
1

New Constructions of Fail-Stop Signatures
and Lower Bounds

(Extended Abstract)

Eughne van Heijst', Torben Pryds Pedersen2, Birgit Pfitzmann3

Abstract. With a fail-stop signature scheme, the supposed signer of a forged signature can prove
Lo everybody else that it was a forgcry. Thus h e signer is secure even against cornputauonally
unresnicted forgers. Until r e e d y , efficient constructions were only known for restricted cases,
but at Eurwrypt '92, van Heijst and Pedersen presented an efficient general scheme, where the
unforgeability is based on the discrete logarithm.

We present a similar scheme based on factoring: Signing a message block requires
approximately one modular exponentiation, and testing it requires a litrle more than two
exponentiations. It is useful to have such alternative constructions in case one of the unproven
assumptions is broken.

With all fail-stop signatures so far, the size of the secret key is linear in the number of
messages to be signed. In one sense, we prove that this cannot be avoided: The signer needs So

many secretly chosen random bits. However. this does not imply that these bits ever have u) be
secretly stored at the Same Lime: We present a practical constxuction with only logarithmic m e t
storage and a less practical one where the amount of secret storage is constant.

We also prow rather small lower bounds for the length of public keys and signalures. All
three lower bounds are within a small factor of what can be achieved with one of the known
schemes.

Finally, we prove that with unconditionally secure signatures, like those presented by Chaum
and Roijakkers at Crypto '90, the length of a signature is at least linear in the number of
participants who can test it. This shows that such schemes cannot be as efficient as fail-stop
signatures.

Introduction and Overview over the Results
Ordinary and Fail-Stop Signatures
Ordinary digital signatures, as introduced in [DH76] and formally defined in [GMR881,
&OW a person who knows a secret key to make signatures that everybody else C a n Verify
with a corresponding public key. Such signatures can only be cornputadonally secure: A
forger with unrestricted computing power can always forge signatures of other persons.
The security of the schemes relies on the fact that a realistic forger has not enough time to
C a r r y out brute-force search and the assumption that there is no really efficient algorithm to
compute forgeries.

CWI. h s l a a n 413, NL-1098 SJ Amsterdam ' AZhus Universitet, Computer Science Department, Ny Munkegade. DK-8000 Aarhus C,
tppedm@daimiaau.dk
Institut fiir Informatik, Universiut Hildesheim. Samelsonplatz 1, W-32OO Hildesheim,
pfiQb@ informatik.un I-hildeshet m .de

E.F. Bnckell (Ed.): Advances in Cryptology - CRYPT0 '92, LNcs 740, PP. 15-30> 1993.
0 Spnnger-Verlag Berlin Heidelberg 1993

16

With fail-stop signatures, introduced in [WP90] and formally defined in (PW901,
unforgeability also relies on a computational assumption. If nevertheless a signature is
forged, the alleged signer can prove :hat the signature is a forgery. More precisely, she can
prove that the underlying computational assumption has been broken. This proof may fail
with an exponentially small probabi!ity, but the ability to prove forgeries does not rely on
any cryptographic assumption and is independent of the computing power of the forger.
Thus a polynomially bounded signer can be protected from an ail-powerful forger.
Moreover, after the first forgery, all participants, or the system operator, know that the
signature scheme has been broken, so that it can be stopped. This is where the name “fail-
stop” comes from.

For more details about possible benefits of fail-stop signatures in applications, e.g., in
electronic payment systems, and possible advantages for the acceptability of digital
signatures in law, see pW91, Bl].

Previous Constructions
SO far, there have been three significantly different resclts about fail-stop signatures.

Theoretically, fail-stop signature schemes are known to exist if claw-free pairs of
permutations (not necessarily with trap-door) exist; see [BPW91, PW911 for descriptions
and [PW90] for a proof. In particular, this shows that fail-stop signatures exist if factoring
large integers or computing discrete logarithms is hard. The construction uses onetime
signatures, similar to [L79], i.e., messages are basically signed bit by bit. Therefore,
although messages can be hashed before signing and tee-authentication is used (similar to
[MSO]), this general construction is not very efficient.

There is an efficient variant especially suited for making clients unconditionally secure in
on-line payment systems, see [HI]. However, in this scheme, all signatures by one client
(with one key) must have the same recipient, like the bank in a payment system.
Furthermore, signing IS a h o u n d protocol between the signer and the recipient.

The first efficient general fail-stop signature scheme was presented in w92]. The
unforgeability relies on a discrete logarithm assumption. Signatures for one message block
are about as efficient as with RSA. Messages can be hashed before signing. In contrast to
RSA, the signer needs some new random bits for each new signature, and tree
authentication is needed to keep the public keys short. However, fast hash functions can be
used without reducing the secuilty of the signer.

Related Types of Systems
In [cJ3’921, unconditional security for the signer was achieved in undeniable signatures
(cf. [CA90]). The construction was the first not to use bit-by-bit signing. Apart from the
U S U ~ differences between ordinary and undeniable signatures, this scheme differs from
efficient fail-stop signatures in two ways: First, although the signatures themselves are
efficient, the verification protocol requires quite a lot of computation, because it needs d
challenges (similar to signatures) to achieve an error probability of 2-4 Secondly, if the
computational assumption is broken, signers can disavow signatures, but there is no way
for the recipient to prove to a third party that this is due to cheating (whereas with fd-stOP
signatures, third parties can distinguish whether the signatures just don’t pass the test, Or

17

whether they are disavowed due to a proof of forgery). In particular, one cannot stop the
scheme as soon as this happens.

In [CR91], unconditionally secure signatures were introduced, i.e., signature-like schemes
where both the signer and the recipient are unconditionally secure. In [PW921, a
transferable version was presented, i.e., signatures can be passed on from one recipient to
another, and security against active attacks on recipients was achieved, such attacks must be
considered because the recipients, too, have secret information in such schemes. With these
extensions, unconditionally secure signatures could in principle replace other signatures in
many applications. So far, however, they are too inefficient to be used in practice: They
require a complicated interactive key generation protocol in many rounds, and signatures are
very long. Hence they cannot replace ordinary or fail-stop signatures at present.

Overview over the New Results
We present two new constructions of efficient fail-stop signatures (Ch. 3 and 5) and some
general lower bounds (Ch. 4).

The first construction has similar properties to that from [HP!92], but the unforgeability is
based on factoring instead of the discrete logarithm. Signing a message blmk requires about
one modular exponentiation, testing a little more than two. Key exchange is in general more
complicated than for the discrete logarithm scheme. Nevertheless, with all types of
cryptographic systems it is useful to have alternative constructions, in case one of the
unproven assumptions is broken.

The second construction and the first lower bound deal with the fact that in all f a h t o p
signature schemes so far, the size of the secret key is linear in the number of messages to be
signed. We show that in the sense of secret storage needed, this can be avoided, whereas in
the sense of choosing secret random bits, it cannot.

Constructions with small secret storage may be important since secret storage is quite
hard to realize: One needs a more or less tamper-proof device. In contrast, information can
quite easily be stored just securely, since one can distribute several copies. (Note that even
ordinary digital signatures assume that a lot of information can be stored securely, since all
signatures must usually be stored by their recipients.) In Ch. 5, we present an efficient
construction where the size of the secret storage space is logarithmic in the number of
messages to be signed, and an otherwise less efficient variant where this size is constant.

For the lower bounds, we assume that the probability that a forgery cannot be proved is
smaller than 2-a for some securiry parameter 0, and that the recipient wants a similar level
of security at least against simple brute-force forging dgorithms. Then the most important
result we obtain about fail-stop signatures is:

I f N messages are to be signed, the signer needs at least (N + l)(o- 1) secretly chosen
random bits. More precisely, this is a lower bound for the entropy of her secrets, given
the public key.

Additionally, we show two more lower bounds for fail-stop signatures. They are not much
lager than similar bounds for ordinary digital signatures would be, since they concern
Parameters where the difference between current fail-stop signatures and ordinary digital
SiPatureS is already quite small.

18

The entropy, and hence the length, of a signature is at least 2 0 - 1, and the entropy of
the public key is at least a, even if a prekey is already given, is., some information
trusted by recipients and chosen before the signer chooses her actual keys.

Finally, we show that unconditionally secure signatures cannot be as efficient as fail-stop
signatures:

The entropy (and thus the length) of each unconditionally secure signature that can be
tested by M participants, including those that only have to settle disputes, is at least
Ma u.

2 Brief Sketch of Definitions
Like an ordinary digital signature scheme, a fail-stop signature scheme contains a method to
generate secret and public keys and algorithms sign for signing messages and rest for testing
signatures. Additionally, there is an algorithm prove, which the signer uses to produce a
proof of forgery from a forged signature, and an algorithm proof - test, which everybody
else uses to test if something really is a proof of forgery.

A secure fail-stop signature scheme has the following properties, where 2. is a
consequence of the others:

1. If the signer signs a message correctly, then the recipient accepts the signature.

2. A polynomially bounded forger cannot make signatures that pass the signature test.

3. If an unreshicted forger succeeds in constructing a signature that passes the signature
test, then with “overwhelming” probability, the signer can produce a proof of forgery
that convinces any third party that a forgery has in fact occurred (i.e., the output of
prove passes proof-test).

4. A polynomially bounded signer cannot make a (false) signature that she can later prove
to be a forgery.

The basic idea to achieve these properties is that (exponentially) many secret keys
correspond to each public key, and different secret keys give different signatures on the
same message. The signer knows exactly one of these secret keys and can only construct
one of the possible signatures on a given message. However, even an arbitrarily powerful
forger does not have sufficient (Shannon) information to determine which of the many
possible signatures the signer can construct on a new message. Consequently, with very
high probability a forged signature will be different from the signature that the signer would
have constructed. The knowledge of two different signatures on the same message then
yields a proof of forgery.

Since there must be security for both signers (see 3.) and recipients (see 4.), both take
part in key generation. Usually, the recipient (or all possible recipients together, or a device
trusted by all recipients) chooses a value called prekey, such as a number that the signer
cannot factor, and then the signer chooses the real secret and public key based on this
prekey. However, we prove the lower bounds for an arbitrary key generation protocol.

There are also two security parameters: Ddetermines that the probability of unprovable
forgeries is smaller than 2-O, and k is the parameter for the cryptographic security of the

19

recipient. Usual choices of CT may be between 40 and 100, whereas k , if it is the binary
length of numbers that should be hard to factor in Ch. 3, must be larger than 500.

Remark: Note that it is not a matter of the definition how one acts if a proof of forgery
occurs. In particular, instead of making signers unconditionally secure by invalidating
signatures after proofs of forgery, one could leave the responsibility with the signer. Then
one has all the properties of an ordinary digital signature scheme, plus the possibility to stop
after forgeries. (This shows that fail-stop signatures are a smctly stronger notion.)

Furthermore, the current definition does not specify for how much of a system a
particular proof of forgery is valid. As long as forging even one signature is provably as
hard as, say, factoring, one should stop the whole scheme after any forgery, because if one
signature has been forged, the same forger can probably forge them all. Therefore, the
constructions usually assume that there is just one type of proof of forgery. However, it is
no problem to make proofs of forgery specific to the keys of individual signers or even

+ (although currently with some loss in efficiency) to each particular signature.

For a complete formal definition, see [PW90]. In this abstract, we will only make those
parts more precise that are actually needed in the proofs of the lower bounds.

3 Efficient Fail-Stop Signatures based on Factoring
This section presents a fail-stop signature scheme based on the assumption that it is
infeasible to factor large integers. To emphasize the generality of the construction, the
scheme is first described in general terms. Like in [Hp92], we first present a version for
signing just one message block.

3.1

The following construction generalizes that from [Hp92]. We base it on so-called bundling
homomorphisms, i.e., functions h with the following properties:
1. h is a homomorphism between two Abelian groups.
2. Given an image h(a), there exist at least 2Tpo~~ib le preimages.
3. It is infeasible to find collisions, i.e., two different values that are mapped to the same

More precisely, there must be a family of such functions and groups, and a key generation
algorithm that selects a particular function h, given z and a security parameter k. One also
needs efficient algorithms for the group operations and to choose random elements.

Now we define all the components of a fail-stop signature scheme (cf. Ch. 2):

General Structure of the Construction

value by h.

Prekey: The recipient selects a function h from the family. Let the domain be G and the
range H.
Prekey test: The recipient must prove that his choice of h was correct, or at least that his
h is in a set of functions with Properties 1 and 2 (which are needed for the security of
the signer).

Secret key: sk := (ski, skz), where sk, and skz are chosen at random from G.

Public key: p k := @ k l , pk2) , where pk, = h(ski) for i = 1, 2.

20

Signing: szgn(sk, m) = skl skZm for messages m from a subset (to be defined) of Z.

Test: rest@&, m, s) = ok :a p k , *pk2'" = h(s).

Proving forgeries: Given a forged signature sf on a message m*, the signer computes
s = sign(sk, m*), and if s # sf, she uses the pair (s,

Testing proofs of forgery: Given two elements of G, verify that they collide under h.

as a proof of forgery.

Theorem 1: Independently of the choice of h, the following holds:

1. Correct signatures pass the test: h(s) = h(skl ~ k 2 ~) = p k l pkzm.

2 . A polynomially bounded signer cannot construct a signature and a proof that it is a

3. If sfis a forged signature on m* and sf# sign(sk, m*), then the signer obtains a valid

forgery.

proof of forgery. +
Proof: Follows easily from the definitions. 0
This theorem shows that the general scheme is secure for the recipients, and that it is also
secure for the signer if even an all-powerful forger cannot guess a correct signature
s = sign(sk, m*>, except with a very small probability. In order to estimate the probability
with which a forger can guess s, first note that the public key contains no information about
which of at least 22T possible secret keys the signer actually has. However, after having
received a signature on a message m, the forger has more information about sk. Theorem 2
gives a condition for when this information is not sufficient to construct new signatures that
the signer cannot repudiate:

Theorem 2: Let p k , a signature s = sign(sk, m), and a message m* t m be given, and let
m' := mi - m. Whatever value sf an all-powerful forger selects as a forged signarure on
m*, the probability that it is correct is at most IT1 / 2?, where

T : = [~ E G l h (d) = l r , d m ' = l) = { d l h (d) = l ~ o r d (d) I m ') .
(The probability is given by the secret keys that are still possible when pk and s are known.)

4

Proof: The set of possible secret keys is
SK* := { (s k i , sk2) E G x G I h(sk1) = p k l A h(sk2) = p k 2 A Skl Skzm = S)

= ((s / S k p , sk2) I h(sk2) = pk2 I ,

sk1 s k p ' = sf.

because of the homomorphism property; and the size of this set is 2*. The attacker is
successful if

For keys from SK*, this equation is equivalent to skZm' = sf I s . This equation may be
unsolvable, but if there is any solution sk2*, then the set of all solutions in SK* is

[(s / skZm, sk2) I h(sk2 / sk2f) = 1 A (sk2 / sk~*)'"' = I).
Hence the number of solutions is ITI, and the attacker is successful with the claimed

Consequently, in order to estimate the probability of successful forgeries we must find the
size of T . This size depends on the chosen family of homomorphisms.

probability. 0

21

3.2

Our family of bundling homomorphisms was defined in [BPW91], using ideas from
[GMR88, G871: A member of the family is characterized by z and a k-bit integer n = pq,
with p , 4 prime and p = 3 and q I 7 mod 8. We omit T and n in the following. The groups

H = kQR/{c l j , and G = Z z Z x H ,
where QR denotes the group of quadratic residues modulo n, and the operation on G is
given by

(a, x> 0 (b, y> := ((a + b) m a j 2 ~ , x - y 4(* + b) div2‘)-
Elements of H are represented by numbers between 0 and nf2; H is used instead of QR
because membership can be tested efficiently. The unit eIement of G is (0,l). The
homomorphism is given by

Theorem 3: The construction described above is a family of bundling homomorphisms.
Properties 1 and 2 even hold for any odd n. Furthermore, if n is chosen correctly or at least
as n =p’$ where p and q are correct and r , s odd, then for any u, z , there exists exactly one
x so that h((a, x)) = z.
Proof See [BPW91]. The last sentence is only proved for correctly chosen n there, but the
same proof is valid for the more general form.

To use these homomorphism in a fail-stop signature scheme according to Sect. 3.1, let the
message space be (0. . . ., 2 P-1) for some p and I. := p + 0. As an efficient prekey test, we
use the protocol from [GP88] and a test that n E 5 mod 8. Actually, this does not completely
prove that ~t is of the correct form, but it ensures that n =/$ where p and 4 are correct and
r , s odd.

Theorem 4: With the definitions made above, the probability of undetected forgery is at
most Z4. 4

Proof: According to Th. 1 and 2, it only remains to prove IT1 I 2 P . Note that in G
(a , 1)”’ = (0, 1) 3 m’* a m d z5= 0 * ord(a) I m’.

Hence T 5; ((a ,x) E G 1 h((n,x)) = 1 A ord(a) I m ’] .
According to Th. 3, for each u, there is exactly one x such that h((a, x)) = 1. Thus

(3)
By the choice of message space, every pair of messages m + m* satisfies Irn-m*l< 2P and

0
As to efficiency, f rs t note that a multiplication in G is mainly one modular multiplication,
since the exponent of 4 is 0 or 1, and a multiplication by 4 can be replaced by shifts and
subtractions. We can choose any fixed message length p long messages are hashed before
signing. Since even the hash functions as secure as factoring from [D88] take only one
multiplication per message bit, i.e., not more than signing or testing, one should always
hash messages as short as possible. Thus p is determined by the size of the output of the
hash function. In the following table of the efficiency of signing one message block, we
assume p = k. If one trusts a faster hash function, or in applications where only short
messages are signed, one can still gain efficiency by making p smaller.

The Special Case With Factoring

are

h((a, x)) = * (40 9‘).

+

IT1 5 ! {a E B,,I ord(a) I m’}l = gcd(2?, m’).

therefore gcd(2?, m-m*) < 2 p.

22

sign :
test:

Length of pk:
Length of sk:
Signature length:

k multiplications-
2k + CT multiplications

2k
4k + 2 0
2k + 0

To sign several messages, one can use tree authentication as in [PW91, HP921, after
[MSO]. Note that key exchange is more efficient in IHp92] because the choice of the prekey
is just a choice of random numbers, and no prekey test is necessary even if there is no
trusted device to choose the prekey.

4 Lower Bounds
The idea of each of our proofs will first be described informally. For the formal sketches,
we assume the reader knows the notions of conditional entropy, H(X I Y), and mutual
information, I(X; I“); see [S49, G68 Sect. 2.2, 2.31. Like in [G68], we use capital letters
for random variables and small letters for corresponding values, and abbreviate P(X =I> by
P(x) etc. The formula we need most is the chain rule to add entropies:

H(Y, 2 I X) = H(Y I X) + H(Z I Y , X) .
Additionally, when we know that the probability that something can be guessed correctly is
small, and want to derive that a conditional entropy is large, we often need Jensen’s
inequality for the special case of the logarithm [F7 I]: If pi 2 0 and x i > 0 for all i, and the
sum of the pi’s is 1, then

4.1

The basic reason why the signer needs a lot of secretly chosen random bits is:

1. Even an arbitrarily powerful forger must not be able to guess the signer’s correct

2. Since this holds for each addtional signature, even when some signatures are already
known, the entropy of each new signature must be large, and therefore the overall
entropy of the signer’s secrets is large.

However, sometimes the forger does know correct signatures on new messages. For
instance, in schemes with message hashing, the forger knows the signatures on all
messages with the same hash value as the original message. (Then the collision counts as a
proof of forgery.) Hence Statement 1 does not hold absolutely. Instead, we will derive an
average version as follows:

1.1 With high probability, the signer should not obtain proofs of forgery if she applies
prove to her correct signatures; otherwise she could cheat the recipient (The probability
is over the choice of the keys; we will see that we can leave the messages fixed.)

1.2 Thus, on average, even an all-powerful forger must not be able to guess those CoITeCt
signatures.

Secret Keys, or Rather, Secret Random Choices

signatures.

23

In 1.1, the recipient’s security is needed. (Note that the desired theorem cannot possibly be
proved from the signer’s security alone. As a counterexample consider that the signer were
allowed to disavow all signatures in an ordinary digital signature scheme; then she would be
unconditionally secure without many random bits, but the recipient would not be secure at
all.) This is a problem, since the recipient’s security, like ail computational cryptographic
definitions, is only defined asymptotically. It says: For any polynomial-time algorithm A
and any c, there exists k g so that the probability that 3 successfully cheats the recipient is
smaller than k * for all k 2 ko. Thus, in a certain sense, we can only derive lower bounds
fork 2 k ~ , for an unknown h. This may seem unsatisfactory: Nobody would have doubted
that we need arbitrarily long keys if we make k sufficiently large.

However, note that the real purpose of our lower bounds is to say “whenever we have
certain requirements on the security, then we have to pay the following price in terms of
efficiency”. In this section, this is more precisely: “If the signers want the probability of
unprovable forgery to be at most 2-O, and the recipients want some security, tm, then at
least the following number of random bits is needed (as a function of oand the security of
the recipients)”.

To quantify the security of the recipient, i t suffices for our purpose to consider the case of
Statement 1.1 above, i.e., we consider the probability with which the signer can prove that
her own correct signatures are forgeries just by applying the algorithm prove to them. In
practice, one has to require this probability to be at most, say, 2-20, or, more generally,
2-@ for some @. We will prove the lower bounds as a function of this parameter & (in
addition to the (5 from the signer’s security). To formulate the theorem precisely, we need
some more notation and partial definitions:

Key exchange and probability space: Key exchange is a protocol G with inputs a, k,
and the number of messages to be signed, N , all in unary. The output is a pair (sk, pk)
of a secret and a public key. For the lower bounds, we only need the case where all
parties execute G honestly, and we always consider a fixed triple of parameters. Then
the probabilities of sk and pk are uniquely determined, and we can define corresponding
random variables SK and PK.

Without loss of generality, we assume that all random bits that the signer needs are
already in sk, so that sign is deterministic, and so are test, prove, and proof-rest. Thus,
the underlying probability space for all probabilities is that of the secret random bits used
in the key exchange.

Signing: We make the lower bounds quite general by permitting the signer to use
memory in a general way, i.e., signatures may depend on all previously signed
messages. We even allow testing to be equally general, although this is only useful
when there is a single recipient.

Probability that the signer can disavow her correct signatures: For every message
sequence = (ml, ..., mN+l), we define a polynomial-time algorithm A , to describe
what a dishonest signer would do to disavow her own signatures: After executing G
correctly, i.e., on input sk, she first signs m l , ..., mN correctly. Then, since mN+1 is
one message too much, she signs it as if she had not signed m ~ . From each of these
signatures, together with sk and the history of preceding signatures, she hies to compute
a proof of forgery usingprove. (This algorithm should be rather useless!)

-

24

If the fail-stop signature scheme, N , and u are fixed, we say that k is large enough to
provide the security level a* for the recipient against Am if the success probability of
is at most 2 4 . 4

The formal version of the theorem is therefore:

Theorem 5: Let a fail-stop signature scheme with actual parameters a a n d N and a security
level @ be given. Let 0’ := min(a, o*). Then for all k sufficiently large to provide the
security level a* for the recipient against an algorithm if, for any sequence m of N + 1
pairwise distinct messagess,

H(SK I PK) I (N+)(o’-l). +
Since m is fixed within the theorem, we can omit i t in the proof, Let Si denote the random
variable of the signature on the i-th message of a, and Hisri that of the history of the first i
signatures. The following lemma formalizes that on average, correct signatures cannot be
guessed:

Lemma 1: With the same notation as in Th. 5, for each i 5 N+1
H(S, I PK, Histi-1) I cr’ - 1. +

We must omit the proof of Lemma 1 in this abstract. However, it proceeds along the
informal description, exploiting the difference that correct signatures can usually not be
disavowed, whereas guessed ones can, with an application of Jensen’s inequality at the
end.

Proof of Th. 5: First we use Lemma 1 to show by induction over i that the entropy of all
signatures together is large. Remember Histi = (.Sl,.,., Si). Hence, we show for all
i <N+1:

(1)
For i = 1, (1) is just Lemma 1. And if (1) has already been proved for i-1, then it holds for i
because

H(Hisri I PK) = H(Si I PK, Histi-1) + H(Hiq-1 I P K)
2 (0’-I) + (i - l) (a’ - I) = i (u’-1).

We now use that signing is deterministic, i.e., S K uniquely determines HiStN+l. This
implies H(Hist4v+1 I PK, SK) = 0, and therefore with the chain rule

H(SK I P K) = H(SK, Hisr,v+l I P K) - H(HistN,, I PK, SK) = H(SK, HisrN+l I P K)

H(Hisr, I PK) 2 i (a’ - 1).

2 H(HistN+l I P K) 2 (N+l)(cr’-1). 0

4.2 Signatures and Public Keys
Signatures and public keys are not much longer in current fail-stop signature schemes than
in ordinary signature schemes. Hence the lower bounds are very small, too.

The basic idea about the length of a signature is:

The formal definiuon of the recipient’s security immediately implies the existence of ko such that all k 2
have this property. We have now bypassed the problem that we do not know how large ko is because

we just know that it must be large enough in a praclical application.
NOE that we only require security against A, for one message sequence m. The contrary is that all these
algorithms work.

25

a) First, there must be at least 2O acceptable signatures; otherwise the correct signature

b) Secondly, it must be hard for a forger to guess signatures at all. Thus the density of the
set of acceptable signatures within the signature space should be small, e.g., at most

Hence we expect the size of the signature space to be at least 2=&. Indeed, we prove more
generally that the entropy of each signature is at least a+&. What has to be done is:

could be guessed too easily.

2-@+.

Since the forger in (b) is computationally restricted, we must show that he could guess
acceptable signatures efficientZy if their density was too high.

As in 4.1, we must require that k is sufficiently large so that a concrete version of the
asymptotic security against forgery holds.

We must express the idea with the density in information-theoretic terms.

For this, we first define a simple algorithm p,,, that mes to guess signatures on a message rn
(in a rather stupid way): pm just chooses its own key pair (sk*, pk*) and signs rn with sk*.

Theorem 6 : Assume a fail-stop signature scheme with actual parameters k, 0, N provides
the security level o* against forgery by an algorithm P,.
1. Let S be the random variable of the signature. Then

(If the scheme is not memory-less, we obtain the same result for later messages by using
the last message of a message sequence m.)

2. H (P K) 2 Sr. +
The following lemma formalizes the density argument. The fact that the number of possible
signatures, given the public key, is much smaller than the complete signature space is
generalized as follows: The public key contains a lot of information about the correct
signature.

H(S) 1 0’ + @ - 1.

Lemma 2: With the Same notation as in Th. 6,
I(S; P K) 2 oc 4

The proof must be omitted in this abstract.

Proof of Th. 6: Lemma 2 means H(S) - H(S I P K) L &; and a special case of Lemma 1 is
H(S I P K) 2 (T’ - 1. Consequently, H(S) 2 H(S I P K) + Q 2 0’ + o* - 1. Furthermore,

For the case with a prekey (cf. Ch. 2) , we obtain the same results with an additional
condition over K , i.e., H(S I K) 2 0’ + @ - 1 and H(PK I K) 2 cP- If, as usual such
schemes, PK is a function of SK, we obtain one more result by applying the chain rule to
the last formula and Th. 5:

Theorem 5*: In a fail-stop signature scheme with prekey, and where the public key is a
function of the secret key, and with the same notation as in Th. 5 and 6,

I(S; P K) I H (P K) . 0

H(SK I K) 2 (N + l) (~ ’ - l) + & 2 (N+2)(0’-1). +

26

4.3 Unconditionally Secure Signatures

Unconditionally secure signature schemes could be achieved by replacing the globally
known public key p k (which implied that an all-powerful forger could find acceptable
signatures by brute-force search) by different test keys tx for each recipient x . So far, this
has made key exchange complicated and signatures long.

Essentially, we prove that such signatures must indeed be at least as long as if they
consisted of an independent part for each test key, i.e., they cannot be shortened by a
suitable combination. Assume M people may want to test a signature (as a recipient, or to
settle a dispute), and that the probability for successful forgeries is to be 5 2-4 The basic
idea is: If some participants want to forge a signature on m, they can determine the set of
signatures acceptable under all their test keys. Still, within this set, the density of signatures
that another participant accepts must not exceed 24. Inductively, this implies that the size of
the original signature space must be at least 2MO.

In Theorem 7, we generalize this to entropies, and we show that it holds for every
signature, even if signing is not memory-less.

Theorem 7: Consider an unconditionally secure signature scheme with M recipients where
N messages can be signed and the probability of successful forgery is 22-4 For any given
message sequence m, let Si denote the random variable of the signature on the i-th message
of m, and Histi that of the history of the first i signatures. Then

The basic idea for the proof is formalized similar to Lemma 2: Even when some test keys
are known, any other test key still gives a lot of information about the correct signature.

Lemma 3: With the same notation as in Th. 7: For any set X of participants and y !i? X , if
Tx denotes the joint random variable of the test keys of X:

H(Si I Hisri-1) 2 Ma. +

I(sj; T y I r,, HiSfi-1) z 0. +
Again, we must omit the proof in this abstract.

Proof of Th. 7: Lemma 3 means H(Sj I Tx , Hisri-l) 2 a + H(Si I T X ~ [~ J , Hisfi-1). With

From Th. 7 and Lemma 3, with induction over i similar to that in Th. 5, we can also obtain

induction over the size of X, one easily obtains the desired result.

H(SK) 2 (N+I)Ma A H(Ty I Tx) 2 (N+l)a.

5 Fail-Stop Signatures with Small Secret Storage
To show that the signer needs far less secret storage than the number of secret bits she must
choose according to Th. 5, we proceed in two steps: First we show a simple construction
where only a small amount of secret storage is needed at the start, i.e., directly after key
exchange. Then we add additional measures so that the amount of secret storage is small all
the time.

The basis of this section is a fail-stop signature scheme for signing just one message of
arbitrary length. We use the scheme described in Section 3.1 combined with message
hashing. Hence the construction works for the schemes from [Hp92] and Section 3.2.

27

(a) Small amount of secret information at the start: Use “top-down” tree-authentication
similar to [M88, GMR881. (Note that a different “bottom-up’’ version, which is a little more
efficient if one does not consider secret storage space, was normally used with fail-stop
signatures so far.) Let a prekey, i.e., a bundling homomorphism h, be given. The signer
starts with one pair of a secret and a public key at the mot of the tree. Then she creates two
children, each with a new key pair, and uses the old secret key to sign a message containing
the two new public keys. For each of the two new nodes, she again constructs two children
in the same way, and so on. Messages are signed using the secret keys at the leaves of the
tree, and a complete signature is one branch of these original signatures.

During key exchange, only the root of the tree has to exist, and to sign the first message,
only the keys on the left-most branch and their immediate other children have to be
generated. Figure 1 shows the situation after the first message, r n g , , , ~ has been signed.

Flgure 1 Fail-stop signature scheme with Yop-down” tree authentication.
Thin black arrows denote the computation of a public key from a secret key in a
basic scheme to sign just one message (like in Ch. 3, together with message
hashing), broad grey arrows denote signatures in the basic scheme, and
dotted lines just indicate a tree, but are not related to a computation.

At my time, just one branch of the tree has to be stored for signing. However, SO far, the
individual secret keys ”, that are used up, ix., that are no longer needed for signing, must
be stored until the end so that forgeries at any node can be proved.

28

(b) Small amount of secret storage altogether: The basic idea to reduce Secret storage further
is to store values skj that are used up in encrypted form and to store just the key secretly.
However, information-theoretically secure encryption is needed, and a one-time pad is of no
use because the key would be just as long as the encrypted message, Hence special care
must be taken that each individual ski is still secret enough, although information about the
ensemble of ski's may become known.

If the individual sk,'s are formed according to Section 3.1, this is achieved by the
following additional steps:

1. Initially, the signer chooses a value e E G randomly as an encryption key. She keeps e
secret all the time.

2. Whenever the signer has used up a value ski = s k ~) by signing a message rnj
she proceeds as follows:

She encrypts skj.2 as cj := skj,2 e.
She stores mi, the signature si, and the ciphertext cj securely, but not necessarily
secretly.

Theorem 8: If the tree consauction described in (a) is applied to a secure fail-stop signature
scheme constructed according to Section 3.1 together with message hashing, and the
additional steps described in (b) are taken, then we have a secure fail-stop signature scheme

Proof First, the signer can reconstruct any secret key sk, if she needs it to prove a forgery:
She decrypts skj.2 = cj I e and then recomputes sk,,l= s;/ sk;2", where m is the hash value
of rnj

Hence, whenever a signature for a nodej is forged and i t is different from the signature
the signer would have produced for the same message, the s iper can prove this forgery just
as in Section 3.1. Furthermore, every complete forgery sf(i.e., a branch of the nee) must
be linked into the correct nee somewhere, i.e., it contains at least one such forgery at a node
j for the correct pki.

Thus it remains to show that the additional information stored securely does not help a
forger to find exactly the signature that the signer would have produced at node j . This
signature depends only on ski (i.e.. not on the values sLl at other nodes). In the original
scheme, the set of possible values skifrom the point of view of a forger was SK,* =
{ (sj 1 s k j ~ " , ski$ I h(skj2) = p k , ~) . Hence it suffices to show that all these values are still
possible when the forger has seen c, and all the other ciphertexts cl.

Let such a value sk*j,z be given. It corresponds to exactly one key e* = cj / sk*j,> This
implies that the other plaintexts must be sk*lJ = cl 1 e* = sP, ,~ cl / ci- The only question
is if these are possible plaintexts, i.e., if h(sk*1,2) = p k f 2 On the one hand, h(sk*1,2) =
h(sk*j,2) h(c1) / h(Cj) = pkj,2 h(cl) I h(cj). On the other hand, h(c1) = h(skl,2) h(e) =
pk l2 h(e) and h(c$ = p k , , ~ Me), hence h(q) I h(cj) = pklJ / p k j z . This yields h (s k * l ~) =

Consequences: If this construction is applied to a usual complete tree, then it is very
practical, and at any time, only e and the secret keys that have been marked "use later", i.e.,
at most one per level of the me, must be stored secretly. This is a logarithmic amount.

again. t

Pk1,2.

29

If we use a list-like tree, i.e., the left child of each node is a real message, we only need
two skj's at any time. However, later signatures are very long. Thus the list-like version
should only be used with a fixed recipient, who can store the part of the list he already
received, like in [F91].

One can also use trees of other forms or combine it with other methods to sign several
messages from [HP92].

6 Conclusion
We have constructed efficient fail-stop signatures based on the assumption that factoring
large integers is hard, giving an alternative to the previous scheme based on a discrete
logarithm assumption. We also presented a construction which only needs a small amount
of secret storage space, whereas in all previous constructions, a secret key whose length
was linear in the number of signatures to be issued was stored all the time.

On the other hand, we proved that there is a definite difference to ordinary digital
signatures in that the signer must choose an amount of random bits linear in the number of
signatures to be issued. Finally, we showed that there is no hope that unconditionally secure
signatures can become as efficient as fail-stop signatures, because the length of each
unconditionally secure signature is linear in the number of participants who can test it.
whereas the lecgth of a fail-stop signature (or an ordinary digital signature) does not depend
on this number.

Acknowledgements
It is a pleasure to thank Joachim Biskup, Genit Bleumer, David Chaum, Andreas
Pfitzrnann, and Michael Waidner for interesting discussions.

References
[BPW91] Gemt Bleumer, Birgit Pfitzmann, Michael Waidner: A remark on a signature

scheme where forgery can be proved; Eurocrypt '90, LNCS 473, Spnnger-
Verlag, Berlin 1991, 441-445.

[CA90] David Chaum, Hans van Antwerpen: Undeniable signatures; Crypto '89, LNCS
435, Springer-Verlag, Heidelberg 1990, 212-216.

[c m 2] David Chaum, Eugene van Heijst, Birgit Pfitzmann: Cryptographically Strong
Undeniable Signatures, Unconditionally Secure for the Signer; Crypto '91,
LNCS 576, Springer-Verlag, Berlin 1992,470-484.

[CR9 13

P881

[DH76]

[n 11

~~

David Chaum, Sandra Roijakkers: Unconditionally Secure Digital Signatures;
Crypto '90, LNCS 537, Springer-Verlag, Berlin 1991, 206-214.
Ivan Bjerre DamgArd: Collision free hash functions and public key signature
schemes; Eurocrypt '87, LNCS 304, Springer-Verlag, Berlin 1988,203-216.
Whitfield Diffie, Martin E. Hellman: New Directions in Cryptography; IEEE
Transactions on Information Theory 22/6 (1976) 644-654.
William Feller: An Introduction to Probability Theory and Its Applications, VOl.
I1 (2nd. ed.); John Wiley & Sons, New York 1971.
Robert G. Gallager: Information Theory and Reliable Communication; John
Wiley & Sons, New York 1968.

30

[G87] Oded Goldreich: Two Remarks Concerning the Goldwasser-Micali-Rivest
Signature Scheme; Crypto '86, LNCS 263, Springer-Verlag, Berlin 1987, 104-
110.

[GMR88] Shdi Goldwasser, Silvio Micali, Ronald L. Rivest: A Digital Signature Scheme
Secure Against Adaptive Chosen-Message Attacks; SIAM J. Comput. 17/2
(1988) 281-308.
Jeroen van de Graaf, R e d Peralta: A simple and secure way to show the validity
of your public key; Crypto '87, LNCS 293, Springer-Verlag, Berlin 1988, 128-
134.
Eughe van Heijst, Torben Pryds Pedersen: How to Make Efficient Fail-stop
Signatures: Eurocrypt '92, Extended Abstracts, 24.-28. 5 . 1992, Balatonfiired,
Hungary, 337-346.
Leslie Lamport: Constructing Digital Signatures from a One-way Function; SRI
Intl. CSL-98, Oct. 1979.
Ralph C. Merkle: Protocols for Public Key Cryptosystems; Proc. 1980
Symposium on Security and Privacy, Oakland 1980, 122-134.
Ralph C. Merkle: A digital signature based on a conventional encryption
function; Crypto '87, LNCS 293, Springer-Verlag, Berlin 1988,369-378.
Birgit Pfitzmann: Fail-stop Signatures; Principles and Applications; P~oc.
Compsec '91, 8th world conference on computer security, audit and control,
Elsevier, Oxford 1991, 125-134.
Birgit Pfitzmann, Michael Waidner: Formal Aspects of Fail-stop Signatures;
Fakultat fur Informatik, University Karlsruhe, Report 22/90, Dec. 1990.
Birgit Pfitzmann, Michael Waidner: Fail-stop Signatures and their Application;
Securicom 91, Paris, 19.-22. March 1991, 145-160.
Birgit Pfitzmann, Michael Waidner: Unconditional Byzantine Agreement for any
Number of Faulty Processors; STACS 92, LNCS 577, Springer-Verlag, Berlin

Claude E. Shannon: Communication in the Presence of Noise; Proceedings of
the Institute of Radio Engineers 37/1 (1949) 10-21.
Michael Waidner, Birgit Pfitzmann: The Dining Cryptographers in the Disco:
Unconditional Sender and Recipient Untraceability with Computationally Secure
Serviceability; Eurocrypt '89, LNCS 434, Springer-Verlag, Berlin 1990,690.
(Full version: Unconditional Sender and Recipient Untraceability in spite of
Active Attacks - Some Remarks; Fakultat fur Informatik, University Karlsruhe,
Report 5/89, March 1989.)

1992, 339-350.

	New Constructions of Fail-Stop Signaturesand Lower Bounds(Extended Abstract)
	1 Introduction and Overview over the Results

	2 Brief Sketch of Definitions
	3 Efficient Fail-Stop Signatures based on Factoring
	3.1 General Structure of the Construction

	3.2 The Special Case with Factoring

	4 Lower Bounds
	4.1 Secret Keys, or Rather, Secret Random Choices

	4.2 Signatures and Public Keys
	4.3 Unconditionally Secure Signatures

	5 Fail-Stop Signatures with Small Secret Storage
	6 Conclusion
	Acknowledgements
	References

