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Abstract. Very strong de6mtions of security for signature schemes have bcen p m  
posed in the litcrarure. Construdicms for such schemes have btcn proposed, but so far 
they have only becn of theoruical interest and have becn considered far too inefficicnt 
for praaical use. 
Here we present a new scheme that satisfies these - g a t  ddiniticmr and uses e s ~ e k  
t i d y  the same amount of computation and memory as the widely applied RSA 
scheme. The scheme is based on the well known RSA assumption. 
Our signatures can be thought of as products resulting from a two-dimensional 
Lampon scheme, where me dimension sonsuts of a list of public constarus, and the 
olher is the sequence of odd prim-. 

Introduction 

One of the greatest achievements of modern cryptography is the digital signature. A 
digital signature on a message is a special encryption of the message that can easily be 
verified by third parties. Signatures cannot be denied by the signer nor falsified by 
other parties. 

This article introduces a new signature scheme that combines the strength of the 
strongest schemes with the efficiency of RSA. 

Signing a message of 245 bits in our scheme is possible in roughly 910 multiplica- 
tions, and verifying it costs about 152 multiplications. In comparison, RSA, using the 
ISO/IEC standard 97% redundancy scheme, takes roughly 768 multiplications (or 610 
using addition chains) for signing, and 3 (or optionally 17) for verification. RSA sig- 
natures are 512 bits long, while ours requires an additional message counter. Thus, 16 
extra bits give a scheme that allows 65,536 signa&ures per public key. 

A variation involving pre-computation, signs short messages (64 bits) in 33 multi- 
plications (not counting precomputation) and verifies in 35 multiplications. 

After the introduction, we discuss other signature schemes relevant to this work. 
We discuss the Lamport signature scheme, on which this signature scheme is based, in 
detail. Then, the new scheme is explained, and the possible choices for parameter val- 
ues are shown. 

E.F. Bnckell (Ed.): Advances in Cryptology - CRYPT0 '92, LNCS 740, pp. 1-14, 1993. 
0 Spnnger-Verlag Berlin Heidelberg 1993 
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Signature scheme 
An overview of signature schemes, comparing securities, can be found in the paper 
mentioned earlier [GMRB]. We use their notation. They define a signature scheme 
as consisting of the following components: 

A securityparamerer k, that defines the security of the system, and that may also 
influence performance figures such as the length of signatures, running times and 
so on. 
A message space M, that defines on which messages the signature algorithm may 
be applied. 
A signature bound 6, that defines the maximal number of signatures that can be 
generated without reinitialhation. Typically, this value depends on k ,  but it can 
be infinite. 
A key generation algorirhm G ,  that allows a user to generate a pair of 
corresponding public and secret keys for signing, The secret key S is used for 
generating a signature. while the public key P is used to venfy the signature. 
A signarure algorithm cs, that produces a signature, given the secret key and the 
message to be signed. 
finally, a verificafion algorirhm, that produces true or false on input of a signature 
and a public key. It ouputs true if and only if the signature is valid for the particu- 
lar public key. 

Some of these algorithms may be randomized, which means that they may use 
random numbers. Of course, G must be randomized, because different users must 
produce different signatures. The signing algorithm d is sometimes randomized, but 
this tends to produce largcr signatures. The verification algorithm is usually not ran- 
domized. 

A simple example of a signature scheme is a trapdoor one-way function f. The 
functionf is used for verification by comparing the function value of the signature 
wiLh the message to be signed, and a is the trapdoor olf. The main problem with 
such a scheme is that random messagesf@) can be signed by talung a random signa- 
ture value 1. A simple solution is to let M be a sparse subset of a larger space, so that 
the probability thatf(x) is a valid message for random x is low. An example of a 
sparse subset is the set of “meaningful” messages. 

Related work 
The notion “digital signature” was introduced in [DH76]. This paper, which can be 
considered the foundation of modern cryptography, discusses the possibility of digital 
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signatures and the use of a trapdoor one-way function to make them. 
mSA781 is the original article on the RSA scheme. It introduces the famous RSA 

trapdoor one-way function. This function is still widely in use and is applied fre- 
quently. A well-known weakness of RSA is that it is multiplicative: the product of 
two signatures is the signature of the product This potential problem can be prevent- 
ed as above by chmsing an appropriate sparse message space. 

Since then, an enormous number of signature schemes have been proposed 
[Rab77, MH78, Sha78, Rab79, Lie81, DLM82, GMY83, Den84, GMR84, OSS84, 
ElG85, OS85, FS86, BM88. GMR88. CA89, EGL89, EGM89, Mer89, Sch89, 
SQV89, BCDF90, Cha90, CRW, H a m ,  CHP911, applied [Wi180, Cha82, Gol86, 
Bet881, and broken [Yuv79, Sha82, T U N ,  BD85, EAKMM85, Roo911. We will not 
discuss all these schemes here; we only discuss the Ones that are interesting to com- 
pare with the new scheme. 

The schemes [Rab79, GMY83, GMR84, GMR881 are steps towards a provably 
secure signature scheme. The scheme described in the last article is secure in a very 
strong way: it is “existentially unforgeable under an adaptive chosen-message attack’ 
with probability smaller than l/Q(k) for every polynomial Q. This means that ge- 
nerating a new signature is plynomially hard if signatures on old messages are 
known, even if the old signatures are m messages chosen by the aaacker. 

The scheme in [GMR88] is based on factoring. While our scheme is based on the 
slightly stronger RSA assumption, it is much more efficient The signature scheme of 
[GMR88] uses a large amount of memory for the signer, and quite a lot of computa- 
tion. Our scheme uses no memory at all, except for a counter and the public values. 
and signing and verifying takes about as much computation as RSA does, depending 
on the parameters. 

The Lamport Scheme 

Our scheme can be thought of an optimization for both security and efficiency of 
[GMY83]. To explain the new system, we compare it to the earlier Lomporr scheme 
(explained already in DH76, page 6501). To make a signature in this scheme, the 
signer maka a secret list of 2k random numbers 

A = q , O l  q . 1 9  %.O* %.l** * * *  Ok.09 uk,l* 

applies a one-way functionfto all elements, and publishes the result B: 

The signature consists of the numbers a,,,,, ,%,* ,..., from the list A (one 
from each “column”),where ml, m2. ..., mk are the bits of the message to be Signed. 
The lists A and B cannot be used again. 
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The properues of Lamport’s scheme are easy M verify: 
Signing a message is only the publication of the proper elements of A. 
To forge a signature, one needs to find cermn values from the list A. How hard 
this is, depends on the security of the one-way funcuonf. 
If the values A are only used for one signature, new signatures cannot be made 
from old ones. 
Verification of a signature consists of applying the one-way function to the signa- 
ture values, and comparing them to the public values determined by the signed 
message. 
The new system uses the same idea, with three important differences. firs& the list 

B is replaced by another list that can be used for all signatures. Second, the list A is 
constructed from two lists so that less memory is needed to define it. Third, the ele- 
ments of A in the signature can be combined into a single number. 

A small optimization 
There is a rrivial optimization of Lamport’s scheme that reduces the number of public 
function values to almost half, that we could not find in the literature. This optimiza- 
tion is independent of the signature scheme 3s such. Basically, the signer signs by 
publishing a k-element subset of the 2k secret numbers. Lamport’s scheme chooses 
a particular set of subsets of the set of 2k elements, as shown above. The necessary 
property of this set of subsets is that no subset includes another. 

There are other sets of subsets with the property that no subsets includes another. 
A largest set of subsets with this property is the set of all k-element subsets (a well- 
known result from lattice theory). For these sets, it is easy to see that no subset in- 
cludes another. 

For example, in Lampon’s scheme, the list of 6 elements 

allows us to sign messages of 3 bits. I f  we renumber A as alta2,(13,a4,a5,(1gr 
we get the set of 20 threeelement subsets of A: 

=~~.o.”r~~a2,o~az,l~a3,o~a31 

[ a1 &&3 1 v [ 
[ a1 ,a345 1 ,  f 
( %va3 ,a, 1 I 

( %*“5*a6) * { a3 va4rUj * ( a3 

,@,a4 ) s ( a 1 902 ,a5 1 9 ( 

,a3,a6) 

&&6),  [ .a3 pa4 ) 3 

(0, .a445 1 7  ( a1 tad &), f a1 &&) I 

a2%a3*a5 1 t ( %vU’-J .a6 1 7 ( %,a4 ,a’j ) I ( a2@4 & * 

1 e ( a4905 &) ; 9 (a3,a5 
this allows us to sign one of 20 messages, which is equivalent to more than 4 bits. 

In general, there are 
22k 
37 (2kk) or a b u t  

k-element subsets, so that we can sign messages of about 2 k - 3 1 0 g z ( h )  bits. 
The original Lampon scheme allowed messages of only k bits, so that we get almost 
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a doubling of the message size for the same size of the list B. This simple improve- 
ment can also be used in our new signature scheme. 

To encode a signature, a mapping needs to be defined between messages and these 
subsets: 

s(message) = subset. 
The simplest mapping just enumerates messages (interpreted as numbers from 0 

onwards) to sets (seen as binary strings that denote 1 for presence and 0 for absence) 
in order. Such a mapping is easily and efficiently computed by the algorithm shown in 
figure 1. The binomial coefficients do not need to be computed by repeated multipli- 
cation and division. The first binomial coefficient is always the same, so it can be pre- 
computed, and the others can be computed by one multiplication and one division by 
small numbers using the properties: 

The algorithm outputs ones and zeros corresponding to the elements in the result- 

Note that the Lamport scheme uses another mapping that maps numbers onto k- 
ing set. 

element subsets, but that only a small number of these sets are used. 

Let n, the message, be a number in the range 0.. . 

Put 2k in f andk in e. 
While t z 0: 

Putt-1 i n r .  

If n 2 (:I put n - 

Else, output a 0 (this t is not in the set). 

in n, e - 1 in e, and output a 1 (this t is in the set). 

Fig 1. Algorirhm for h e  mapping s. 

The New Signature Scheme 

The new signature scheme replaces the list A of the Lampon scheme by a list of num- 
bers that can be organized in a matrix. Instead of using a new list B for every signa- 
ture, a fixed list called R is used for all signatures and all participants. The one-way 
functionf is replaced by a set of trapdoor one-way functions, that changes per signa- 
ture. For the trapdoor one-way functions, we use the modular root function of 
IRS A7 81. 

The construction allows us to sign long messages using only a few numbers to 
define the set A. In the example of figure 2, the set A of 12 elements is constructed 
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from three primes pl ,  p 2 ,  p 3  (used only for this signature) and four public values 
r l ,  r2 ,  r 3 ,  r4 (that can be used again). This set allows us to sign messages of 9 
bits, since there are 924 > 29 possible 6-element subsets of A. Signing messages of 9 
bits in the orignal Lamport scheme takes 18 public values that can be used only once. 

Fig. 2. Example list A of h e  new scheme. 

The numbers ai of A are secret encryptions of the numbers Ti of R, and the 
corresponding decryption exponents are public. The multiplicative property of RSA 
allows us to multiply the values of the signature to form one number. Verification of a 
signature can be done using a simple computation, without having to compute the sep- 
arate factors. 

The public values of the new system are: 
One modulus per signer: 
The system-wide list R. This list is used by all users, and that it does not change 
often, so that distribution does not require much traffic. The numbers in R are 
smaller than the smallest modulus used by the signers. 
A list of sets of primes that may be used for signing. For security reasons, the sets 
may not overlap each other, and the signers may only use these sets of primes. 

A signature consists of the original message signed, the signature proper (an inte- 

In the language of [GMR88]: 
The security parameter determines the size of the RSA modulus. This modulus 
can vary per user. 
The message space M is (equivalent to) the set of subsets of A that include half the 
elements. 
The size of the public list of sets of primes determines the signature bound 6. 
Key generation is a matter of generating an RSA modulus, and computing 
exponents for the modular root extractions. 
Signing and verification are defined below. 

ger smaller than the modulus of the signer), and a description of the prime set. 
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Signing 
For the list A of a signature, the set of RSA encryptions 

A =  G m o d n  p E P ; r E R  I l  
is used, where: - P a set of primes from the public lisc 
9 R is the public list of verhcation values; 

rt is the RSA modulus of the signer. 
As explained above, a signature is consmcted from a subset determined by s(m) 

of half these numbers. The constant k used in the algorithm that maps s is equal to [-I. This allows us to sign a message of almost #A = #P.#R bits. The product of 
the elements of A in this subset is the signature. Since this is a single number, the sig- 
nature is much more compact than in Lamport’s scheme. 

Thus, signing a message consist of the following steps: 
Choose the set P of primes that is to be used for this signing from the public list. 
This determines A: 

A = { pfimodn (i, j E [l,. . .,# P] x (1,. . .# R)}. 

Like the sets A and B in Lampart’s scheme, the set P can be used only once. The list 
A need not be computed. 

Determine the message m to sign. This could be 3 message, or a public hash 
function value of that message, for example. 
Compute the subset M of index pairs from (1, ..., #P)x[l , - . . ,#R} from the 
message m with the algorithm described above: 

M = ~ ( m )  
Compute the signature proper: 

i. j c M  

and send m, P, and S to the recipient. 
There are two ways to increase the efficiency of signing. If there is time to do a 

precompuration, the entire set A can be computed before the value of m is known. 
Although this takes quite a while, signing becomes much faster, since signing consists 
only of multiplying the proper values of A together. If precomputation is not possible, 
the computation of 3 can be speeded up with a vector uddifion chain Bos921. 

Verification 
Instead of trying to compute individual factors of the signature, the number S can be 
verified in a single compuution. To see this, we note that the power of the signature ; 

4 
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should be equal to the following product that can be computed from public values: 

I . J E M  

The lower product can be computed with a vector addition chain. Verificstion of a 
signature consists of checking that these two values are the same. The verification can 
be performed with 3 single vector addition chain, if the inverse of rhe signature is 
computed first: 

i .jeM 

which must evaluate to 1 (mod n). To increase the efficiency of the verification, the 
signer could send 1/S instead of S, so that the inversion is performed only once by 
the signer, and not by every verifier. 

If not ail prime numbers from P occur as exponents in the set M, it is possible to 
verify a signature using slightly fewer multiplications by raising S to only the OCCLUT- 

ing primes. Unfortunately, his optimization is only applicable in the less interesting 
cases where verification requires a lot of multiplications. 

The verifier must also check wheber P occurs in the public list. If P is described 
as an index number in this lisf this is of course unnecessary. 

Parameters 
In practice, the following parameter values could be used: 

A modulus size big enough to make factorization hard (200 digits, or 668 bits). 
R a list of 50 numbers. 
The sets P consisting of the (5n t 1)' to the (5n + 5)" odd prime number, where 
n E [0, ..., 16404) is the sequence number of the signature. This uses the primes 
of up to 20 bits. 

With these parameters, we have sets A of 250 elements. so that a message of 245 
bits (30 bytes) can be signed. A signature consists of the message, the signature pro- 
duct (668 bits, or 84 bytes), and the index number of the prime set (15 bits, or 2 bytes). 
Computing a signature takes about 15 12 modular multiplications, and verification 
about 272; both these numbers are obtained using vector addition chains. 

The list of the odd primes up to 20 bits (the highest being 1048557) CM easily be 
stored; it would need only 64 K bytes of storage (using a bit table of the odd numbers) 
and contain 82025 primes. Such a list can easily be stored in a ROM chip. When all 
primes are used up, the user can choose a new modulus and start  again. Another solu- 



tion is to change the list R often enough so that users do not run out of primes. TO 
make it possible to verify old signatures, old values of R and the user moduli must be 
saved. 

The list R can be computed from a seed number using a public hash function. This 
way, only one seed number is needed to define R. This allows us one to use a long list 
R while using small amounts of data to distribute it. Also, less data is needed to Save 
old lists. 

Figure 3 shows the performance of the algorithm for several sizes of R and P. For 
each of the entries in the table, the modulus is 668 bits (200 decimal digits), and the 
size of the primes in P is 20 bits. The entries are computed by averaging random 
number approximations. The entries marked by * have an estimated standard devia- 
tion higher than 10, so that the last digits are likely to be inaccurate. 

Powers and products were computed using addition chains and sequences: see 
[Bos92, chapter 41. The products were computed collecting the base numbers; for 
example, the product 

would be computed as 

using a vector addition chain algorithm. In the cases were a single power was to be 
computed, the “window method” of [Bos92] was applied. 

The table shows that in the general case, where verification is done more often than 
signing, it is advantageous to use a small P, possibly of only one element. The length 
of the list R is not a problem if it  is generated from a seed, as suggested above. 
Another advantage of using a small set P is that the list R has to change less often. 

b? .@ .he’ .e .bF .e 
b p  . $ + c 3  .he‘ +‘2 . b a  

#R #P 
250 1 

50 5 
5 50 
1 250 

500 1 
50 10 
68 1 
17 4 

4 17 

message sign verify 
245 910 152 
245 1512 272 
245 1451 2048* 

245 796 7123’ 

495 1035 278 
495 2964’ 1372* 
64 819 61 
64 1317 162 
64 1301 659* 

The influence of the modulus size and prime size on the performance is shown is 
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Figure 4. In this table, the size of R is set u) 50 elements, while the sets P contain 5 
elements each. The number of multiplications for signing depends on the size of the 
modulus only, while the number of multiplications for verifying depends on the size of 
the prime numbers only. Although it saves a little time during the signing to use a 
shorter modulus, we suggest using a modulus of 668 bits, since the current technology 
already allows factonng numbers of up to 35 1 bits. 

The size of the primes in the sets P determines the verification time. Choosing 
smaller primes increases the speed of verification, but allows fewer signatures before a 
new list R is needed. 

modulus size 
prime siz 

- 
3n 1 272 

512 1 1172 
- v  

668 I 1512 
30 1 381 

Fig. 4. Performance for different s i t e s  of modulus and primes. 

If the elements of A ;tre precomputed. signing takes #A/2-1 multiplications. The 
precomputation takes about 7964#A multiplications, so precomputation is only effec- 
tive if there is plenty of time for doing i t  

For extremely fast verification of signatures, we choose a iist R of 68 elements, 
generated from a seed number that is part of the signature, and P =( 3 ) .  For these pa- 
rameters, the message to be signed is 64 bits (8 bytes). This allows verification of a 
signature in only 35 modular multiplications, plus the time to generate the elements OC 
R. Signing takes about 819 multiplications. Using precomputation, signing takes 33 
multiplications, but about 55000  multiplications for the precomputation. 

Proof of unforgeability 

We prove that the signature scheme is “existentially unforgeable under an adaptive 
chosen-message attack”. This means that, under the RSA assumption, if an attacker 
can influence the signer to sign any number of messages of his liking, he cannot forge 
new signatures in polynomial time, even if the messages depend on the signatures on 
earlier messages. 

The main theorem used to prove unforgeability of the signature system is proved 
by Jan-Hendrik Evertse and Eugene van Heijst in EH901, and is a generalization of a 
theorem by Adi Shamir [Sha33]. The theorem is about computing a product of RSA 
roots with a given modulus if a set of products of signatures is known. Under the RSA 
assumption, the theorem states that if a set of products of roots is known, the only new 
products of roo& that can be constructed in polynomial time are those that can be 
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computed using multiplication and division. 
One assumption we make is that the attacker cannot combine the signatures of 

different participants, because they have different moduli. This is still an open prob- 
lem. This assumption allows us to use the results of EHW]. 

In our situation, we assume an attacker who knows many signature products S 
from a participant. These products can be written as products of roots of elements of 
R: 

rxl  r‘2 . . . ric , 1 2 3  
where the numbers Xi are rational numbers, The theorem of EH901 states that if we 
interpret the x as vectors, the only new products that can be computed by the attacker 
correspond to linear combinations of these vectors. What remains to be proved is that 
linear combinations of these vectors do not give products that the attacker can use for 
new signatures. 

The denominators of the rational numbers xi are products of primes from the Set P 
of the corresponding signature, since the x, are sums of the form &+ &+--., where 
pi E P. This means that we can speak of “the set of pnmes in a vector”, meaning both 
the set of primes that occur in the denominators of the elements, and the set P used for 
generating the signature. Every signature uses another P, and the sets P do not 
overlap, so the sets of primes in the vectors also do not overlap. A linear combination 
of vectors will contain only primes that occurred in the original vectors. From thb we 
see that combining signatures with multiplication and division will not produce a 
signature with a set P that is not used before. 

For a set P that has already been used, the only linear combination of vectors that 
contains the primes of P is a multiple of the corresponding vector, because any other 
linear combination of vectors contains primes not in P . This means that other signa- 
ture products do not help compute a new signature product with a given set P. From 
the definition of the signature product, we see that a power of a product cannot be a 
signature on another message, so this method also yields no new signatures for the 
attacker. 

Note that if m is a one-way hash function of a message, signatures on other mes- 
sages can be forged if the hash function is broken. This is of course a separate prob- 
lem from the security of the signature scheme. 

From the above we conclude that an attacker cannot, under the RSA assumption, 
Produce a signature product that is not already computed by the signer. This finishes 
the P W f  that the signature scheme is secure. 
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Conclusion 

It was already known that a signature with provable unforgeability existed under the 
factoring assumption. Our scheme, based on the modular root assumption, improves 
on the scheme in the literature on several points: signatures are smaller, while signing 
and verification use much less memory and computation. The new scheme has a large 
degree of flexibility, allowing the signing of both long and short messages by varying 
the parameters. 
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