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Abs t rac t  

Elliptic curves defined over finite fields have been proposed for Diffie-Hell- 
man type crypto systems. Koblitz h a s  suggested to use “anomalous” elliptic 
curves in characteristic 2, as these are nonsupersingular and allow for efficient 
multiplication of points by a n  integer. 

For anomaloiis curves E defined over Fz and regarded as curves over the 
extension field Fp, a new algorithm for computing multiples of arbitrary points 
on E is developed. The algorithm is shown to be three times faster than dou- 
ble and add, is easy to implement and does not rely on precomputation or 
additional memory. The algorithm is used to  generate efficient one-way permu- 
tations involving pairs of twisted elliptic curves by extending a construction of 
Kaliski to finite fields of characteristic 2. 

1 Introduction 

Elliptic curves defined over finite fields have been proposed for Diffie-Hellman type 
crypto systems [7,4] as well as for implementation of one-way permutations [2]. In 
particular, in [3] Koblitz has described the class of “anomalous” elliptic curves which 
in characteristic 2 have the following useful properties 

1. They are nonsupersingular, so that  one cannot use the Menezes-Okamoto- 
Vanstone reduction [6] of discrete logarithms from elliptic curves to finite fields. 

2. Multiplication of points by an  integer rn can be carried out almost as efficiently 
as in the  case of supersingular curves. 

According to [3) an elliptic curve E defined over the  field F, is called anomalous if 
the trace of the Frobenius map ((z,y) H (s9,yq)) is equal to 1. Equivalently, an 
elliptic curve over F, is anomalous if  and only if the number of F,-points is equal 
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to q. As in [3] we will concentrate on curves in characteristic 2, and in particular on 
the anomalous curve 

defined over Fz. We will also consider its twist E over F2, which is given by the 
equation y2 + zy = z3 + 1. Subsequently these curves will be considered over the 
extension fields Fp. Hereby let En denote the Fzn-points of the curve E ,  and in its 
twist over Fp . 

In applications, e.g., in a Diffie-Hellman key exchange, multiples m P  of points 
P on the curve En have to be computed. In standard algorithms for multiplication, 
e.g, by double and add, this is reduced to a number of additions of points on En. 
Since these additions consume most of the computation time, it is desirable to have 
algorithms which need fewer additions on En. In (31 it is suggested to express multi- 
plication by m as linear combinations of powers of the Frobenius map $, as these can 
be computed by iterated squaring in Fp which, in a normal basis representation, is 
easily accomplished by shift operations. In [3] expansions of the form 

E :  y 2 + x y  = z 3 + z 2 + l  (1) 

m = Cc,qS  
j 

are considered with cj E (0, il}. With this representation of m the computation of 
mP can be reduced to I - 1 additions where I is the number of nonzero terms in (2).  
Therefore it is desirable to have short expressions (2). The expansions given in 131 in 
the average have twice the length of the binary expansion of m. 

In this paper we elaborate constructions of short expansions (2). In particular, in 
Section 2 we prove that there always exists an expansion m = Eyii cj& of length n, 

where n is the degree of the extension field (Theorem 1). The proof of Theorem 1 
leads to an efficient algorithm which produces expansions where half of the coefficients 
cj are expected to be zero (Corollary 4).  

Our construction exploits the fact that the endomorphism ring End(E) of the 
curve E is related to the ring Z[a] = { a  + ba I a,  b E Z} c C, where a = (1 + J--?)/2. 
In particular we will reduce the problem of finding $-expansions in End(,?) to finding 
a-expansions in Z[a], where we make specific use of the rich algebraic structure of the 
ring Z[a]. The computational complexity of the reduction algorithm is of magnitude 
of a n-bit integer multiplication. 

Since execution of qb' is obtained almost for free, the &expansion of m allows to 
compute mP €or an arbitrary point P on En with n/2 additions in the average. As 
the computation of the &expansion is negligible compared with a full multiplication 
by m on the curve, this results in an improvement by a factor 3 compared to double 
and add without using precomputation or additional memory. At this point we note 
that other methods have been proposed for accelerating this operation (see e.g., 111). 
However these methods only apply if the point P is assumed to be fixed. Furthermore 
they need precomputation with this predefined point P (and additional memory). 
Observe for example that P cannot be assumed to be fixed in the second step of a 
Diffie-Hellman key exchange protocol. 

Our results also apply to generate efficient one-way permutations based on elliptic 
curves. In [2] Kaliski has proposed a construction of one-way permutations involving 
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pairs of twisted elliptic curves over F, for large prime numbers p .  It is easy to 
generalize the treatment in [2] to any extension field Fpn of F,. In Section 3 we 
apply the construction to extension fields Fp in characteristic 2. The treatment 
in characteristic 2 differs from the treatment in odd characteristic. Hcwever the 
construction in characteristic 2 appears to be particularly attractive, as arithmetic 
can be carried out efficiently. On certain curves, arithmetic can be accelerated by 
using the +expansion of multiplica.tion by m. Restriction to curves with short 4- 
expansion leaves enough freedom to find examples of curves with good cryptographic 
properties. 

2 F'robenius Expansion of Multiplication by rn 

On an anomalous curve over F,, the Frobenius map #J satisfies the characteristic 
equation T 2  - T + q = 0. We will also consider the twist E of E ,  whose Frobenius 
satisfies T2 t T + q = 0. The number of F,-points on k is q + 2. The "n-twist" 
En is the twist of E regarded as curve over the extension field Fqn. Using the Weil 
conjecture (see [S, p. 136]), the number IV, of F,n-points can be computed as 

IV" = Ian - 1 12 = Ip" - 1 12 = 1 +- q" - an - p" , (3) 

where LY and p in C are the roots of the characteristic equation TZ - T + q = 0. The 
number fin of points on the twist En is given by 19" = ]an + 11' = 1 + q" + an + p". 
Equivalently, N,, and Nn can be computed as N,, = q" + 1 -a ,  and N,, = qn + 1 +a,,, 
where a ,  = a" +b" for n 2 2 satisfies the recursion a,  = a,,-l - qa,-2 with the initial 
values a0 = 2 and a1 = 1. 

We now will concentrate on anomalous curves in characteristic 2,  and in particular 
on the anomalous curve E : y2 + zy = z3 +- 2 +- 1 defined over Fz. Its twist over 
F2 is given by E : y2 t xy = x3 + 1. Let En denote the curve E regarded over the 
extension field Fzn, and En its twist over Fzn. 

Our aim in this section is to express multiplication by m as short linear combina- 
tions of powers of the Frobenius map d, as this will lead to an efficient computation 
of multiples mP of arbitrary points on En. In [3] expansions of the form 

are considered with c j  E { O , f l } .  The expansions given in [3] in the average have 
twice the length of the binary expansion of m. On the other hand, from [5, p. 1491 
one concludes that there must be shorter expansions of the form 

n-1 

m = c ajd',  (5) 
j = O  

possibly with larger coefficients, however. 
laj l  I 7. 

taneously satisfy the conditions of (4) and ( 5 ) .  

From [5] one can merely deduce that 

In the following theorem we show that one can construct expansions which simul- 
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Theorem 1 For the  anomalous curve E : y2 + xy = z3 + zZ + 1 defined over  Fz, let  
En be the  curve regarded over t h e  ex tens ion  f ield Fr. Then on En multiplication by  
an in teger  m can be expressed a s  

j = O  

with cj E { O , f l } .  

This theorem also holds for En. The proof proceeds in several steps. First observe 
that the Frobenius map satisfies the equation 4' - 4 +- 2 = 0, and that there is 
a natural homomorphism from the ring Z[a] = {Q + b a I a , b  E Z} c C to the 
endomorphism ring End( E )  of E which maps a = (1 + p ) / 2  to 9. Thus, if we have 
an expansion m = C, cIaJ in Z [ a ] ,  we immediately get a corresponding expansion 
m = C, c,@ in End(E). This means that mP = C j  c,&(P) for every point P on 
En. For finding such an expansion in Z [ a ]  we will make use of the algebraic structure 
of the ring Z[a]. Note that Z [ a ]  is an Euclidean domain with respect to the norm 
N ( Q  + bcr) = la i- ba12 = (a + b a ) ( a  + &) = a2 + ab + 2b2,  a. b E Z. For the proof of 
the theorem we will make use of the following stronger property. 

Lemma 2 For any s, t E Z[Q], t # 0 ,  there ezist y ,  r E Z [ a ]  such that s = y t +  r with 

Proof. The elements of the ring Z[a] form a lattice in C ,  and the  whole of C can be 
covered by triangles whose vertices are in Z[a], as depicted in Figure 1. Consider the 

I 

Figure 1: The lattice Z[a]. 

triangle with vertices 0, 1 and a. The point T = 1 / 2 + ( 3 / ( 2 8 ) )  i is the center of the 
circumscribed circle of the triangle, as is easily verified by computing the distance of 
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7 to each vertex, that is 17 - 01 = I T  - 11 = 17 - a( = Z / a .  It follows that any other 
point in the triangle has distance less than 2 / f i  to some vertex. Since any point 
z E C lies in some triangle, we conclude that for any complex number z E C there is 
an element u E Z [ a ]  with N ( z  - u) 5 [2 / f i ) ’  = 4/7. 

Now let s , t  E Z[a] with t # 0. Consider the quotient v = 5 / t  computed in the 
quotient field of Z[cy], i.e., in the field Q ( Q )  = { a  + bcy I a ,  b 6 Q }  c C. Then, as 
discussed above, there is an element q E Z[Q] with ;V(v - q )  5 4/7, and r = s - qt  = 
t ( u  - q)  has norm N ( r )  = N ( v  - q ) N ( t )  5 ( 4 / 7 ) N ( t ) ,  which implies that q,r E Z[o] 
have the properties as stated in the lemma. 0 

Lemma 3 For any s E Z[Q] with norm ,hi(.) < 2“,  n E N, there is an ezpansion 

n-1 

s = c c,aJ 
]=0 

of length R with c, E { 0 ,  &I}. 

Proof. The proof is by induction on n. For n = l,?, consider the elements in z[Q] 
with norm less than 4. These are the element 0 with norm 0, the elements 2=1 with 
norm 1 and the elements &a, i ( 1  - a )  with norm 2. For these elements the statement 
of the lemma holds as is seen by direct inspection. 

Now consider s f Z[a]  with 3 ( s )  < 2“,  n > 2. Since Z [ a j  is an Euclidean domain. 
5 can be expressed as 

s = s’a -+ c 

with i jr(c) < iV(a) = 2 ,  i.e., with c E {0,41} .  The idea is to reduce the probiem of 

finding an expansion for s to the problem of finding an expansion for s’. If c = 0 ,  i e , 
if a divides s, the reduction (9) is unique. Otherwise, as cy divides 2 ,  there is always 
a reduction with c = 1 and another reduction with c = -1. If the reduction could 
be done such that N ( s ’ )  _< iV(s)/2 < 2”-’. the proof would easily be completed by 
induction. There are situations however. where there is no reduction with N(s ‘ )  5 
N ( s ) / 2 ,  as we shall see below. We will distinguish between the following three cases: 

(9) 

1. Non-critical case: There is a reduction (9) with N(s ’ )  < JV(S) /~.  

2. Semi-critical case: There is a reduction (9) with lV(s’) = iV(s)/2. 

3. Critical case: There are only reductions (9) with N(d) > N ( s ) / 2 .  

If a divides 5 ,  we have the reduction s = s’a with c = 0 and N(s’)  = N ( s ) / 2 ,  i.e., s 

is semi-critical. If cr does not divide s, Q is a divisor of both, s - 1 and s t 1. In this 
case the type of the reduction turns out to  depend on the absolute value of the real 
part %(s) of 5 :  

1. Non-critical case: lsR(s)] >_ 1. Assume for example that %(s) 2 1, as illustrated 
for 5 = s1 in Figure 2. Then *V(s - 1)  < N ( s ) ,  and we have the reduction s = da+ 1 
with N(5‘ )  = N ( s  - l)/iV(cy) < N ( 5 ) / 2 .  Similarly, if % ( s )  5 -1, we have s = s’ct - 1 
with N ( s ’ )  < A’(.)/?. 



338 

2. Semi-critical case: l%(s)l = 1/2. Assume for example that %(s) = 1/2, as 
illustrated for s = sz in Figure 2. Then N ( s  - 1) = N ( s ) ,  and we have the reduction 
s = s‘a + 1 with N(d) = N ( s  - 1) /N(cr )  = N ( s ) / 2 .  Similarly, if %(s) = -1/2, we 
have s = s‘a - 1 with N(s’) = N(s) /2 .  

3. Critical case: %(s) = 0. This is illustrated for s = s3 in Figure 2. Then, by 
Pythagoras’ theorem, N ( s  - 1) = N ( s  f 1) = N ( s )  + 1, and we have the reductions 
s = s’a + 1 and s = s”cr - 1 with 

N ( s )  t 1 
2 

N(s’ )  = X ( S ” )  = 

Since s” - s’ = 2/a = 1 - a, either s‘ or s“ is not divisible by a. Assume that S‘ is 
not divisible by a. We claim that s’ has a non-critical reduction. For this it suffices 
to show that 1%(s’)l 2 1. 

Since X(s) = 0, s must be of the form s = a f l  for some odd integer a E 2. 
Then s’ can be computed in Q(a) as 

7 a - 1  a + l  + --. 5’ = (s - 1)a-1 = (q/=- 1)-(1 - fl) = - 1 
4 4 4 

It follows that I%(s‘)l 2 3/2. Hence s’ is non-critical. Similarly, s“ is non-critical if a 
does not divide s”. 

Non-critical case Semi-cm’tical case Critical case 

Figure 2: 

Now the proof of the lemma is easily accomplished. In case that s has a non-critical 
or semi-critical reduction s = s’o + c,  we have N(s’) 5 N ( s ) / Z  < By induction 
hypothesis, s’ has an expansion in a of length n - 1, which yields an expansion of s 
in a of length n. 

In case that s has a critical reduction s = s’a + c,  we have according to ( lo) ,  
N(s’ )  = ( N ( s )  -+ 1) /2  5 2“-’. Since the inequality N(s’) 5 Zn-’ does not hold 
strictly, we cannot apply the induction hypothesis to s’. However, as discussed above, 
the reduction can be done such that s‘ has a non-critical reduction s’ = s”a + c’, i.e., 
N ( s ” )  C: N ( s ’ ) / 2  5 2”-’. Thus s = s“a2 + c’n + c, and by induction hypothesis, s’‘ 
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h a  an expansion in a of length n - 2, which yields an expansion of s in a of length 
,,. This completes the proof of the lemma. 0 

Now we are in position to prove Theorem 1. As the curve En is regarded over 
the extension field Fz-, the Frobenius map satisfies the equation 4" = 1. It follows 
that for any two a-expansions which are congruent modulo an - 1 the corresponding 
&expansions yield the same endomorphism on En. Therefore we compute the a- 
expansion of the remainder m' of the division of m by an - 1, 

rn = q(an - 1) + rn') (11) 

where, according to  Lemma 2 ,  N(m')  5 (4/7)N(an-1). To obtain a bound on N(rn') 
we compute (see formula (3)) 

N(an-1)  = (a"- l ) (P"-l )  = (ap ) " - (a " tp " )+ l  = 2"$1-(a"+/3") = :vn. (12) 

By Hasse's theorem (see [S, p.131]), iV,, 5 f(n) = 2" + 1 + 2"I2+l, and for n 2 4, 
(4/7)f(n) < 2") as g(n) = 2" - (4/'i)f(n) is strictly increasing for n 1 1 and strictly 
positive for n = 4. Hence for n 2 4, ili(m') < 2" and the theorem follows from 
Lemma 3. For n 5 3 the statement of the theorem can be verified directly. 

Note that an arbitrary element s = a + bcu in Z[o] is divisible by 3 if and only if  a 
is even. Hence with probability 1 / 2  this element has a reduction of the form 9 = S'CY, 

i.e., with c = 0. Continuing the reduction, it is to be expected that the intermediate 
results s' also have this property. This would imply that half of the coefficients c, in 
(8) can be expected to be zero. This has been confirmed experimentally. 

Corollary 4 (Experimental result) I n  the espansion n = ~~~~ c,& h a y  of the CO- 

e p c i e n t s  cl are expected to  be zero. 

It is easy to compute the a-expansion of an arbitrary element s = u + b a  E Z[a]. 
From the proof of Lemma 3 one can derive the following simple and efficient procedure 
which outputs cJ in ascending order for 3 .  

While a # 0 or b $1 0 do begin 
if u is even then 

c := 0; 
else begin 

if 2a + b # 0 then c := sgn(2a +- b ) ;  
if 2a -+ b = 0 then begin 

if a G 1 (mod 4) then c := -1; 
if a 3 (mod 4) then c := 1; 

end; 
end; 
z := ( U  - ~ ) / 2 ;  u := 5 t b; b := -s; 
output (c) ; 

end. 
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The problem of efficiently finding short &expansions of multplication by an arbitrary 
m was addressed by Koblitz in [3]. In the above procedure, the amount of work 
to perform the division (11) is roughly of the same magnitude as to perform the 
reduction. This is of magnitude of a n-bit integer multiplication, and is negligible in 
comparison with a full multiplication by m on the elliptic curve. 

As execution of qY is obtained almost for free, according to  Corollary 4, multipli- 
cation by m can be carried out with n/2 additions in the average. This results in an 
improvement by a factor 3 compared to double and add without using precomputation 
or additional memory. 

The results of Theorem 1 and Corollary 4 may also be applied to  the key exchange 
procedure suggested by H. Lenstra as mentioned in [3, p.2851. In this suggestion 
one chooses expansions m = ~ ~ ~ ~ c j $ J  where only a certain maximum number of 
coefficients c, are allowed to be nonzero. However it is unclear which multiples are 
obtained when applying this restriction. Furthermore certain multiples could occur 
more than once which would result in a non uniform probability distribution of the 
chosen values of m, or in a non uniform distribution of the keys. Theorem 1 allows to 
obtain every multiple with the same probability by choosing m first and then making 
the reduction. 

3 One-way Permutations on Elliptic Curves in 
Characteristic 2 

In [2] elliptic curves have been suggested as a tool for generating one-way permu- 
tations. Two constructions have been proposed in [Z), one involving single elliptic 
curves and the other one involving pairs of twisted elliptic curves. Both construc- 
tions deal with curves over F, for large prime numbers p .  As already observed in 
[2], the elliptic curves used in the first construction are supersingular, so that the 
Menezes-Okamoto-Vanstone reduction [6] can be applied. The second construction 
applies to arbitrary elliptic curves over F, for any odd prime number p > 3. It is 
easy to generalize the treatment in [2] to any extension field FPm of F,. 

In this section we apply the second construction to extension fields Fp in charac- 
teristic 2. The treatment in characteristic 2 differs from the treatment in odd char- 
acteristic. However the construction in characteristic 2 appears to be particularly 
attractive for the following reasons. 

1. Arithmetic in characteristic 2 can be carried out efficiently. 

2. On certain curves, arithmetic can be accelerated by using the &expansion of 
multiplication by m. 

3. Even restriction to anomalous curves leaves enough freedom to find curves with 
good cryptographic properties. 

In the following all curves are considered to be defined over fields with characteristic 
2. Recall that an elliptic curve in characteristic 2 is nonsupersingular if  and only if 
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the j-invariant is nonzero (see [8, p. 1451). The normal form of an elliptic curve E 
with j ( E )  # 0 is given by 

y 2 + zy ZZ x 3  + a2z2 t 067 (13) 

where a6 # 0. If a2, a6 are in F p ,  the curve is defined over F p .  The twist J? of E ,  
up to isomorphism, is given by 

(14) 2 y + x y  = z3 t (a2 + D)zz + a67 
where D E Fzm is such that the polynomial t Z  + t + D is irreducible over Fp. Observe 
that E and E are non-isomorphic over Fzn but are isomorphic over Fzn+I. Now we 

prove the analogue of Lemma 4.1 in [2]. 

Lemma 5 Eve y nonzero x E F2" appears either as x-coordinate of ezactly two points 
on E or as z-coordinate of exactly two points on E. The elliptic curve E together 
with its twist J? have order 2(2n + l) ,  i e . ,  # E  + #I? = 2(2" + 1) .  

Proof. For a fixed z # 0 the equation in y for ( 5 ,  y )  to be on E can be written as 

t 2  + t + c = 0 ,  (15) 

with t = y / z  and where c = ( 2  + a 2 2  + a 6 ) / z 2  is a constant. Similarly, with the 
same notation, the equation in y for ( 2 ,  y )  to  be on E is 

t 2  + t + ( c +  D) = 0. (16) 

The equation t2-+t+c = 0 has a solution if  and only if c is in the image of the mapping 
Q : F z n  -+ Fp,  Q ( t )  = t 2  + t .  Since Q is a homomorphism of the additive group F z n ,  
with kernel Fz, the image imQ is a subgroup of index 2 in Fzn. By assumption 
1' + 1 t D is irreducible over F2", hence D f im Q. As a consequence exactly one of 
the two elements c and c+ D is in im Q. This implies that exactly one of the equations 
(15) and (16) has (two) solutions. Thus we conclude that every nonzero x appears 
either as z-coordinate of exactly two points on E or as s-coordinate of exactly two 
points on E, which implies the first part of the lemma. 

For z = 0 we get the equation y2 = u6 for both curves. This equation always 
has exactly one solution, as squaring in Fzn is a bijecticn. The latter holds a~ 2 is 
relatively prime to IFzn'l = 2" - 1. Counting the points on E and E we get 2(2" - 1) 
Pints  with x # 0, two points with z = 0 and the two points at infinity. This implies 
that # E  + #k = 2(2" + 1) (which also follows from the Weil conjecture (3)). 0 

Our aim is to identify the elements of E and E with certain integers. For a 
8Ven representation of the elements of FZn as residues modulo a fixed irreducible 
mlYnomial, we first identify the elements of Fzn with the integers 0,1, . . . ,2" -1 as 

The polynomial f ( t )  = q,-lY"'l + . . . + clt f ~0 E F2[t] considered as element 
ofFp is identified with the integer ~ + ~ 2 " - ~  + . . . + c12 + Q. This bijection defines an 

of FP. This ordering is in no way compatible with the algebraic structure 
Oi the field, but we can use it to construct a map e from E U E to the integers. 
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First we define e on E. For z # 0 suppose that (z,y) E E .  Then (x ,x  + y)  is 
the other point on E with the same x-coordinate. The idea in the definition of e is 
to map the point with the smaller y-coordinate to the set 1, . . . ,2"-1 and the point 
with the larger y-coordinate to the set 2n+2, . . . ,2"+l. 

4.,!4) = 0 if x = O  and y = &  (17) 

!(X,Y) = if x # O  and y < x t y  (18) 

&(i ,y)  = x + 2 " + 1  i f s # O a n d y > z + y  (19) 

!(m) = 2" (20) 

!(x,y) = 2" + 1 if x = O  and y = &  (21) 

t (Z ,Y)  = X if z f O  and y < z + y  (22) 

t'(z,y) = I + 2" + 1 if I # 0 and y > z + y (23) 

E(W) = 2*+l + l  (24) 

The definition of t on E is similar. 

Theo_rem 6 Let E : y2 + xy = x3 + a2x2 + a6 be a nonsupersingular elliptic curve, 
and E : y2 -t zy = z3 + (a2 + D ) s Z  +a6 i ts twist over Fzn.  Then the map L as defined 
in (17) - (24) is a bijection from E U E to  the set of numbers (0, I, . . . ,2"+ ' t l} .  

Proof. According to Lemma 5 the set of possible nonzero x-coordinates of points on 
E and on E are disjoint. Therefore P ,  as defined in (17) - (X), is injective. Hence e 
is bijective, as by Lemma 5 the two sets have the same cardinality. 0 

We now assume that both curves E and E are cyclic with generators C E E and 
G E fi. Let iV denote the order of E.  Then we define a map f : (0,  . . . ,2""+1} + 

(0, . . . ,2"+'+l}, as in [a] by 

f (n )  = l (mG)  if O < m < N  (25) 

f ( m )  = ~ ( n z G )  if N _< m < 2"+ '+2  (26) 

As a consequence of Theorem 6 we obtain the following 

Corollary 7 Let E : yz + xy = x3 + a& + a6 be a nonsupersingular elliptic curve, 
and E : y2 -t xy = x3 + (a2 + D ) x 2  + a6 its twist over F2.. If both curves E and 6 
are cyclic, then the function f as defined in (25) and (26) is a permutation of the set 
{O, ... ,2"+'+-1}. 

.4s observed in [2], inverting the permutation f is equivalent to solving the discrete 
logarithm problem on the elliptic curves. 

Our aim is to find practical examples where both curves E and B are cyclic. At 
the same time the order of each curve should have at least one large prime divisor 
such that computation of discrete logarithms is supposed to be hard. A finite abelian 
group is cyclic if and only if the p-primary component of the group is cyclic for each 
prime p dividing the order of the group. For the p-primary component for p = 2 we 
have 
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Proposition 8 For a nonsupersingular elliptic curve in characteristic 2 the 2-pra- 
m a q  component is always cyclic. 

Proof. Let PO = ( z o , ~ o )  E E be a point of order 2, i-e. 2Po = 0, or Po = -Po. For 
j ( E )  # 0 the curve E has the normal form yz + xy = x3 + a2x2 + a6, and the negative 
of a point = (z,y) is computed a s  -P = (z, -y - z) (see [8 ,  p. 581). This implies 
that yo = -YO - 10, hence 50 = -2y0 = 0 and yo = &, i.e., there is only one point 
of order 2. 0 

In order to  guarantee that the pprimary component is cyclic for odd primes p we 
are looking for curves whose order is not divisible by p z .  For examples we concentrate 
on the anomalous curve E : y2 + xy = z3 + x2 + 1 defined over F2 as discussed in 
Section 2. Thus denote by N,  the number of Fp-points on E and by i?,, the number 
of Fan-points on I?. The degrees n = 107 and n = 181 of the extension fields turn 
out to be favourable in view of the desired criteria. The prime factorization of the 
corresponding orders N, and N,, are given as follows. 

Nio, = 2~81129638414606692182851032212511 

$107 = 4 * 40564819207303335604363489037809 

,Via1 = 2 . 122719 123531 

fils1 = 4.1087.12671 . 115117.30’7339. 1572131197704155598636826628289553S13 
53069745316S164396730940889115599370835266943 

The first example contains prime numbers with 32 decimal digits. This example is 
already mentioned in [ 3 ] .  The second example contains prime numbers with 45 and 
37 decimal digits, respectively. 
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