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Abstract. Let N be a large odd integer. We show how to produce a
long sequence {{X,, Vi)}?2, of integers modulo N which satisfy X2 =
Y, modula N, where X, > N!/? and Y. | < N2 Our sequence
corresponds to a Hamiltonlan path on the n-dimensional hypercube Ch,
where n is @(log N/loglog V). One application of these techniques is
that, at each vertex of the hypercube, it is possible to search far equations
of the form I/ =V modulo N with V a product of small primes. The
search is as in the quadratic sieve algorithm and therefore very fast. This
vields a faster way of changing polvnomials in the Multiple Polynomial

Quadratic Sieve algorithm, since moving along the hypercube turns out
to be very cheap.

1 Introduction

Given a large odd integer N there is no known way of efficiently generating ran-
dom congruences of the form Y% = ¥ modulo N with ¥ substantially smaller
than N!/Z. One reason for wanting to generate such congruences is that they
can be used to factor V. The Continued Fraction Algorithm [2] factors 2V by
generating many such congruences, choosing the ones for which Y factors over
a small prime factor base F'B, and then solving a linear system of equations in
order to create one congruence X° = Z? modulo N which, if X # £Z. yields a
proper factor p = GCD(X+Z, N)of N. An important bottleneck in the ('ontin-
ued Fraction Algorithm is the cost of testing whether ¥ factors over F'B. This is
done by trial division for each prime in the factor base. The Quadratic Sieve Al-
gorithm [6] considers a sequence {(X;,Y;)}*, of M pairs where X; = L\/WJ +1
and ¥; = X? — N. Since Y; is given by an integer quadratic polynomial, it is
easy to predict which ¥;’s will be divisible by a given prime p. The values of
¢ which generate Y; = 0 mod p lie on two arithmetic progressions « + kp and
3L kp (k= 0,1,...). The cost of avoiding trial division is that the Y;'s are
of order O(M N'/?) and therefore they are less likely to factor over FB than
the Y'’s generated by the Continued Fraction Algorithm. However, avoiding trial
division more than compensates for the increased size of the ¥;'s. A variation
on the Quadratic Sieve Algorithm is the Multiple Polynomial Quadratic Sieve
[8] (MPQS), which uses several polynomials as a way to fight the increase in
the size of the Y;'s. The latter is currently the algorithm of choice for factoring
integers which are about one hundred digits long.
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We show how to produce a long sequence {(X;,Y;)}}-, of integers modulo
N which satisfy X? = ¥; modulo N, where X; > N'/? and | Y; | < ¢N'/2. Qur
sequence corresponds to a Hamlltoman path on the n-dimensional hypercube
Cy, where n is ©(log N/loglog N). One application of these techniques is that,
at each vertex of the hypercube, it is possible to search for equations of the
form U2 = V modulo N with V smooth. The search is as in the quadratic
sieve algorithm and therefore very fast. This yields a factoring algorithm which
is faster than the Multiple Polynomial Quadratic Sieve algorithm, since moving
along the hypercube turns out to be very cheap. The asymptotics of the new
algorithm are as in MPQS. Therefore it is not asymptotically as fast as the
recently discovered Number Field Sieve algorithm [3, 1].

2 Generating “small” quadratic congruences

Let N be a large odd integer. We will use the symbol “=” to denote modular
congruence, and we will restrict the use of “=” to equality. Let s, ¢ be such that

-t= H?=1 pj, where the p;’s are distinct primes ( n will be chosen later).
— The prime 2 may be among the p;’s if and only if N = 1 modulo 4.

— N is a quadratic residue modulo each p;.

— s satisfies s2 = N modulo t? and |s| < ¢2.

Lemmal. Let ¢ = t/NY4 Let z = s/t modulo N and y 2 z* modulo N
where y is the member of the residue class of x* with smallest absolute value.
Then |y| < ey N'/? where ¢; = Maz{c® — %, %}.

Proof. Since s> = N modulo t2 we have s = kt? + N for some (possibly

2 .
negative) integer k. Then y = —, =2 ;N = & 4N-N — [, where congruence is

modulo N. Thus we may choose y = k. Since s2 < t* and t = ¢N'/4, we have

—N 2 1/2 11
. ‘gMam{t 2} NY2Maz{c® - =, =

lyl = |k| =

e’ 277

Thus, if ¢ € (1, \/&2@), then |y| < N/2? (the golden mean strikes again!).
Also note that Maz{c® — %, %} is minimized at ¢ = 2174 For ¢ < 2'/4, the
bound is %. For ¢ > 2!/4, the bound is ¢ — &.

By constructlon there are 2" square roots of N modulo t2. Given the p;’s, it
is a simple matter to compute one such root s;. By the Chmese Remainder Theo—
rem, we may think of s; as an n—tuple (@, ..., an), where aJ N modulo pJ
Then the complete set of square roots of N modulo t? is given by (£, ..., xa,)
for all choices of signs +. Any member of this set can be easily calcula.ted as a
sum 3°7_; §;a;b; modulo ¢* where

— &; is the sign at the j—th coordinate.
- b is the unique element of Z;> which is 1| modulo pJ and 0 modulo p} for

it
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Note that there are two possible values for each «;. We will choose o; such
that bice; modulo t? is less than 1;

The maximumsize of n can be estimated from the familiar relation Z <. Inp
~ z, where the sum is over all primes p less than or equal to z. Smce N 1s
typlcally a quadratic residue modulo half of the first 2n primes we can estimate
the maximum n from 2n ~ 7(z) where z satisfies [ <P = N'Y2 (in this way,
the product of the approximately n primes for which V is a quadratlc residue is

approximately N1/4). This implies Zp<x Inp~1In¥N, andsoz ~ 5 Lin N. Thus

n~ gr(e) ~ §7(5InN) ~ s = O(log N/ loglog V).

Example : the RSA modulus
The 129-digit RSA modulus
Nrsa = 114381625757888867669235779976146612010218296721242362562561

842935706935245733897830597123563958705058989075147599290026879543541

1s a quadratic residue modulo the 20 primes

{2,5,17,19.29,37,41.43,47,59,79.97, 101, 103, 107. 113, 131. 151, 157, 163 }.
Letting ¢ be the product of all these primes except 79, we get ¢ ~ l.OLVFIt/;A.
Thus, for this case we get n = 19.

3 Traversing the hypercube

The set of square roots of N modulo t* can be thought of as the n-dimensional
hypercube, where we connect two roots if and only if they differ at exactly one
sign. A Hamiltonian path on the hypercube is defined by a starting point s;
and the sequence {k',-}f:"{" of coordinate changes, e.g. k1aq = 8 means the 130th
move on the Hamiltonian path is a change of sign at coordinate 8. Let p; = +1
if move ¢ switches a —~ sign for a + sign and g; = —1 if move i switches a +
sign for a — sign. Let «; = «;b; modulo {2, where a;,b; are as deﬁned in the
previous section. Note that, by our choice of «;, we have 0 < 4 < = for all 7.
Then we may define the i- th square root of N modulo #? by

. 2
Si4l = S + 2ivk, — wit

where w; is a correction factor to make s; € (0,¢%). Note that w; is always —1,0,
or +1. The sequence of w;’s can be easily computed from the few most significant
bits of the 7;’s, and if simply allowed to be 0, the values of s; will remain in a
small interval (as shown by our next example).

An n-dimensional cube €, is composed of two (n — 1)-dimensional cubes
C,(ll_)l, ‘77(12_)1 whose vertices are connected in a 1-1 fashion. Thus, a simple way
to traverse the n-cube is
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— traverse (7,(1121;
(2

— move to ('7(1-)1;
) {2)

— traverse (7.

. A (2 .
The recursive procedure works because on moving to 9. the algorithm

n—1

finds itself at a node which is, up to isomorphism, the same starting node as

in C,‘T(ll_)l. From mow on we will assume the Hamallonian path on the n-cube is
generated by this procedure.

Example : Traversing the 3-cube

A traversal of the 3-cube yields

I
N

— —
[ S 3 W
— Lo
[ N
—1
S e
—l 1

gl =L+ -1 1+ H 41

Using w; = 0 for all i, this table gives the following values for the s;’s.

59 = 8] — 27
83 = §a — 2yq

=51 —2(v1 +72)
s4 = 53+ 2%

=51 — 272
S5 = 54 — 273

=51 = 2072 +73)
S5 = §5 — 27
=51 = 2(n + 72 +73)
= s5 + 279
=51 = 2(1 +73)
S8 = 8§74+ 2%

281—273

n
~1

The value of sg could be larger in absalute value than 2t% but no larger than
3t2. This illustrates the point that if the w;’s are not used then s; still remains in
the interval (—nt?, nt*). 2 Also note that the sequence of k;’s can be generated

? Different Hamiltonian paths on the hypercube might vield different bounds.
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in linear time (to generate the sequence for (7, simply put n between two copies
of the sequence for (,_1).
Thus the integer recurrence

Sive1 = Si + iy, ~ wit?
together with
; = (5/t) modulo N | 1y = (xi)2 modulo N
yield
\'r 2 l 1 71/2
[ w| < Maz{c - Ez—,;};\

if y; 1s the member of the residue class of 7 with smallest absolute value. We
will now produce an integer recurrence for the v;’s.
Note that, modulo NV,

Vi1 = (5i41/1)°

(-*‘z’ + 247k, — '~d::f2>2
¢

Sy o A
(7)“ modulo N +

i

(Zpeimve, — wit®)? 282y, — wit?)
- + i
= te
(piyp, = wil®)® | 282057k, —wit?)
2 + 12

il

1l

Yi +

Since sf = N modulo * and s¥, = N modulo £ | we have (2uve, —

wit?)? 4+ 28 (v, — wit?) is congruent to 0 modulo ¢2. Thus
(2ptive, = wit®)® | 28 (2pi7e, — wit?)

t') + t2

is an integer which is easily seen to be of order N!'/2. This means the integer
recurrence
2pive, —with)? 28 (209, — wit?)

t? * t?

Yiv1 = Ui +

holds. By lemma 1, y; can be chosen so that |y;| < ¢; N2 where ¢; = Maz{c?~
}z, C%} Again by lemma 1, the integer recurrence generates y;’s whose absolute
value is less than Maz{c® — & L}NU/2

Now let us traverse the hypercube “modulo p”, where p is a small prime.
This simply means generating the sequence of y;’s modulo p. Assume p is not a
factor of t. We may write

Yisr =¥ + W + 57

Si+1 = 53 =+ .Jz
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where

(21371, — wit?)? 2257k, — wit?)
o = g Y= 17 ;

Ay = (2pv, — witg).

Note that ¥;,T; and 4; can take on at most 6n values ( p; can take on two
values, w; can take on three values, and vz, can take on n values). Thus, ¥, 1;
and 4; can be read from precomputed tables, of size 6n and indexed by p;, wi, k;.
Thus, computing (y;+1, si+1) modulo p from (34, 5;) modulo p involves one multi-
plication and three additions modulo p. The cost of computing s;+; mod p from
5; mod p s one addition modulo p. This fact will be used in section 4.

Note that precomputation is not possible if p divides ¢, since then ¥; and T7;
may not be defined modulo p. More specifically, ¥;, 7} are not defined modulo
Pk.-

Also note that, if N is not a quadratic residue modulo p, then p does not
divide y;. This can be shown as follows: Suppose N is not a quadratic residue

modulo p. Then P does not divide (% and therefore p divides y; = —T—r if and
only if p divides s7 — N'. But if this was the case then s = N modulo p, which

would contradict the assumption that N s not a quadratic residue modulo p.

4 A factoring algorithm

The algorithin consists of visiting A vertices of the hypercube and, at each vertex
s, finding the values of A for which

zy = (8/t + M) mod N (Ae-M.M)

is B-smooth. The optimal values of 4. B, and M will follow from the analysis of

the algorithm. We actually do not compute the zy, but rather find the values of
1/4

A for which zy is B—smooth. So that the z, are “small”. we will choose { ~ & T

Notice thal

2 2,1 '2 - N 2
=S/ A+ 25 mod N = ° s— + A2 4 260,

Thus we set

—_ )\r

+ A%% 4+ 25X = 0 mod p.
This yields
A= (-s= ﬁ ¢ mod p,
where VN is a modular square root. Therefore z, is divisible by p for all A =
kp+ D; and all A = kp + E,, where

— k is an integer;
= Dy = (=5 + VNt~ mod p; B
— E,=(=s =V N)}t"?modp= D, - 2/Nt~? mod p.
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Thus, the “good” A modulo p are in arithmetic progressions. Therefore standard
sieving techniques can be used to find those A for which 2z, is B—smooth.

We may precompute /N mod p,t=2 mod p, and =2/ N#~2 mod p. Therefore
computing D, and E; involves

— one addition to compute s mod p (see section 3);
- one addition and one multiplication to compute [2,;
— one addition to compute I, .

Thus the total cost of moving from one vertex of the hypercube to another is,
esseatially, three additions and one multiplication modulo p for each prime in
the factor base. This is much cheaper than the cost of changing polynomials in
the Multiple Polynomial Quadratic Sieve.

We now show that the zy’s are about M N'/2 in absolute value. Recall that

; Al .
t~ Vf and consider

o= (st 4+ M) = (s/07 + A2 + 2sA mod V.

As in the proof of lemma | we have (s5/¢)° mod N = k where s = kt?+ N. Since

2 <t < N, we have that k is negative. By lemma 1. I(s/8)° mod V| = [k| <
. . .. ; H L/
MNYZ, Assurming, for simplicity, that ¢ < :/1_“ we have AZ#? M- \1 =

MNY2 Since s < (2. we have |25)] < \‘ﬂ/‘ M = 2NV? <<« 1[‘V1/“ ’Ihu&

zy 18, essentially, the difference of two numbers in the range 0. MNY2 We

counclude that onr algorithm is faster than the Multiple Polynomial Quadratic
Sieve because

- vertices in the hypercube correspond to polynonuals in MPQS.

— for each vertex. the cost of sieving 2M locations is the same in our algorithm
as in MPQS.

— the size of the quadratic residues considered is, as in MPQS, about M N/2,

~ changing polynomials is much more expensive than changing vertices of the
hypercube. Therefore the optimal value for the size of the hypercube path is
bigger than the optimal number of polynomials in MPQS. This means that
M will be smaller in our algorithm and therefore M N2 will be smaller.
Thus, our algerithru will generate smaller quadratic residues than MPQS.

In practice there are many speedups to be included in an implementation
of this factoring algorithm. All the enhancements described in [5] can be used
with this algorithm. A rough estimate of how much faster this algorithm is than
MPQS can be obtained as follows:

Let T be the running time of the algorithm, in terms of arithmetic operations
on single-precision numbers, Let V' be the cost of moving from one vertex to
another. Let S be the cost of sieving at each vertex. Suppose we sieve modulo all
primes less than B for which &V is a quadratic residue. There are about ’T(f)
primes. [t takes four operations per prime to make a move on the hypercube.
Therefore we can estimate V7 by 2x(B). We can estimate S by 1/2 > pen 4M/p
since for each prime pin the factor base about 4 M /p locations of an accumulator

such
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array need be updated. We can estimate this surn by 6 M. Thus our estimate for
Tis A(S+V)=24A7(B)+64M.

Let F'(y,z) be the probability that a random number in Z, factors over
primes smaller than z. The number of quadratic residues considered by our
algorithm is 2AM, and each can be thought of as a random number in Z, yry1/2)-
Thus about 2AM F(M N2 B) of the quadratic residues will be B—smooth.
Since we need about 7(B)/2 smooth quadratic residues, we set

2AMF(MNY? B) = 2(B)/2.

Approximating 7(B) by B/In B and F(y,z) by (Inz/lny)"¥/ "% (see [4]), our
problem is to minimize
24B/In B+ 64AM

subject to

In(mM N2
1B ln(MNYZN\ T TP
T 4AMIn B In B

The solution to this optimization problem can be approximated numerically. For
N ~ 10199 optimal values are

A=1210>B=14-10>M=13-10":T=1.1-10"

Assuming the cost of changing polynomials in MPQS is 507(B), ® the numbers
for MPQS are

A=5810%B=1910>M=45.10%T=19.10"

Thus it appears that our techniques significantly improve on the running time

of MPQS.

4.1 Remarks

1. The running-time predictions given above are very crude estimates. The true
test of the running time of this algorithm will be its implementation.

2. In practice, the w;’s defined in section 2 can be set to zero without a signif-
icant cost in the running time of the algorithm. Doing so has the advantage
of diminishing the memory requirements of the algorithm.

3. In practice, the factors of ¢ should not be small primes. This is because the
numbers being sieved have a chance of 1/p of being divisible by p when p
divides t (as opposed to 2/p when p is an odd prime in the factor base which
does not divide ¢). The resulting loss of smoothness is significant for small
p. Because of this, the ¢ we use in practice may not have as many factors as
the optimization of parameters requires.

® This is 25 times as expensive as in our algorithm. Changing polynomials in MPQS
involves arithmetic with large numbers. Hence the cost will depend on the particular
implementation of large number arithmetic. The number 25 was arrived at using
“ln++7", a c++ package developed at UWM.
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. Pomerance. Smith. and Tuler [7], and Montgomery (reported in [7]) propose

ways of speeding up MPQS which are similar 1o the one proposed here.
Their methods can be combined with the vechniques being proposed here. It
appears that doing so may further umprove the running time of the algorithm.
The number of vertices of the hypercube to be visited by the factoring algo-
rithm should be at most 27!, where n is the number of factors of ¢, Other-
wise duplication of polynomials occurs, since (s/t+A)? and ((¢£7 —s)/t+At)?
are essentially equivalent.
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