics wallet using smart cards.

This paper highlighted the procedures of modelling the crypto-processor from design
to synthesis as in the following sections. In section 1.1 & 1.2, the background of the
RASSP and the modelled crypto-processors are introduced. In section 2, the design
process based on the VHDL virtual prototyping is described from the design
specification, executable specification to detailed design. In section 3, the detailed
design methodology of the crypto-processors is demonstrated. In section 4, the
observations and results of this study are reported. In section 5, conclusions are made.
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1.1 Scope of RASSP

Rapid Prototyping of Application Specific Signal Processors (RASSP) [2,3,4,5] is a
modern methodology of designing embedded digital system nowadays. It supports the
design of processor through a structural framework. The framework of RASSP
mainly emphasises on the top-down design, design re-use and model-year design
concepts [11]. Implementing these design concepts will result in shorter time-to-
market and first-time silicon success fabrication.

In this study, those concepts are demonstrated by using the VHDL modelling via
multi-level of abstraction, with all component objects defined in a standard open
interface and technology independent specification. Based on this, it is not only
provides the architecture reuse library components, but also supports the rapid
insertion of a new element into an existing design for upgrades or modifications.

1.2 Cryptography and Crypto-Processors

Nowadays, cryptography is commonly used in commercial and banking sectors as
Electronic Commerce created these urgent needs in Electronic Fund Transfer (EFT)
application. In this paper, main focus is put on the modelling of symmetric crypto-
processor which encrypt fixed-length of data block. The Data Encryption Standard
(DES) [6] is often used as a basic building block in the existing cryptosystem, that
difference applications are used in different ways. On the contrary, attacks on DES
using linear cryptanalysis and differential cryptanalysis, as well as exhaustive search
are also well known. Therefore, in order to strengthen the security level of the
existing cryptosystem, various kinds of modification and upgrade of the DES
algorithm are proposed which using DES components as a building block. Hence,
modelling the DES algorithm in a RASSP design framework helps the rapid
prototyping of a new design. This is benefited from the reuse of design information
and functional block library from previous design, for instance, the Randomised-DES
[7,8,9] proposed by T. Kaneko, K. Koyama and R. Terada and the Extended-DES
[10] proposed by H.S. Oh and S.J. Han. These are DES-based cryptosystem which
used DES components as a building block.

Randomised-DES (RDES) [7,8,9] is a cryptosystem with an n-round DES in which a
probabilistic swapping, SW(Rn, Sn), is added onto the right half output of each round
as shown in Fig. 1. It has been claimed that the n-round RDES is stronger than the n-
round DES against differential cryptanalysis.

Extended-DES [10] is a cryptosystem utilising the iteration F-function of the DES to
extend the property of the algorithm in form of a matrix. It defines the input plaintext
as 96-bits and the key size as 128-bits, as well as the order of the S-box is randomly
arranged. The 128-bits key is divided into two independent key, K1 and K2, and used
the same key scheduling algorithm of DES for generating the subkeys. The encryption
and decryption formulas of EDES are shown in Table 1. With this extended
configuration, it is verified to be less vulnerable to attack by differential cryptanalysis.
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Fig. 1. The Randomised-DES (RDES)

Table 1. Encryption and Decryption Formulas of EDES

Encryption Decryption
Ai = Bi-1

Bi = Ci-1 Xor f(Bi-1,K2, I)
Ci = Ai-1 Xor f(Bi-1,K1, I)

Ai-1 = Ci Xor f(Ai-1,K2, i)
Bi-1 = Ai

Ci-1 = Bi Xor f(Ai, K1, i)

2 Design Process by VHDL

VHSIC Hardware Description Language (VHDL) provides a media of vendor,
platform and technology-independent design method of describing, simulating, and
documenting complex digital system. It helps the rapid prototyping application-
specific simulatable and sysnthesisable VHDL models of various signal-processing
functions. The support of multi-level of abstraction, as well as working at a higher-
levels of abstraction, facilitates the design transfers from the system level algorithm to
structural implementation. Through out the modelling process in VHDL, it supports a
cost-effective means for rapid exploration of area, speed, and power requirements of
the processor. It also facilitates the functional trade-offs of algorithm and architectural
design alternatives at the very early stages in the design process. The design process
of VHDL can be divided into three parts as shown in Fig. 2: they are design
specification, executable specification and detailed design.

2.1 Design Specification

Design specification captures customer requirements and converts these system-level
needs into processing requirements (functional and performance) by VHDL
description. Functional and performance analyses are performed to properly
decompose the system level description. The system process has no notion of either
hardware functionality or processor implementation. It also specifies an appropriate
set of parameters specifying the performance and implementation goals for the
processor (size, weight, power, cost, etc.). The traditional approach is to utilise text-
based files in a specific format to support extraction of key parameters by the

Where SW= SW (Rn, Sn)
= SW (RnL, RnR | Sn)

if Sn=0

if Sn=1

Sn = G0 (Rn)
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appropriate tools. Nowadays, VHDL is regarded as the unifying design representation
language and tool integration approach for describing the design specification.
Eventually, the design specification is translated into simulatable functions, which
refers to an executable specification.

Fig. 2. The Design process by VHDL

2.2 Executable Specification

An executable specification [12] is a behavioural description of a component or
system module without describing a specific implementation. The description reflects
the particular function and timing of the intended design as looking on the
component’s interface level. During this process, the system level processing
requirements are allocated to functional modules and each module is then verifying its
specified functionality against the system requirements. The module is then integrated
with other components of the system and to test whether an implementation of the
entire system is consistent with the specified behaviour in the design specification.
Finally, a virtual prototype is resulted in a detailed behavioural description of the
processor hardware.

In this stage, an extensive simulation of all components is carried out in any form of
the above models which can be described as functionally, behaviourally or
structurally. Simulation is carried out by using the VHDL system simulator and
VHDL compiler. It is intended to verify all of the codes during this portion of the
processor design. After this process, all modules are fully tested and resulted in a
detailed behavioural description of the processor hardware. Thus, the result of the
executable specification is the virtual prototype describing the custom modules down
to individual components at the behavioural level with emphasis on interface
behaviour rather than internal chip structure.
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2.3 Detailed Design

With the above processes, the design is modelled and verified through a set of
extensive functional and performance simulations using integrated simulators in
VHDL platform. At the completion of those simulations, the design is in the form of a
fully verified virtual prototype of the system and the timing is also verified to ensure
proper performance against the design specification. For the design to be realised in a
physical hardware, in this stage, the executable specification of the processor is
transformed into detailed designs in Register Transfer Level (RTL) and/or logic level
which specifying the actual implementation technology. This process resulted in a
detailed technology-dependent hardware layout and artwork, netlist, and test vectors
of the entire processor. Making uses of that information, the processor can be put into
real hardware for integration, as well as used for silicon fabrication. It is
accomplished by using the VHDL design compile and the specific ASIC technology
library to generate the vendor-specific hardware configuration details.

3. The Crypto-Processor Model

The crypto-processors are synthesised using the Synopsys VHDL integrated simulator
and implemented in a Xilinx FPGA chip. The main task of the synthesis tool is to
transfer the design into a virtual prototype with simulation and debugging of system
functionality. The implementation tool is to realise the design in real hardware and
used for design verification. In this section, the detailed modelling of the baseline
algorithm, DES, is demonstrated. The reuse concept is also exercised in the RDES
and Extended-DES models. Finally, some observations and results are shown.

3.1 Top-Down Modelling of the DES

To rapidly prototype the DES in VHDL, the procedures described in section 2 is
deployed. First of all, the design specification is defined, i.e. the mathematical
representations of the algorithm. Then, the algorithm is partitioned into functional
modules for synthesis, in which, the algorithm is simulated in form of functional,
behavioural and structural models. The modules are refined into smaller component
which is implementable in FPGA architecture. Finally, the virtual prototype is
transformed to detailed design of FPGA configuration netlist.

Design Specification
The design specification of the DES is the standardised algorithm defined in
International Standard document [6]. As stated in the document, the DES algorithm is
making use of a series of permutation, substitution and exclusive-or operations to
scramble the data depending on a binary key. The core of the algorithm computation
includes the Initial Permutation (IP), the Expansion Box (E-box), the Substitution Box
(S-box), the Permutation Box (P-box), the Inverse Initial Permutation (IP-1) and the
Exclusive-OR (XOR) operations. By combining the E-box, S-box and P-box with the
associated XOR operations, it forms the iteration function (F-box) which is the core
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computation unit of the DES. In addition, the Key Schedule (KS) associated with the
algorithm provides the 48-bits subkeys used in each round of iteration. The KS
includes the Permutation Choice-1 and -2 (PC-1, PC-2), and a series of shift
operations.

According to the DES specifications, all computation of the above units follows a set
of operation tables defined in the standard [6]. To capture the design for
implementation, each operation table specified in the standard is coded as a functional
entity in VHDL description. Eventually, a DES VHDL package, which translates the
textual specifications into synthesisable VHDL code, is modelled. The package is
then used for program coding, design validation and system integration.

Executable Specification
In this stage, the functionality of the algorithm is validated by simulating and testing
the algorithm in VHDL simulator, ultimately completed with a fully verified virtual
prototype of the algorithm. To achieve this, the process is conducted through a
combination of functionality partitioning and synthesis at all levels of abstraction. The
partitioning of the model into smaller modules also facilitated the reuse concept.

The DES algorithm is partitioned into four top-level functional modules, including the
F-box, the IP, IP-1 and the KS. In those functional modules, their interfaces between
sub-modules, as well as the resource requirements (performance/area) for each
component module are specified. Probably, the functional module is further
decomposed into lower behavioural level model, so as to form a layered-architecture.
This layer approach made the module more manageable, understandable, reusable,
and maintainable. This helps to facilitate the design reuse concept and to build an
encapsulated library. For instance, the functional module, F-box, with the defined
interface is shown in Fig. 3, and the partitioned behaviour module of the F-box is
shown in Fig. 4, with each box represents a behavioural component model in VHDL
description entity.

Fig. 3. Interface of F-box

Fig. 4. Partitioned behavioural modules of F-box
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The behavioural VHDL description of each module is then designed and tested
individually using the pre-defined VHDL DES-algorithm package as the component
library. At this level, further model partitioning is also conducted for each sub-
module, until a sufficient detail is resolved for physical construction, performance and
area requirements in the specific technology platform.

In this case, the S-box is further partitioned in smaller sub-modules with respect to
satisfy the area and speed requirements. With this partitioning, the large function is
implemented in a minimum of area and the delay in signal path, and thus achieves
performance increase both in spatial and speed requirements. Finally, the entire
algorithm is integrated by a structural model which interconnects all verified modules
together.

In this stage, the functionality of all modules is verified and the timing analysis is
computed. This ends up with a technology-independent and fully functional verified
virtual prototype of the algorithm. For it is synthesisable in real hardware, say a
FPGA chip, it needs to forward to the VHDL design compiler with the specific FPGA
technology library to generate the detailed FPGA configuration netlist.

Detailed Design
Detailed design will match the design into a physical reality. The virtual prototype
synthesised in the pervious stage is ready for realisation in FPGA. In this stage, the
entire design is converted into the FPGA netlist by the VHDL design compiler and
the associated FPGA technology library. As a result, the Xilinx Netlist Format (xnf)
file is generated. By making use of this netlist in the automated development
environment, logic mapping, placement, and routing are done automatically and
finally a FPGA configuration file is generated. Then the configuration file is stored
inside an EPROM for programming the FPGA in the real hardware prototype.

Finally, the DES algorithm is transformed into the FPGA configuration file. The
spatial requirement of the algorithm in pipeline mode occupied 2,176 Configuration
Logic Block (CLB) with a signal path delay of 164.96 ns. Detailed synthesis results of
all modules are shown in Section 4.

3.2 Design Re-use for the Randomised-DES and Extended-DES

Randomised-DES [7,8,9]
RDES is the case of design insertion in the existing DES algorithm. It is an extension
of the DES by inserting a special modular, SWAP, in the algorithm as illustrated in
Fig. 1. By the modular-design concept applied in the DES design, the VHDL DES-
algorithm package library, as well as the verified functional, behavioural and
structural models, are reused as the components for constructing the RDES.

In the virtual prototyping stage, only the functionality of the SWAP module needs to
verify as it is stated in the specification. The insertion of the SWAP module only
affected the internal structural of the F-box which is retained with the same interface
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structure. Thus, all structural models remained in its defined interface, as well as their
original interconnection between modules as in the DES model. The modified
structural of the F-box model is shown in Fig. 5.

As a result, all of the structural models designed in the pervious DES model is reused.
For the entire RDES algorithm design, modification is made only in the structural
model of the F-box. By this design reuse of the DES algorithm component library, the
RDES algorithm is rapidly prototyped within one-man week. This is achieved by the
top-down, model-year structural design methodology applied in the designing of the
DES algorithm.

Fig. 5. Modified Structural Model of F-box for RDES.

Extended-DES [10]
EDES is the case of modifying the existing DES algorithm. EDES is just an extension
of the DES by increasing its data block length to 96-bits and the key size to 128-bits,
in addition with a special arrangement in the order of S-box. In such, the processing
block size is remained in 32-bits using the same DES iteration F-box as its core, and
the same key-scheduling algorithm that is used in DES. In this case, only the top-level
structure model is needed to re-design and the S-box sub-module is needed to re-
structure. In the S-box, since the functionality of all the smaller components in the
lower-level module is verified in the DES-algorithm library. It only needs to re-
program the structural model according to the EDES design specification and then
reinsert it back to the encapsulated library. The F-box module and all other sub-
modules within the F-Box are not affected at all.

Therefore, the modelling of the EDES required in this case is just to modify the
structural level models. All functional models of the processing units are using the
standard DES modules extracted from the encapsulated library built during the
previous design. As a result, the virtual prototype of EDES re-defined the
interconnection between modules in a structural model and this re-design is
prototyped by one-man week.
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4 Observations & Results

4.1 Space and Speed Requirements

To prototype a design into a physical hardware, such as in FPGA chip, the space and
speed constraints in physical device are not negligible. Since all electronic
technologies deliver finite spatial resources for building functions and wiring
resources for communications which are especially tight with FPGA. By using the
top-down design concept to partition design functionality into small modules has
facilitated the design optimisation against those constraints.

During the modelling of DES algorithm, the following results are observed. By
transforming the functional model directly to detailed design, the resultant
requirement in space and delay are higher. In the partitioned behaviour model which
module is in form of a small component, the resultant requirement is much lower. The
results of the DES modules are tabled in Table 2.

Table 2. Synthesis results of the DES module1

Module Un-partitioned Functional Model Partitioned Behavioural Model
CLB Timing(ns) CLB Timing (ns)

IP 0 0 0 0
IP-1 0 0 0 0
E-box N/A N/A 0 0
P-box N/A N/A 0 0
S-box 230 33.92 96 6.31
XOR32 N/A N/A 16 3.26
XOR48 N/A N/A 24 3.26
F-box 323 42.38 136 10.31
KS 0 0 0 0
SWAP N/A N/A 16 3.62

From the table, it is found that the spatial requirement of the partitioned s-box is
reduced by 60% and the delay is reduced by over 80%. (CLB’s propagation delay is
reduced from 7 stages to 2 stages). While in the partitioned F-box, a 60% reduction is
achieved. CLB’s propagation delay is reduced from 9 stages to 4 stages, above 75%
reduction is accomplished. With this result, the algorithm is more feasible for
implementation in FPGA chip with benefits in both spatial and timing requirements.
Those benefits are also encountered in the case of RDES and EDES implementations.

                                                          
1 Timing is measuring under the Xilinx Xfpga_4025e-3 library parameters: path_full,

delay_max, max_paths, and WCCOM operation conditions
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4.2 Design Insertion and Modification

Through designing the DES algorithm in model-year architecture, by defining the
module with open interface and partitioning functionality into small components, it
can facilitate the rapid design insertion and modification. Like the cases of modelling
the RDES and EDES, the turnaround time to prototyping those algorithms are reduced
rapidly. In modelling of RDES and EDES, above 70% and 40% of the development
time is eliminated respectively. This is achieved by the result of using the
encapsulated library, as most of the functionality verification is exempted. Thus, the
design reuse concept of the encapsulated component library has shown its advantage
and significance in this aspect.

4.3 Design Automation

Beside the design methodology, the platforms for simulation, debugging, synthesis,
logic placement, routing, test vectors generation and hardware implementation the
design are also important. Any one of those elements cannot be omitted in the process
of processor design and prototyping. Therefore, a standardised integrated
development environment is essential for designer, so as to speedup design process
and reduce design transfer/translation cumbersome. In this study, the use of Synopsys
VHDL integrated platform has helped a lot in the design automation aspect from the
design capture to the synthesis in hardware.

4.4 Hardware Prototype

The designs are realised in a 25,000 logic-gates FPGA chip for testing and
integration. Those algorithms are synthesised in both recursive and pipeline mode of
operations. The hardware prototype is as shown in Fig. 6.

Fig. 6 Prototype of the Hardware
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5. Conclusions

Through out the modelling of the crypto-processors in this study, the design concept
of rapid prototyping the application-specific signal processors is practised. By the
described approach, it not only verifies design functionality early in the design
process, but also provides the key to rapid prototyping and upgrading of signal
processors, as the same time reduces the development time and costs significantly.

Deployment of model-year design concept in rapid prototype has provides the use of
previous models as a baseline for further developments. As in the cases of modelling
the RDES and EDES algorithm, which using DES as a baseline, allowed the
modification of the functional models in the virtual prototyping stages and allowed
partitioning and re-targeting design during the synthesis activities. In this case, above
50% of development time is reduced in modelling the RDES and EDES algorithms.

On the other hand, in the VHDL development environment, design can automatically
converts a VHDL description to a gate-level implementation in a given technology;
and can automatically transform a synthesis design to a smaller or faster circuit
through partitioning. In this experience, above 60% of spatial and 75% of timing
reduction is achieved. In addition, capturing the design in VHDL technology-
independent functional models for the virtual prototype also enhances reuse of
functional primitives and generates the design in different technology.
Simultaneously, it also provides a technology-independent documentation for a
design and its functionality.

To conclude, the modelling is carried out in a structural manner from the design
capture in VHDL code to design synthesis in FPGA prototype. Through those
prototyping procedures, the turnaround time of the design cycle is reduced; and
through the modular design concept, the feasibility of design upgrade and
modification is enabled.
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