Provably Unforgeable Signatures

Jurjen N.E. Bos*
David Chaum?

Abstract. Very strong definitions of security for signature schemes have been pro-
posed in the literamre. Constructions for such schemes have been proposed, but so far
they have only been of theoretical interest and have been considered far too inefficient
for practical use.

Here we present a new scheme that satisfies these strongest definitions and uses essen-
tially the same amount of computation and memory as the widely applied RSA
scheme. The scheme is based on the well known RSA assumption.

Our signatures can be thought of as products resulting from a two-dimensional
Lamport scheme, where one dimension consists of a list of public constants, and the
other is the sequence of odd primes.

Introduction

One of the greatest achievements of modern cryptography is the digital signature. A
digital signature on a message is a special encryption of the message that can easily be
verified by third parties. Signatures cannot be denied by the signer nor falsified by
other parties.

This article introduces a new signature scheme that combines the strength of the
strongest schemes with the efficiency of RSA.

Signing a message of 245 bits in our scheme is possible in roughly 910 multiplica-
tions, and verifying it costs about 152 muitiplications. In comparison, RSA, using the
ISO/IEC standard 9796 redundancy scheme, takes roughly 768 multiplications (or 610
using addition chains) for signing, and 3 (or optionally 17) for verification. RSA sig-
natures are 512 bits long, while ours requires an additional message counter. Thus, 16
extra bits give a scheme that allows 65,536 signatures per public key.

A variation involving pre-computation, signs short messages (64 bits) in 33 multi-
plications (not counting precomputation) and verifies in 35 multiplications.

After the introduction, we discuss other signature schemes relevant to this work.
We discuss the Lamport signature scheme, on which this signature scheme is based, in

detail. Then, the new scheme is explained, and the possible choices for parameter val-
ues are shown.

* This article is adapted from the dissertation *Practical Privacy” of Jurjen N.E. Bos, written while he was at CW1 (the
Duich nationally funded centre for Mathematics and Computer Science). He is currently affiliated with Irdeto (a pay TV
company) in Hoofddaorp, Netherlands.

* David Chaum is affiliated both with CWT and DigiCash (innovators in electronic money systems).

E.F. Brickell (Ed.): Advances in Cryptology - CRYPTO *92, LNCS 740, pp. 1-14, 1993.
© Springer-Verlag Berlin Heidelberg 1993



Signature scheme

An overview of signature schemes, comparing securities, can be found in the paper
mentioned earlier [GMR88]. We use their notation. They define a signature scheme
as consisting of the following components:

s A security parameter k, that defines the security of the system, and that may also
influence performance figures such as the length of signatures, running times and
S0 on.

* A message space M, that defines on which messages the signature algorithm may
be applied.

« A signature bound b, that defines the maximal number of signatures that can be
generated without reinitialization. Typically, this value depends on &, but it can
be infinite.

* A key generation algorithm G, that allows a user to generate a pair of
corresponding public and secret keys for signing, The secret key S is used for
generating a signature, while the public key P is used to verify the signature.

* A signature algorithm o, that produces a signature, given the secret key and the
message to be signed.

+ finally, a verification algorithm, that produces true or false on input of a signaiure

and a public key. It ouputs true if and only if the signature is valid for the particu-
lar public key.

Some of these algorithms may be randomized, which means that they may use
random numbers. Of course, G must be randomized, because different users must
produce different signatures. The signing algorithm o is sometimes randomized, but
this tends to produce larger signatures. The verification algorithm is usually not ran-
domized.

A simple example of a signature scheme is a trapdoor one-way function f. The
function f is used for verification by comparing the function value of the signature
with the message to be signed, and ¢ is the trapdoor of £, The main problem with
such a scheme is that random messages f(x) can be signed by taking a random signa-
ture value x. A simple solution is to let M be a sparse subset of a larger space, so that
the probability that f(x) is a valid message for random x is low. An example of a
sparse subset is the set of “meaningful™ messages.

Related work

The notion “digital signamre” was introduced in (DH76]. This paper, which can be
considered the foundation of modern cryptography, discusses the possibility of digital



3

signatures and the use of a trapdoor one-way function to make them.

[RSA78] is the original article on the RSA scheme. It introduces the famous RSA
rapdoor one-way function. This function is still widely in use and is applied fre-
quently. A well-known weakness of RSA is that it is multiplicative: the product of
two signatures is the signature of the product. This potential problem can be prevent-
ed as above by choosing an appropriate sparse message space.

Since then, an enormous number of signature schemes have been proposed
[Rab77, MH78, Sha78, Rab79, Lie81, DLM82, GMY83, Den84, GMR84, OSS84,
EIG8S, OS85, FS86, BM8&8, GMR88, CA89, EGL89, EGM89, Mer89, Sch89,
SQV89, BCDP90, Cha%90, CR90, Hay%0, CHP91], applied [Wil80, Cha82, Goi86,
Bet88], and broken [Yuv79, Sha82, Tu84, BD85, EAKMMSS, Roo91]. We will not
discuss all these schemes here; we only discuss the ones that are interesting to com-
pare with the new scheme.

The schemes [Rab79, GMY83, GMR84, GMR88] are steps towards a provably
secure signature scheme. The scheme described in the last article is secure in a very
strong way: it is “existentially unforgeable under an adaptive chosen-message attack”
with probability smaller than 1/Q(k) for every polynomial . This means that ge-
nerating a new signature is polynomially hard if signatures on old messages are
known, even if the old signatures are on messages chosen by the attacker.

The scheme in [GMR88] is based on factoring. While our scheme is based on the
slightly stronger RSA assumption, it is much more efficient. The signature scheme of
(GMRS88] uses a large amount of memory for the signer, and quite a lot of computa-
tion. Our scheme uses no memory at all, except for a counter and the public values,
and signing and verifying takes about as much computation as RSA does, depending
on the parameters.

The Lamport Scheme

Our scheme can be thought of an optimization for both security and efficiency of
(GMY83]. To explain the new system, we compare it to the earlier Lamport scheme
(explained already in [DH76, page 650]). To make a signature in this scheme, the
signer makes a secret list of 2k random numbers
A=010,011,30:3 105 81,0:3x 1
applies a one-way function f to all elements, and publishes the resuit B:
_ {f(ax,c)‘f(az,o),--.,f(ﬂk,o)
f(aah f(ag ... f(ary)
The signature consists of the numbers O my 132,y s-- 1 Bp,m, from the list A (one

from each “column™),where m;, m,,..., m, are the bits of the message to be signed.
The lists A and B cannot be used again.



The properties of Lamport’s scheme are easy to verify:

+ Signing a message is only the publication of the proper elements of A.

» To forge a signature, one needs to find certain values from the list A. How hard
this is, depends on the security of the one-way function f.

» If the values A are only used for one signature, new signatures cannot be made
from old ones.

« Verificadon of a signature consists of applying the one-way function to the signa-
ture values, and comparing them to the public values determined by the signed
message.

The new system uses the same idea, with three important differences. first, the list

B is replaced by another list that can be used for all signatwres. Second, the list A is

constructed from two lists so that less memory is needed to define it. Third, the ele-

ments of A in the signature can be combined into a single number.

A small optimization

There is a trivial optimization of Lamport’s scheme that reduces the number of public
function values to almost half, that we could not find in the literature. This optimiza-
tion is independent of the signature scheme as such. Basically, the signer signs by
publishing a &-element subset of the 2k secret numbers. Lamport’s scheme chooses
a particular set of subsets of the set of 2k elements, as shown above. The necessary
property of this set of subsets is that no subset includes another.
There are other sets of subsets with the property that no subsets includes another.
A largest set of subsets with this property is the set of all k-element subsets (a well-
known result from lattice theory). For these sets, it is easy to see that no subset in-
cludes another.
For example, in Lamport’s scheme, the list of 6 elements
A=a0,4 1,8 0,%),%0,331
allows us to sign messages of 3 bits. If we renumber A as a;,d;,d3,94,d5,d6,
we get the set of 20 three-element subsets of A:
{a1,.09.95}, {ay.a5,a4}. (a1.82,a5), (a1.83.36), (ay,83.94]),
(ay.as.as), {ay.a3.66), (a1.a4.a5), (ay,a5.a¢), {a1.a5.a6),
(@r83.a,), (a3.85,a5), (@3.85.06). (a5.04,a5), (3;.04.06).
(a24a5.a6}, {a3,84,35), (33.84.86), (33,05.a6). {a4.a5.a6};
this allows us to sign one of 20 messages, which is equivalent to more than 4 bits.

In general, there are
2k
(Zklc) or about éﬁ,
k-element subsets, so that we can sign messages of about 2k—-%log2(kn) bits.
The original Lamport scheme allowed messages of only £ bits, so that we get almost



a doubling of the message size for the same size of the list B. This simple improve-
ment can also be used in our new signature scheme,

To encode a signature, a mapping needs to be defined between messages and these
subsets:

s{message) = subset.

The simplest mapping just enumerates messages (interpreted as numbers from O
onwards) to sets (seen as binary strings that denote 1 for presence and 0 for absence)
in order. Such a mapping is easily and efficiently computed by the algorithm shown in
figure 1. The binomial coefficients do not need to be computed by repeated multipli-
cation and division. The first binomial coefficient is always the same, so it can be pre-
computed, and the others can be computed by one multiplication and one division by
small numbers using the properties:

t=1y_(t) 1—¢ (=1 _(t) e
()=() 5 ana (20005
The algorithm outputs ones and zeros corresponding to the elements in the result-
ing set.

Note that the Lamport scheme uses another mapping that maps numbers onto -
clement subsets, but that only a small number of these sets are used.

Let n, the message, be a number in the range 0.. .(2/(/‘) -1

Put 2kintand k in e.
Whilet > O
Putr-1linu:.

Ifnz (2), putn— (2) inn, e-1ine, and output a 1 (this ¢ is in the set).

Else, output a O (this ¢ is not in the set).
Fig 1. Algorithm for the mapping .

The New Signature Scheme

The new signature scheme replaces the list A of the Lamport scheme by a list of num-
bers that can be organized in a matrix. Instead of using a new list B for every signa-
ture, a fixed list called R is used for all signatures and all participants. The one-way
function f is replaced by a set of trapdoor one-way functions, that changes per signa-
ture. For the trapdoor one-way functions, we use the modular root function of
[RSA78].

The construction allows us to sign long messages using only a few numbers to
define the set A. In the example of figure 2, the set A of 12 elements is constructed



from three primes pi, p,, p3y (used only for this signature) and four public values
T, 3, r3, T4 (that can be used again). This set allows us to sign messages of 9
bits, since there are 924 > 2% possible 6-element subsets of A. Signing messages of 9
bits in the original Lamport scheme takes 18 public values that can be used only once.

P\‘/}: An % Ary
P\zf‘; P‘Zvr’; % n’a
2 An A R

Fig. 2. Example list A of the new scheme.

The numbers ai of A are secret encryptions of the numbers i of R, and the
corresponding decryption exponents are public. The multiplicative property of RSA
allows us to multiply the values of the signature to form one number. Verification of a
signature can be done using a simple computation, without having to compute the sep-
arate factors.

The public values of the new system are:

* One modulus per signer;

+ The system-wide list R. This list is used by all users, and that it does not change
often, so that distribution does not require much traffic. The numbers in R are
smaller than the smallest modulus used by the signers.

= A list of sets of primes that may be used for signing. For security reasons, the sets
may not overlap each other, and the signers may only use these sets of primes.

A signature consists of the original message signed, the signature proper (an inte-

ger smaller than the modulus of the signer), and a description of the prime set.
In the language of [GMR388]:

* The security parameter determines the size of the RSA modulus. This modulus
can vary per user.

+ The message space M is (equivalent to) the set of subsets of A that include half the
elements.

+ The size of the public list of sets of primes determines the signature bound b.

* Key generation is a matter of generating an RSA modulus, and computing
exponents for the modular root extractions.

« Signing and verification are defined below.



Signing

For the list A of a signature, the set of RSA encryptions
A={£/_r_m0dntpeP;reR}

is used, where:

» P aset of primes from the public list;

+ R is the public list of verification values;

¢ nis the RSA modulus of the signer.

As explained above, a signature is constructed from a subset determined by s{(m)
of half these numbers. The constant £ used in the algorithm that maps s is equal to
| #B#R |. This allows us to sign a message of almost #A = #P-#R bits. The product of
the elements of A in this subset is the signature. Since this is a single number, the sig-
nature is much more compact than in Lamport's scheme.

Thus, signing a message consist of the following steps:

» Choose the set P of primes that is to be used for this signing from the public list.
This determines A:

A= {p,- 2 modn'i,je (L...#P) x{l,...#R}}.

Like the sets A and B in Lamport’s scheme, the set P can be used only once. The list
A need not be computed.
+ Determine the message m to sign. This could be a message, or a public hash
function value of that message, for example.
» Compute the subset M of index pairs from (1,....#P}x[1,....#R} from the
message m with the algorithm described above:
M =s(m)
+ Compute the signature proper:

§= T4/ (modn),

i,jeM

and send m, P, and § to the recipient.

There are two ways to increase the efficiency of signing. If there is time to do a
precomputation, the entire set A can be computed before the value of m is known.
Although this takes quite a while, signing becomes much faster, since signing consists
only of multiplying the proper values of A together. If precomputation is not possible,
the computation of § can be speeded up with a vector addition chain (Bos92].

Verification

Instead of trying to compute individual factors of the signature, the number § can be
verified in a single computation. To see this, we note that the power of the signature



HPI:
SﬁEP

shouid be equal to the following product that can be computed from public values:

The lower product can be computed with a vector addition chain. Verification of a
signature consists of checking that these two values are the same. The verification can
be performed with a single vector addition chain, if the inverse of the signature is
computed first:

[1r: [Tre /p;

(5‘1)str . H,.ike /
i,jeM
which must evaluate to 1 (mod n). To increase the efficiency of the verification, the
signer could send 1/S instead of S, 50 that the inversion is performed only once by
the signer, and not by every verifier.

If not all prime numbers from P occur as exponents in the set M, it is possible 10
verify a signature using slightly fewer multiplications by raising S to only the occurr-
ing primes. Unfortunately, this optimization is only applicable in the less interesting
cases where verification requires a lot of multiplications,

The verifier must also check whether P occurs in the public list. If P is described
as an index number in this list, this is of course unnecessary.

L}

Parameters

In practice, the following parameter values could be used:

* A modulus size big enough to make factorization hard (200 digits, or 668 bits).

+ R alist of 50 numbers.

+ The sets P consisting of the (52 +1)® 1o the (57 +5)® odd prime number, where
ne [0,...,16404} is the sequence number of the signature. This uses the primes
of up to 20 bits.

With these parameters, we have sets A of 250 elements, so that a message of 245
bits (30 bytes) can be signed. A signature consists of the message, the signature pro-
duct (668 bits, or 84 bytes), and the index number of the prime set (15 bits, or 2 bytes).
Computing a signature takes about 1512 modular multiplications, and verification
about 272; both these numbers are obtained using vector addition chains.

The list of the odd primes up to 20 bits (the highest being 1048557) can easily be
stored; it would need onty 64 X bytes of storage (using a bit table of the odd numbers)
and contain 82025 primes. Such a list can easily be stored in a ROM chip. When all
primes are used up, the user can choose a new modulus and start again. Another solu-



tion is to change the list R often enough so that users do not run out of primes. To
make it possible to verify old signatures, old values of R and the user moduli must be
saved.

The list R can be computed from a seed number using a public hash function. This
way, only one seed number is needed to define R. This allows us one to use a long list
R while using small amounts of data to distribute it. Also, less data is needed to save
old lists.

Figure 3 shows the performance of the algorithm for several sizes of R and P. For
each of the entries in the table, the modulus is 668 bits (200 decimal digits), and the
size of the primes in P is 20 bits. The entries are computed by averaging random
number approximations. The entries marked by * have an estimated standard devia-
tion higher than 10, so that the last digits are likely to be inaccurate.

Powers and products were computed using addition chains and sequences; see
(Bos92, chapter 4]. The products were computed collecting the base numbers; for
example, the product

SRR R
would be computed as
bf" ,b2=1+¢3  phite: -b:’-
using a vector addition chain algorithm. In the cases were a single power was 0 be
computed, the “window method” of [Bos92] was applied.

The table shows that in the general case, where verification is done more often than
signing, it is advantageous to use a small P, possibly of only one ¢lement. The length
of the list R is not a problem if it is generated from a seed, as suggested above.
Another advantage of using a small set P is that the list R has to change less often.

#R  #P | message sign  verify

250 1 245 910 152

50 5 245 1512 272
5 50 245 1451  2048*
250 245 796 7123+

500 1 495 1035 278
50 10 495 2964+ 1372+

68 1 64 819 61

17 4 64 1317 162
4 17 64 1301 659*

Fig. 3. Performance for differeru size of R and P.

The influence of the modulus size and prime size on the performance is shown is



10

Figure 4. In this table, the size of R is set o 50 elements, while the sets P contain 5
elements each. The number of multiplications for signing depends on the size of the
modulus only, while the number of multiplications for verifying depends on the size of
the prime numbers only. Although it saves a little time during the signing to use a
shorter modulus, we suggest using a modulus of 668 bits, since the current technology
already allows factoring numbers of up to 351 bits.

The size of the primes in the sets P determines the verification time. Choosing
smaller primes increases the speed of verification, but allows fewer signatures before a
new list R is needed.

prime size | verifying

modulus size i signing

512 1172 10 7l
668 1512 20 272
30 381

Fig. 4, Performance for different sizes of modulus and primes.

If the elements of A are precomputed, signing takes #A/2-1 multiplications. The
precomputation takes about 796-#A multiplications, so precomputation is only effec-
tive if there is plenty of time for doing it.

For extremely fast verification of signatures, we choose a list R of 68 elements,
generated from a seed number that is part of the signature, and P ={3}. For these pa-
rameters, the message to be signed is 64 bits (8 bytes). This allows verification of a
signature in only 35 modular multiplications, plus the time to generate the elements of
R. Signing takes about 819 muitiplications. Using precomputation, signing takes 33
multiplications, but about 55000 multiplications for the precomputation.

Proof of unforgeability

We prove that the signature scheme is “existentially unforgeable under an adaptive
chosen-message attack”. This means that, under the RSA assumption, if an attacker
can influence the signer to sign any number of messages of his liking, he cannot forge
new signatures in polynomial time, even if the messages depend on the signatures on
earlier messages.

The main theorem used to prove unforgeability of the signature system is proved
by Jan-Hendrik Evertse and Eugdne van Heijst in (EH90], and is a generalization of a
theorem by Adi Shamir [Sha83]. The theorem is about computing a product of RSA
roots with a given modulus if a set of products of signatures is known. Under the RSA
assumption, the theorem states that if a set of products of roots is known, the only new
products of roots that can be constructed in polynomial time are those that can be



11

computed using multiplication and division.

One assumption we make is that the attacker cannot combine the signatures of
different participants, because they have different moduli. This is still an open prob-
lem. This assumption allows us to use the results of [EH90].

In our situation, we assume an attacker who knows many signature products §
from a participant. These products can be written as products of roots of elements of
R:

Rt ergd®,
where the numbers xi are rational numbers, The theorem of [EH90] states that if we
interpret the x as vectors, the only new products that can be computed by the attacker
correspond 1o linear combinations of these vectors. What remains to be proved is that
linear combinations of these vectors do not give products that the attacker can use for
new signatures,

The denominators of the rational numbers x; are products of primes from the set P
of the corresponding signature, since the x; are sums of the form -;}1-4- A +..., where
p; € P. This means that we can speak of “the set of primes in a vector”, meaning both
the set of primes that occur in the denominators of the elements, and the set P used for
generating the signature. Every signature uses another P, and the sets P do not
overlap, so the sets of primes in the vectors also do not overlap. A linear combination
of vectors will contain only primes that occurred in the original vectors. From this we
see that combining signatures with multiplication and division will not produce a
signature with a set P that is not used before.

For a set P that has already been used, the only linear combination of vectors that
contains the primes of P is a multiple of the corresponding vector, because any other
linear combination of vectors contains primes not in P . This means that other signa-
ture products do not help compute a new signature product with a given set P. From
the definition of the signature product, we see that a power of a product cannot be a
signature on another message, so this method also yields no new signatures for the
attacker,

Note that if m is a one-way hash function of a message, signatures on other mes-
sages can be forged if the hash function is broken. This is of course a separate prob-
lem from the security of the signature scheme.

From the above we conclude that an attacker cannot, under the RSA assumption,
produce a signature product that is not already computed by the signer. This finishes
the proof that the signature scheme is secure.



Conclusion

It was already known that a signature with provable unforgeability existed under the
factoring assumption. Qur scheme, based on the modular root assumption, improves
on the scheme in the literature on several points: signatures are smaller, while signing
and verification use much less memory and computation. The new scheme has a large

degree of flexibility, allowing the signing of both long and short messages by varying
the parameters.

References
(BCDP90] J. F. Boyar, D. Chaum, I. B. Damgdrd and T. Pedersen: Convertible Undeniable

Signatures, Advances in Cryptology: Proc. Crypto '90 (Santa Barbara, CA, August 1950),
1o be published.

[RD85] E. F. Brickell and J. M. DeLaurentis: An Attack on a Signature Scheme proposed by
Okamoto and Shiraishi, Advances in Cryptology: Proc. Crypto '85 (Santa Barbara, CA,
August 1985), pp. 28-32.

[Bet88]  T. Beth: A fiz-Shamir-like Authentication Protocol for the EIGamal Scheme, Advances in
Cryptology: Proc. Eurocrypt '88 (Davos, Switzerland, May 1988), pp. 77-86.

(BM88] M. Bellare and S. Micali: How to Sign Given any Trapdoor Function, Advances in
Cryptology: Proc. Crypto '88 (Santa Barbara, CA. August 1988), pp. 200-215.

[Bos92] J. N. E. Bos: Practical Privacy, dissenation of the Eindhoven University of Technology,
march 1992,

(CA89] D.Chaum and H. van Antwerpen: Undeniable Signatures, Advances in Cryptology: Proc.
Crypto '89 (Santa Barbara, CA, August 1989), pp. 212-216.

[Cha82] D. Chaum: Blind Signatures for Untraceable Payments, Advances in Cryptology: Proc.
Crypto "82 (Santa Barbara, CA, August 1982), pp. 199-203.

[Cha%0] D. Chaum: Zero-knowledge Undeniable Signatures, Advances in Cryptology: Proc.
Eurocrypt '90 (Arhus, Denmark, May 1990), pp. 458-464.

[CHPS91] D. Chaum, E. van Heijst, and B. Pfitzmann: Cryptographically Strong Undeniable
Signatures, Unconditionally Secure for the Signer, Advances of Cryptology: Proc. Crypto
'91 (Santa Barbara, August 1991), to be published.

[CR0] D. Chaum and S. Reijakkers: Unconditionally Secure Digital Signatures, Advances in
Cryptology: Proc. Crypto "90 (Santa Barbara, CA, August 1990), pp. 209-217.

[Den84] D. E. R. Denning: Digital Signatures with RSA and Other Public-Key Cryptasystems,
Comm. ACM 27 (No. 4, April 1984), pp. 388-392.

(DH76] W. Diffie and M. E. Hellman: New Directions in Cryptography, [EEE Trans. Information
Theory IT-22 (No. 6, November 1976), pp. 644-654.

[DLM82] R. DeMille, N. Lynch, and M. Merritt: Cryptographic Protocols, Proc. 1dth ACM Symp.
Theory of Computing (San Fransisco, CA, May 1982), pp. 383-400.

[EAKMMS5]

D. Estes, L. M. Adleman, K. Kompella, K. McCuriey, and G. L. Miller: Breaking the
Ong-Schnorr-Shamir Signature Scheme for Quadratic Number fields, Advances in
Cryptology: Proc. Crypto "85 (Santa Barbara, CA, August 1985), pp. 3-13.



[EGL89)]
[EGM89]
[EHS0]

(EHS1]

[E1G8S]

[FS86)

[GMR84]

[GMR88]

[GMY83]
[Col86]
[Gol86a]

[Hay50]

[Lic81]
(Mau91]
(Mer89]
[MH78]
[Oka88)
[0s85]

[0SS84)

{Rab77
[Rab79)

S. Even, O. Goldreich, and A. Lempel: A Randonuzed Protocol for Signing Contracts,
Advances in Cryptology: Proc. Crypto '89 (Santa Barbara, CA, August 1989), pp. 205-210.
S. Even, Q. Goldreich, and S. Micali: On-line/Off-line Digital Signatures, Advances in
Cryptology: Proc. Crypto *89 (Santa Barbara, CA, August 1989), pp. 263-275

J-H. Evertse and E. van Heyst: Which RSA Signatures can be Computed from Some Given
Signatures?, Advances in Cryptology: Proc. Eurocrypt '90 (Arhus, Denmark, May 1990),
pp. 83-97.

J-H. Evertse and E. van Heyst: Whick RSA Signatures can be Computed from Certain
Given Signatures?, Report W 91-06, February 1991, Mathematical Institute, University of
Leiden.

T. ElGamal: A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithm, [EEE Trans. Information Theory IT-31 (No. 4, July 1985), pp. 469-472.

A. fiat and A. Shamir: How t0 Prove Yourself: Practical Solutions of Identification and
Signature Problems, Advances in Cryptology: Proc. Crypto '86, (Santa Barbara, CA,
August 1986), pp. 186-194.

S. Goldwasser, S. Micali, and R. L. Rivest: 4 “Paradoxical” Solution to the Signature
Problem, Proc. 25th IEEE Symp. Foundations of Computer Science (Singer Island, 1584),
pp. 441448,

S. Goldwasser, S. Micali, and R. L. Rivest: A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks, SIAM Joumnal on Computing 17 (No 2, April 1988), pp-
281-308.

S. Goidwasser, S. Micali, and A. Yao: Strong Signature Schemes, Proc. 15th ACM Symp.
Theory of Computing (Bosten, MA, April 1983), pp. 431-436.

0. Goldreich: Two Remarks Concerning the Goldwasser-Micali-Rivest Signature Scheme,
Advances in Cryptology: Proc. Crypto '86 (Santa Barbara, CA, August 1986), pp. 104-110.
0. Goldreich: Two Remarks Concerning the Goldwasser-Micali-Rivest Signature Scheme,
Repont MIT/LCS/TM-3185, Massachusetts Institute of Technology.

B. Hayes: Anonymous One-Time Signatures and flexible Untraceable Electromic Cash,
Advances in Cryplology: Proc. Auscrypt "90 (Sydney, Australia, January 1950), pp. 294-
305.

K. Lieberherr: Uniform Complexity and Digital Signatures. Theoretical Computer Science
16 (1981), pp. 99-110.

U. Maurer: Non-interactive Public Key Cryptography, Advances in Cryptology: Proc.
Eurocrypt "91 (Brighton, United Kingdom, April 1991}, to be published.

R. C. Merkle: A Certified Digital Signature, Advances in Cryptology: Proc. Crypto 89
(Santa Barbara, CA, August 1989), pp. 218-238.

R. C. Merkle and M. E. Hellman: Hiding Information and Signatures in Trapdoor
Knapsacks, [EEE Trans. Information Theory IT-24 (No. 5, September 1987), pp. 525-530.
T. Okamoto: A Digital Multisignature Scheme Using Bijective Public-Key Cryptosystems,
ACM Trans. Computer Systems 6 (No. 8, November 1988), pp. 342-441.

T. Okamato and A. Shiraishi: A Fast Signature Scheme Based on Quadratic Inequalities,
Proc. 1985 Symp. Secunty and Privacy (Qakland, CA, April 1985), pp. 123-132.

H. Ong, C. P. Schoorr, and A. Shamir: Efficient Signature Schemes based on Polynonual
Equarions, Advances in Cryptology: Proc. Crypto '84 (Santa Barbara, August 1934), pp.
37-46.

M. O. Rabin: Digitalized Signatures, Foundations of Secure Computations 1977 (Atlanta,
GA, October 1977), pp. 155-168.

M. O. Rabin: Digitalized Signatures and Public-key Function as Intractable as
Factorization, Report MIT/LCS/TR-212, Massachusetts Institute of Technology.



[Roo91]
[RSA78)
(Sch8g]
(Sha78)

[Sha82]

[ShaB3]
{Sha84]

[SQV39]

[TuB4]
[(Wil80]

[Yuv79]

14

P. J. N. de Rooij: On the security of the Schnorr Scheme using Preprocessing, Proc.
Eurocrypt 91 (Brighton, United Kingdom), to be published.

R. L. Rivest, A. Shamir, and M. Adleman: A Method for Obtaining Digital Signatures
and Public Key Cryptosystems, Comm. ACM 21 (No 2, February 1978), pp. 120-126.

C. P. Schaorr: Efficient [dentification and Signatures for Smart Cards, Advances in
Cryptology: Proc. Crypto '89 (Santa Barbara, CA, August 1989), pp. 239-251.

A. Shamir: A Fast Signature Scheme, Report MIT/LCS/TR-107, Massachusetts Institute of
Technology.

A. Shamir: A polynomial Time Algorithm for Breaking the Basic Merkle-Hellman
Cryptosystem, Proc. 23rd [EEE Symp. Foundations of Computer Science (Chicago, IL.
1982), pp. 145-152.

A. Shamir: On the Generation of Cryptographically Strong Pseudorandom Sequences,
ACM Trans. Computer Systems 1 (No. 1, February 1983), pp. 38-44.

A. Shamir: /dentity-based Cryptosystems and Signature Schemes, Advances in
Cryptology: Proc. Crypto '84 (Santa Barbara, CA, August 1984), pp. 47-53.

M. de Soete, J.-J. Quisquater, and K. Vledder: A Signature with Shared Verification
Schema, Advances in Cryptology: Proc. Crypto '89 (Santa Barbara, CA, August 1989), pp.
253-262.

Y. Tulpan: Fast Cryptoanalysis of a Fast Signature System, Master’s thesis in Applied
Mathematics, Weizmann Institute, Israel, 1984,

H. C. Williams, A Modification of the RSA Public-Key Encryption Procedure, IEEE Trans.
Information Theory IT-26, (No. 6, November 1980), pp. 726-729.

G. Yuval: How to Swindle Rabin, Cryptologia 3 (No. 3, July 1979), pp. 187-189.



	Provably Unforgeable Signatures
	Introduction
	Signature scheme
	Related work
	The Lamport Scheme
	A small optimization
	The New Signature Scheme
	Signing
	Verification
	Parameters
	Proof of unforgeability
	Conclusion

	References


