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Abstract. Let Nr be a large odd integer. We show how to produce a 
long sequencc {(.U,. YL)}:Il of integers iiiodiilo A’ which satisfy ,Y; 
E; ~nodi i lo  ,V, where aYz > 3”* anti 1 I< 1 < c l ? j ‘ / 2 ,  Our  sequence 
corresponds t,o a Harnilt,onian path on the wdirnensional hypercube C‘,, 
where I L  is @(log .$I/ log log N ) .  One application of these techniques is 
tha t ,  at each vertex of the  hypercube, it is possible to search for equations 
of tzhc form l i 2  e V modulo ,V wit,h I/’ a product of siriall primes. The 
search is as in the qiiadrxtic sieve algorithm and therefore very fast. This 
yields a faster way of changing polynoniials i n  the Multiple T’olynorninl 
Quadratic Sieve dgor i thn i ,  since riioviiig d o n g  t.he hypercube t u r n s  o u t  
t o  be very cheap. 

1 Introduction 

Given a large o d d  i i i t pp r  :\‘, t,hrrr is no known way of efficiently genprat ing ran- 
dom congruences o f  the f o r i r l  ,Y’ = Y‘ r r iudri lo  ,%’ w t , h  Y subst ,ant inl ly  smal le r  
than iLrl/’ .  O n e  reason for want ing  to generxt>e sitch congriieiires is that t h r y  
c a n  be  used to fac.t.or .V. ‘I%(, (hnt inuec i  Fract ion Algorithm [‘L] factors  -V by 
g e n e r a t i n g  many such c.ongri.ipncw, choosing i , l ir  ones  for  which Y fxctmrs over 
a small p r i m e  fac tor  hasp F R .  a n d  t h e n  solving it linear system of rqiiat>ions in 
o r d e r  to crea te  one c o n g r u r n w  ,k-’ =_ Z’ rnordulo S which. if X f iZ. yiritfs a 
proper f a d o r  p = G‘(~‘n( X +Z: N) of 4L‘. An irriportant, bot t leneck in tjhe (‘ont in-  
u e d  Fract ion A l g o r i t h m  is t,tie cost  of trst,ing whet.her E’ fac tors  over FB. T h i s  is 
done by t r ia l  division for  csch  prime in t,hr factor base. The Quadrnt ic  Sieve -41- 
g o r i t h m  [6] considers  a sequence {(,Yl ~ Yi)}fil of ;Iil pai rs  where A‘; = [u%J -+ i 
and = x~? - r ~ ’ .  Since Y; i s  given by an integer q u a d r a t i c  po lynomia l .  it i s  
easy to predic t  which YL’s will be divisible by  a given p r i m e  p .  The values of 
i which g e n e r a t e  E E 0 mod p lie on two ar i t ,hmetic  progressions CY i k p  a n d  
;3 zk kz, ( k  = 0, 1 , .  . .). T h e  cost of’ avoiding trial division is that the Y;’s are 
of order O(,tZAr’/’) a n d  thprefore they a r e  less likely to fact,or over F R  t h a n  
t h e  Y ’ s  genera ted  Iiy thr ( :ont inued Fract ion -4lgori thni .  However. avoiding t r ia l  
divis ion m o r e  t h a n  cornppnsat,es for  the increased size of the  YZ’s. A vxri a t ’  .ion 
o n  t$he Q u a d r a t i c  Sieve A l g o r i t h m  is thc MriIt8iple Polynorriiai Q u a d r a t i c  Sieve 
[8] (MPQS), which uses several po lynomia ls  as a way t,o fight, the  increase in  
t h e  size of the E’i‘s. T h e  l a t t e r  is current ly  the, a l g o r i t h m  of choice for factor ing 
in tegers  which arc alioiit one hiintlrcd digits long. 
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We shaw how to produce a long sequence {(Xj,x)}:zl of integers modulo 
N which satisfy Xi” G modulo N,  where X i  > N112 and I yi I < cN1/’. Our 
sequence corresponds to a Hamiltonian path on the n-dimensional hypercube 
C,,, where n is @(log N/loglogN). One application of these techniques is that, 
at each vertex of the hypercube, it is possible to search for equations of the 
form U2 z V modulo N with V smooth. The search is as in the quadratic 
sieve algorithm and therefore very fast. This yields a factoring algorithm which 
is faster than the Multiple Polynomial Quadratic Sieve algorithm, since moving 
along the hypercube turns out to be very cheap. The asymptotics of the new 
algorithm are as in MPQS. Therefore it is not asymptotically its fast as the 
recently discovered Number Field Sieve algorithm [3, 11. 

2 Generating “small” quadratic congruences 

Let N be a large odd integer. We will use the symbol ‘k” to denote modular 
congruence, and we will restrict the use of “=” to equality. Let s, t be such that 

- t = nj”=, p j ,  where the pj’s are distinct primes ( n will be chosen later). 
- The prime 2 may be among the pj’s if and only if N E 1 modulo 4. 
- N is a quadratic residue modulo each p j .  
- s satisfies s2 G N modulo t 2  and Is1 < t2. 

Lemmal. Let c = t/N1I4. Let x E s/t modulo N and y x2 rnoddo N 
where y is the member of the residue class of x2 with smallest absolute value. 
Then IyJ < c ~ N ’ / ~  where c1 = Mnx{c2  - 5,  s}. 
Proof. Since s2 G N modulo t 2 ,  we have s2 = k t2  + N for some (possibly 
negative) integer k. Then y G $ G $$ = .* = k, where congruence is 
modulo N .  Thus we may choose y = k. Since s2 < t 4  and t = cN1i4, we have 

Thus, if c E (1, Jq), then IyI < N’/2 (the golden mean strikes again!). 
Also note that Max{c2 - 5 ,  $} is minimized at c = 2’i4. For c < 2’i4, the 
bound is f .  For c > 2’/*, the bound is c2 - 3. 

By construction, there are 2” square roots of N modulo t2. Given the pj’s, it 
is a simple matter to compute one such root s1. By the Chinese Remainder Theo- 
rem, we may think of s1 as an n-tuple (cr1,. . . , an), where crj” N modulo p i .  
Then the complete set of square roots of N modulo t2  is given by (fal ,  . . . , fan)  
for all choices of signs f. Any member of this set can be easily calculated as a 
sum xy=l 6 j a j b j  modulo t2  where 

- 6, is the sign at the j-th coordinate. 
- b, is the unique element of Zp which is 1 modulo pi” and 0 modulo pi” for 

j # i .  
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Note tha t  there are  two possible values for each fij. W e  wzll choo.se c ~ j  such 
that bjcrj n iodido  t 2  is l e s s  t h a n  $. 

The  maximiim size of TL can be estimated from the familiar relation xp5, In p - 2, where the sum is over all primes p less than or equal to z. Since N is 
typically a qiiadratic residue modulo half of the first 271 primes we can estimate 
the maximum n from 2 n  - T ( X )  where II: satisfies flpSz.p = IV ' /2  (in this way, 
the product of the  approximately 71 primes for which 1V is a quadratic residue is 
approximately "I4). This implies xpSx l np  - In -V, and so 3: - 3 In iV. Thus 
n - z ~ ( z )  1 - z~($ 1 In N) - 4 I n  l ~ & ~ l n  = @(log i"~'/ iog log L ~ ) .  

Example : the RSA moduliis 

84 2 9 3 5 70 6 9 3 5 2 4 5 7 3 3 8 9 7 8 30 5 9 7 1 2 3 5 6 3 9 58 7 0 5 05 X 9 S 9 0 7.5 1 4 i 5  9 9 2 90 0 2 6 8 79 543 54 1 

is a quadratic residue modtilo the 20 primes 

3 Traversing the  hypercube 

The  set of square roots of ;L' modulo 1' can  be thought of as  the n-dimensional 
hypercube, where we connect two roots if and o n l -  if they differ a t  exactly one 
sign. A Hamiltonian pa th  on the hypercube is defined by a starting point $1 

and the sequence {k;},, of coordinate changes. e.g. kl30 = 8 means the 130th 
move on the Hamiltonian path is a change of sign at coordinate 8. Let /ii = +1 
if move i switches a - sign for a + sign and 11; = -1 if move i switches a + 
sign for a - sign. Let rj a j b ,  modulo t 2 ,  whew c r j ,  b j  are as defined in the 
previous section. Note tha t ,  by our choice of c ~ j ,  K e  have 0 < ;/j < $ for all j .  
Then we may define the  i-th square root of ,V modulo t 2  by 

7"-1 

Si+1 = 352 + q L i y k ,  - d i t 2  

where wa is a correction factor to  make s i  E (0, t?) .  J o t e  that ( ~ i  is always -1, 0 ,  
or +l. The  sequence of w i ' s  can be easily computed from the few most significant 
bits of the y j ' s ,  and if simply allowed to be 0, the values of si will remain in a 
small interval (as shown by our  next example). 

An n-dimensional cube C:, is composed of two ( ; I  - 1)-dimensional cubes 
C n - l , ~ ~ ~ ! l  whose vertices are connected in a 1-1 fashion. Thus, a simple way 
to traverse the  ri-cube is 

(1) 
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( 1 )  

( 2 )  

d 2 )  

- traverse Cndl 
- I l lOVP to rn-] ~ 

- traverse n--l  

T h e  recursive procedure works because on moving to ($!, the  algorithm 
finds itself at a node which is, 1111 to isomorphlsm, the same  starting node as 
in C T ~ J ,  From now on ? i ) P  i o z ~ l  a s s u m e  t h c  ~ n m 2 l ~ o n z a n  p a t h  o n  t he  n-eube  2s 
g e n e m t e d  by thzs procrdure 

Example : Traversing the 3-ciibe 

A traversal of the 3-mbe yirl(ls 

(-sing J, = 0 for all 1 .  this t,nble givps the following val~ic>s for t h r  s, 's 

The value of 7 6  could be larger i n  absolute value than  'tt', but  no larger than  
3 t2  This illustratps the point that if the  iu'*'s are not, iiscd thcn s, still remains in 
the  interval ( - 7 i 1 2 ,  nt') .  ' Also note t,hat the sequence of k, ' s  can be generated 

* Different Harxilltonian paths on the  hypercube might yield different bounds. 
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111 linear time (to gpripratp the sequpnce for (‘n simply p u t  7 1  between two copies 
of the sequence for ( ‘,L- 1 )  

Thus the integer recurrence 

toget her wi th  

yield 

if yz is the member of the residue class of 7: with smallest ahsolute value We 
will now produce an integer recurrence fo r  the y7 ’s 

Notre that ,  motlulo !L‘ 

15 an integer which 15 easily wen to \w of order Y ’ i Z  This means the integer 
reciirrence 

( 2 / l z 7 k ,  - w l t 2  J 2  ‘ 2 S 2 ( Z / l 2 ? l . ,  - w,t’) 
t’ 

+ t’ % + I  = !/z + 
holds. By lemma 1 ,  yl r a n  Iir rhosen 90 tha t  lyl I < rl  JV‘/’ where c1 = V l t ~ i  {?- 
5 ,  +}. Again by lemma I ,  the integer recurrence gcnerates y,’s whosc absolute 
value is less than M a x {  r3 - 5 ,  +}AV1/2 

Now let us traverse the hypercubp ~motlrdo p ” ,  whrre p is a small prime 
This simply means generating the  seqiicnce of y, ’s modulo p Assume p is not a 
factor o f t  We ma) write 
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where 

Note that Pi, K and A, can take 011 at most 67 ,  values ( pi can take on two 
values, wi can t a b  on three values, anti Y k ,  can take on I I  values). Thus, 'Pi, Ti 
and A, can he read from precompiitPcl tables, of size 671 and indexed by pi, U J ~ ,  iki. 
Thus, conipriting (yii.1. sir1) modulo p from (yi,  x i )  modiilo p involves one multi- 
plication and t'hree additions modulo p .  The cost of computing si+l mod p from 
s, mod p is one addition modulo p .  This fact will  be iisrct in section 4. 

Note that prrconiputation is not possible if p divides t ,  since then Pi and T, 
may not he defined triodiilo y .  More specifically, Pi,Ti arr notJ defined modulo 

Also not'? that, if ni is not a qurtdrat.ir residue modulo p ?  then p does not  
divide y i .  This can lit' shown as follows: Slippose :2' is not a qiiadrxtic. residue 

if and s : - ,\' modulo p .  'I'tlrn p rloes riot clividi: f '  anrt thweforr p tiivides yi = 7 
only if p divides s: - N .  But, if this was the case then 3 .V modiilo p .  which 
would contradict. t.he assutnption that 

P k , .  

is not, a qiiailratic resiciii~ modtilo y .  

4 A factoring algorithm 

The  algorithm consists of visit.ing .A v p r t i c c s  o f  thr h y p e r c u b e  and. at each verws 
s, finding the v a i w  of X for wliicti 

is B-smooth. The  optimal valiirs of .4. H ,  arid &Id wili foilow from the analysis of 
the algorithm. W'e actually do not ,  coniputr the z x 3  but, rather find {.he values of 

'V'/4 
757, for which is B-smooth. So that the are .'small". WP will choose I - 

Not ice that 

Thus we set 
9 2  - !I' 

t' 

x z ( -s i f i ) t - '  mod p ,  

where fi is a modular square rocit Thereforr z~ IS divisible by p for all X = 
k.p + 0, and all X = k p  + E ,  ~ w h e w  

+ A't' + 2 . c ~  z o mod p 

Thls jields 

- ,k IS an  integer: 
- D ,  = ( - s  + ~ % ) t - ~  mod p ;  
- E, = ( -s  - f l ) t - ) "  mod p = D, - '2JFt-2 mod p 
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Thns. the “good” X modulo p are in arit,hnletic progressions. Therefor? s tandard  
sieving techniqiies can be used to find t,I~ose X for which Z X  is 5-smooth. 

We may precompute fi mod p ,  t -?  !-nod p ,  arid -21,/%t-~ [nod p .  Thewfore 
corriput,ing D, and E,? involves 

- one addition to computr s mod p (see sectiori :I); 
- one addition and  one multiplication t,o compute D,; 
- one addition to  compiit,e E,. 

Thus t8he total cost of rrloving from on? vertex of tjhe hypercub? to another is, 
essentially, t,hree additions and one rIiultiplication nlodulo p for rac.h prime in 
the  factor base. This is m u c h  cheaper than  t,he cost of changing polynoniials in 
the  M ul tiple Polyn omi a1 Qi intlrati c Sieve. 

We now show t,tiat the  zx ‘ s  are ahout, M:1r‘/2 in absolute value. Recall t,hat 
t - and consider !Vl/‘ 

z ( s / t  + MI‘ 5 ( s / / ) ‘  + ~ ’ t ’  + ‘LSX mod .v. 
As in the proof o f  lrrllnla 1 we have ( s / t , ’  rnod ,Y = X: where .ss = kt‘+ :V. Sincr 
.s’ < t 4  < 8. wc have that  k is ncgat ivp.  Hy leimrria 1 .  l ( . ~ / t ) ~  rriotl = ( k l  5 
L\,f :L’ 1 i 2 . ~ s u u n i i n g ,  for siinplicity. that  t <: z-- u7e have ~ ’ t ‘  c - - .  ‘ I I ? ~  12’1 - 
M,Y”’. Siricr s < 1 ‘ .  WP liavr /%.sX\ i 2 c ; L j  = ~ I V ’ / ’ ?  << :\[,V1/’, Thiis 

is, essentially, t8hr difTerc,ncp of t,wo nurnl)rrs in t h e  range U...II:V’’‘. WP 

cnncli. ide that oiir algorithrri is faster than  t,he Miiltiple Polynomial Quachatic 
Sieve hecaiisr 

- 1/.1 

J-ii’ 
.L I 

- vert,icrs in t h r  hyperri ibr corrwpontl to polynoiuials in MPQS. 
- for each vpr t ex .  t,he cost, of sieving 2,\i locxt,ions is t,he same in our  algoritht-II 

- the  sizc of the qiiadratic resi(tu?s considt~rrd is. i is  in M PQS, almut Alf .\;’/’, 
- changing polynomials is rniich more rxprnsive t,han changing vertices of the 

hypercrube. Thereforc the opt,irrial valiir for I tie sizr uf the 1iyl)ercube 1)itth is 
bigger than  the opt,itrial n u i n l w r  of polynomials in MPQS. This means that, 

will b e  smaller in our algorithrri arid t,tiereforr Xl~”v”ls will lie smaller. 
Thus ,  our algoritlitri will generate srrlallPr quadrat,ic rrsidues t11il11 MPQS. 

In pract,ice t’here are ninny sperdups  L O  br inclridrd in a n  implrrnentation 
of this factoring algorithm. All thr erlhanc-rrnents described in [5] can b r  used 
with this algorithm. A rough estimate (of tiow much faster this algorithm is than 
MPQS c a n  be obtained as f o l l ~ ~ :  

Let T bc> the running t,ime of the algorithm. in terrns of arit,hmetic operations 
on single-precision nurrlbrrs. Let I/’ be  tht, cost of moving frorn one vertex t o  
another.  Let ,S be the cost, of sieving at each vert,ex. Suppose we sieve modulo all 

grimes. It t>akes follr opwations per prirne tfo make a move on th? hyperc,uhe?. 
Thprefore we c a n  cstirriatP I- Iiy ‘Ln( N). I V e  can estimatr ,5‘ by l / 2  Cp<:H 4M/p 
since for e a c h  pririir p i n  the  factor base about 4iIl/p locations of an accumulator 

as in MPQS. 

primes lrss t h a n  H for which .Y is a qiirt&at,ic rcsitiur. There are about, -j- T(n) such  
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array ncetl bc  updated. We can est8irnate this simi by G M .  Thus our estimate for 
T is ,A(.? + v) = 'LAT(B) + 6 , A M .  

Let, F ( y \ x )  he the pmlxiI>ility that a random number in 2, factors over 
primes smaller Lhan rc .  T h e  number of quadratic residues considered by our 
algorithm is 'LAM,  and each ran be t,hought of as a random number in Z L , t f , v i / ~ ~ .  
Thus about 2 A i 2 f F ( M N ' / 2 ,  B )  of the quadratic residues will be R-smooth. 
Since we need about, T (  R ) / 2  smooth quadratic, residues. we set 

2 A l ~ l F ( ! ~ ~ f : v ~ ' ~ j  B) = 7r(B) /2  

Approxirriat~ing T ( R )  by H /  111 H and F ( y ,  x )  by ( In  x /  I n  y)'" y / ' "  

problem is to minimize 
(see [4]), our 

'LAB/ In H + 6,4,1.1 
su IJ j ec t t, o 

In ( ,M N ' j 2  ) H ( 1 y ; l ' Z ) )  in B 

'4 = 
4:Ll In H 

Tlie solution t'o this optimization prohirni can br approsirriated niimrrically. For 
i~ - 1o'O0, optimal values arr 

.-I = 1.2 ' 10"; H = 1.4 ' 108 1 = 1 . 3 .  1O';T = 1 . 1  ' lo1" 

Assuming t'he cost, of changing polynomials in MPQS is 5Ox( B), 
for MPQS are 

the numlwrs 

.4 = *5.8 ' lo3: H = l.!) ' 10": '21 = 1.5 . 108: T = 1.9 ' 1013 

Thus  it appears that  our  techniqiies significantly improve on thc runriirlg titrie 
of RIIPQS. 

4.1 R,emarks 

1. The running-time predict,ions given above are very crude estimates. T h e  t rue  
test) uf the running time of this algorithm will  lie its implementat>ion. 

2. In practice, the d j ' s  defined in section 2 can be set to zero without a signif- 
icant, cost. in the running h e  of die algorithm. Doing so has the advantage 
of diminishing the memory requirements of the algorithm. 

3 .  In practice. the factors off should not  be small primes. This  is because the 
numbrrs liring sieved have a chance of 1/p of being divisible by p when p 
divides t (AS opposed to  a l p  when p is an odd  prime in the factor base which 
does not divide 2 ) .  The resulting loss of smoothness is significant for small 
p .  Because of this, the 1 we US? i n  practice may not have as many factors as 
the optimization of parameters requires. 

This is 25  times as expensive as in our algorithm. Changing polynomials in MPQS 
involves sritlinietic witti large numbers. Hence the cost will depend on the particular 
irnpleineiitation of large number arit,liinetic. The  number 25 was arrived at using 
"ln++". a c++ package developed at  ?lCVh,I. 



332 

3 .  Pomerance. Smit,ti. a n d  Tuirr [71, an((  Montgomery (repurtrd in [TI) propose 
ways of spceding u p  MPQS which :&re similar to the one  proposed here. 
1 heir mt.thocts c.an Iir combined with t,hr d i n i q i i e s  being proposed here. I t  
appra.rs that doing 50 mny further irripi-ovr h e  running time of the  algorithm. 

5. The numhrr of vertices of trhe tiyperriihr to be visited by the  fact,oring algo- 
rithm should be at most, Y - ' ,  where 71 is t,hr numhcr of factors o f t .  Other- 
wisp duplication o f  polynomials occurs. since ( s / t + ~ t ) ~  and ( ( t ' - ~ ) / t + X t ) ~  
are essentially qi i ivalent .  

r ?  
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