
Certifying Cryptographic Tools: The Case of
Trapdoor Permutations

Mihir Bellare’ and Moti Yung2

High Performance Computing and Communications, IBM T. J. Watson Research
Center, PO Box 704, Yorktown Heights, NY 10598. e-mail: mihirQwatson. ibm.com.

IBM Research, IBM T.J. Watson Research Center, PO Box 704, Yorktown Heights,
NY 10598. e-mail: motilaatson. ibm.com.

2

Abstract. In cryptographic protocols it is often necessary to verify/
certify the “tools” in use. This work demonstrates certain subtleties in
treating a family of trapdoor permutations in this context, noting the
necessity to “check” certain properties of these functions. T h e particular
case we illustrate is that of non-interactive zero-knowledge. We point out
that the elegant recent protocol of Feige, Lapidot and Shamir for proving
N P statements in non-interactive zero-knowledge requires an additional
certification of the underlying trapdoor permutation, and suggest a cer-
tification method to fill this gap.

1 Introduction

Primitives such as the RSA function, the discrete log function, or, more generally,
any trapdoor or one-way function, have applications over and above the “direct”
ones to public-key cryptography. Namely, they are also (widely) used as “tools”
in the construction of (often complex) cryptographic protocols.

T h i s paper points to the fact that in this second kind of application, some
care must be exercised in the manner in which the “tool” is used. Checks might
be necessary that are not necessary in public-key applications.

The need for such checks arises from the need to consider adverserial behavior
of parties in a cryptographic protocol. Typically, the problem is that one cannot
trust a party to “correctly” create the tool in question. For example, suppose a
party A is supposed to give another party B a modulus N product of two primes,
and an RSA exponent e, to specify an RS.4 function. On receipt of a number N
and an exponent e , it might be important that the receiver know that e is indeed
an RSA exponent (i.e. relatively prime to the Euler Phi Function of N) . This
is because the use of RSA in the protocol might be such that making e not an
RSA exponent could give A an advantage (such applications do exist). Such a
problem is not present in public-key applications, where, if I wish, for example,
to construct a digital signature scheme based on RSA, I put in my public file a
modulus N (which I have chosen to be the product of two primes) and an RSA
exponent e (and I keep secret the primes). T h e question of my choosing e to not
be an RSA exponent does not arise because it is not to my advantage to do so.

Protocols address this issue in several ways. Often, they incorporate addi-
tional sub-protocols which “certify” that the “tool” used is indeed “correct.”

E.F. Bnckell (Ed.): Advances In Cryptology - CRYPT0 ’92, LNCS 740, pp. 442-460, 1993.
0 Spnnger-Verlag Berlln Heldelberg 1993

443

In applications, these sub-protocols usually need to be zero-knowledge ones. In
most applications, such sub-protocols may be simply realized, by using, say, the
result of [GMW]. But we note that this is not always the case. For example (cf.
[BMO]), if we are trying to construct statistical ZK proofs, then we cannot use
[GMW] to certify the tools because the latter yields only computational ZK.
The issue must then be settled by other means.

Sometimes, we note, the issue does not arise; this is the case, for example, if
the tool is a one-way function, because a one-way function is a single object, a
map from {0,1}* to (0, l}*, specified by a string known t o everyone. At other
times, stronger assumptions about the primitive might be made. An example
of this is the use, in protocols, of the “certified discrete log assumption” (as
opposed to the usual “discrete log assumption”).

The particular instance of this issue that we focus on in this paper is the use
of trapdoor permutations in non-interactive zero-knowledge (NIZK) proofs. We
point out that the elegant recent NIZK protocol of Feige, Lapidot and Shamir
[FLS] makes the (implicit) assumption that the trapdoor permutation is “cer-
tified.” We note that this assumption is not valid for standard (conjectured)
trapdoor permutations like RSA or those of [BBS] (and so their protocol cannot
be instantiated with any known (conjectured) trapdoor permutation). We sug-
gest a certification method to fill this gap (so that any trapdoor permutation
truly suffices, and RSA or the construction of [BBS] may be used). Our certifi-
cation method involves a NIZK proof that a function is “almost” a permutation,
and might be of independent interest.

Below we begin by recalling the notions of trapdoor permutations and NIZK
proofs. We then discuss the FLS protocol and indicate the source of the problem.
We then, briefly, discuss our solution. Later sections specify the definitions and
our solution in more detail.

1.1 Trapdoor Permutations

Let US begin by recalling, in some detail, the definition of a trapdoor permutation
generator (cf. [BeMi]), and seeing what it means for such a generator to be
certified.

A trapdoor p e n n u t a t i o n generator is a triplet of polynomial time algorithms
(G, E , I) called the generat ing, evaluating, and i nver t ing algorithms, respec-
tively. The generating algorithm is probabilistic, and on input 1” outputs a pair
of n-bit strings (f*, p) , describing, respectively, a trapdoor permutation and its
inverse. If Z, y are n-bit strings, then so are E(f* , z) and I (f , y). Moreover, the
maps f , f: {0,1}“ + {0,1}“ specified by f (z) = E(f*, z) and y(y) = I(f; , Y)
are permutations of (0, l}”, and f = f-‘. Finally, f is “hard to invert” without
knowledge of f. (We refer the reader to $2.2 for more precise definitions).

Fix a trapdoor permutation generator (G, E , I) . We call an n-bit string f’
a trapdoor p e r m u t a t i o n if there exists some n-bit string such that the pair
(f*, f’) has a non-zero probability of being obtained when we run G on input I n .
It is important to note that not every n-bit string f * is a trapdoor permutation.
In fact, the set of n-bit strings which are trapdoor permutations may be a very

444

sparse subset of (0, l}", and perhaps not even recognizabie in polynomial time.
If it is recognizable in polynomial time, we say the generator is certified (that
is, the trapdoor permutation generator (G , B, I) is said to be certified if there
exists a polynomial time algorithm which, on input a string f * , outputs 1 iff f*
is a trapdoor permutation).

We note that certification is a lot to ask for. Consider our two main (con-
jectured) examples of trapdoor permutation generators: RSA [RSA], and the
factoring based generator of Blum, Blum and Shub [BBS]. Neither is !ikely to
be certified. This is because, in both cases, certification would need the ability
to recognize in polynomial time the class of integers which are a product of
(exactly) two (distinct) primes.

The importance of certification arises, as will see, from the use of trapdoor
permutations as "tools" in protocols. Typically, one party (for example, the
prover) gives the other party (for example, the verifier) a string f' which is
supposed to be a trapdoor permutation. For security reasons he may not wish
to reveal (as proof that it is indeed one) the string f*, but may nonetheless
need to convince the verifier that f ' is indeed a trapdoor permutation. This
is clearly easy if the underlying generator is certified. If the generator is not
certified, the protocol itself must address the task of giving suitable conviction
that f' is really a trapdoor permutation. In interactive protocols this is usually
(but not necessarily always!) easy. As we will see, the issue is more complex in
the non-interactive case.

1.2 Non-Interactive Zero-Knowledge Proofs

The setting we focus 0 1 1 in this paper is that of non-interactive zero-knowledge
(NIZK) proof systems. NIZK is an important notion for cryptographic systems
and protocols which was introduced by Blum, Feldman, and Micali [BFM] and
Blum, De Santis, Micali and Persian0 [BDMP]. There are numerous applications.
In particular, Naor and Yung show how to use NIZK proofs to implement public-
key cryptosystems secure against chosen-ciphertext attack [NaYu], and Bellare
and Goldwasser present a novel paradigm for digital signatures based on NIZK
proofs [BeGo].

The model is as follows. The prover and verifier have a common input w and
also share a random string (of length polynomial in the length of w). We call this
string the r e f e r e n c e string, and usually denote it by c. The prover must convince
the verifier of the membership of w in some fixed underlying NP language L. To
this end, the prover is allowed to send the verifier a single message, computed
as a function of w and 0 (in the case where w E L , we also give the prover, as
an auxiliary input, a witness to the membership of IJJ in L) . We usually denote
this message by p . The verifier (who is polynomial time) decides whether or not
to accept as a function of w , u and p . We ask that there exist a prover who
can convince the verifier to accept w E L , for all random strings 0 (this is the
c o m p l e t e n e s s condition). We ask that for any prover, the probability (over the
choice of c) that the verifier may be convinced to accept when w $ L is small
(this is the soundness condition). Finally, we ask the the proof provided by the

445

prover of the completeness condition (in the case w E I,) be zero-knowledge,
by requiring the existence of an appropriate “simulator.” For a more complete
specification of what it means to be a NIZIC proof system, we refer the reader
to $2.3.

We will focus here on protocols with efficient provers. That is, we want the
prover of the completeness condition (we call it the “honest” prover) to run in
polynomial (in n = lwl) time.

We note that we are considering what are called “single-theorem” or
Ubounded” NIZK proof systems. The primitive of importance in applications is
the “many-theorem” proof system (cf. [BFM, BDMP]). However, the former is
known to imply the latter, given the existence of one-way functions [Dek’u, FLS].
So we may, wlog, stick to the former.

1.3 The Need for Cer t i f ica t ion in the FLS P r o t o c o l

Feige, Lapidot and Sliamir [FLS] recently presented an elegant NIZK proof SYS-

tern based on the existecce of trapdoor permutations. The assumption, implicit
in their analysis, is i ha t the underlying trapdoor permutation generator is certi-
fied. Here we indicate whence arises the need for this certification. Once we have
identified the source of the problem, we will discuss how we propose to solve it.

Let L be a language in NP, and let (G , E , I) be a trapdoor permutation
generator. Fix a common input w E (0, l}n, and let denote the reference
string. We will describe how the prover and verifier a re instructed to operate
under the FLS protocol. First, however, we need some background and some
notation.

First, note that even if f’ is not a hapdoor permutation, we may assume,
wlog, that E (f ’ , z) is n-bits long. Thus, f* does specify (via E) a map from
(0, I}” to (0, I}“; specifically, the map given by z ‘t E (f * , r) . We call this map
the function specified by f’ under E , and wiil denote it by f . Of course, i f f ’ is
a trapdoor permutation then f is a permutation.

If z and r are n-bit strings then H (z , r) denotes the dot product, over GF(2j ,
of z and T (more precisely, H (c ! r) = z,~,). The theorem of Goldreich
and Levin [GoL,e] says that H is a i‘hard-core’l predicate for (G, E , I) . Very
informally, this means the following. Suppose we run G (on input 1”) to get
(f* , p), select 2 and T a t random from {0, I}”, and let y = f (x) . Then, given Y
and 7 , the task of predicting H (e , T) , and the task of finding 2, are equally hard.

w e are now ready to describe the protocol.
The protocol first asks that the prover P run G on input 1” to obtain a pair

(f* , .?). P is then instructed to send f‘ to V (while keeping
And the problem is right here. in this first step. The analysis of [FLS] assumes

that the prover performs this step correctly. This may he justified under the
assumption that the trapdoor permutation generator is certified. If the generator
is not certified, a cheaLing prover could, when w @ L , select, and send to the
verifier, an n-bit string which is not a t,rapdoor permutation. As we will see, this
could compromise the soundness of the protocol. Let us proceed.

to himself).

446

Once the prover has supplied j‘, the reference string is regarded as a sequence
= y l r l . . . yirl of d blocks of size 272, where 1 = I(n) is a (suitable) polynomial

(block i consists of the pair of n bit strings y;yt). We say that the prover “opens
block i with value b,” if he provides the verifier with an n-bit string x, such that
f(zi) = yt and H (z i , T ;) = b,. The prover now opens certain blocks of the random
string (and the protocol specifies how an honest prover should choose which
blocks to open). Based on the values of the opened blocks, their relative locations
in the reference string, and the common input, the verifier decides whether or not
to accept. Exactly how he does this is not relevant to our discussion. Exactly how
the honest prover is supposed to decide which blocks to open (which he does as
a function of the block, the common input, and his witness to the membership of
the common input in L) is also not relevant to our discussion. What is important
t o note is that the soundness condition relies on the assumption that, with f’
fixed, there exists a unique way to open any given block. If it is possible for the
prover to open a block with value either 0 or 1, then the soundness of the FLS
protocol is compromised.

The assumption that there is (one and) only one way to open a block is
justified i f f ’ is a trapdoor permutation, because, in this case, f is a permutation.
However, i f f * is not a trapdoor permutation, then f may not be a permutation,
and in such a case, the possibility exists that blocks may be opened with values
of the prover’s choice.

We note that the gap is not an academic one. Considering concrete cases, such
as the use of RSA or the trapdoor permutations based on quadratic residuosity
that are suggested by [BBS], we see that the prover may indeed cheat.

The solution that first suggests itself is that the prover prove (in NIZK)
that he really got f by running the generator G (this is an NP statement). The
problem is, however, that to prove this new statement itself requires the use of
a trapdoor permutation, arid we are only chasing our tail.

We note that the whole problem would not arise if we were using a one-way
permutation (rather than a trapdoor one) because, as we said above, a one-way
permutation is a single object which both parties know a priori. Yet for the sake
of maintaining the efficiency of the prover, we cannot use one-way permutations.

Remark. Note that in the above NIZK proof, a (cheating) prover may choose f’
as a function of the random string. But, as pointed out in [FLS], this causes no
difficulties. We may assume, in the analysis, that the reference string is chosen
after f‘ is fixed; Iater we apply a simple transformation which results in the
proof system being secure even if j’ was chosen as a function of 0. We will deal
with this issue explicitly when it arises.

1.4 Our Solution

Let f * denote the n-bit string provided by the prover in the first step of the FLS
protocol, as described above. As that discussion indicates, soundness does not
really require that f be a trapdoor permutation. All that it requires is that f be
a permutation. So it would suffice to certify this fact.

447

To certify that a map from {01 1)” to (0, I}“ is a permutation seems like a
hard task (it is a coNP statement). What we will do is certify it is “almost” a
permutation, and then show that this suffices.

More precisely, let us call f an c-permutation if a t most an E fraction of
the points in (0, l}” have more than one pre-image under f . We show that
on common input f’, and access to a common (random) reference string of

length c - l . n, the prover can provide the verifier with a non-interactive, zero-
knowledge proof that that f is an c-permutation. For a more precise statement
of the theorem and its proof we refer the reader to ‘$3.

We then show that adding this step to augment a multitude of independent
FLS protocol instances yields a NIZK proof system (for any NP language) given
the existence of any (not necessarily certified) trapdoor permutation generator.
A complete proof of this fact is in ’$4. We note that this proof is in fact quite
independent of the details of the FLS protocol and can be understood without
a deep knowledge of the techniques of that paper.

2 Preliminaries

We begin by summarizing some basic notation and conventions which are used
throughout the paper. We then discuss trapdoor permutations and say what it
means for them to be “certified.” Finally, we recall the definition, and some basic
properties, of non-interactive zero-knowledge proof systems.

2.1 Notation and Conventions

We use the notation and conventions for probabilistic algorithms that originated
in [GMR].

We emphasize the number of inputs received by an algorithm as follows. If
algorithm A receives only one input we write “ A (.) ” ; if it receives two we write
“A(- l a) ” , and so or,. If A is a probabilistic algorithm then, for any input i the
notation A(i) refers to the probability space which to the string 0 assigns the
probability that -4, on input i, outputs cr.

If S is a probability space we denote its support (the set of elements of
positive probability) by [S].

If f(.) and g (- , . . .) are probabilistic algorithms then f (g (. , . . .)) is the proba-
bilistic algorithm obtained by composing f and g (i.e. running f on g’s output).
For any inputs z, y, . . . the associated probability space is denoted f (g (z , y, * . .)).

S denotes the algorithm which assigns
t o z an element randomly selected according to S. In the case that [S] consists
of only one element e we might also write z +- e.

If S is a probability space then 2

For probability spaces S, TI . . ., the notation

denotes the probability that the predicate p(zl y, . . .) is true after the (ordered)

execution of the algorithms z f S, y T , etc.

448

Let f be a function. The notation

{ f (Z > y , - . .) : z & s ; Y E T ; . - }

denotes the probability space which to the string r7 assigns the probability

When we say that a function is computable in polynomial time, we mean
computable in time polynomial in the length of its first argument.

We will be interested in families of efficiently computable functions of polyno-
mial description. The following definition will he a convenient way of capturing
them.

Definition 1. Let E(. , .) be a polynomial time computable function. We say
that E specifies an efficiently computable family o f functions if for each n > 0 and
each f * , 2 E (0, 1)" it is the case that iE(f*, .)I = n. Let n > 0 and f ' E (0, l}n.
The function specified by f' under E is the map from (0, 1)" to (0, lIn given by
22 I-+ E (f * , z).

2.2

Let US present a precise definition of trapdoor permutations and see what it
means for them to be "certified." The definition that follows is from Bellare and
Micali [BehIi],

Trapdoor Permutations and Certified Ones

Definition2. (Trapdoor Permutation Generator) Let G be a probabilistic, poly-
nomial time algorithm, and let E , I be polynomial time algorithms. We say that
(G, E , I) is a trapdoor permutation generator if the following conditions hold:

0 Generation: For every n > 0, the outpiit of G on input 1" is a pair of n bit
strings.

a Permutation: For every n > 0 and (f* ,p) E [G(l")], the maps E(f*,.) and
I (? , .) are permutations of {0, 1)" which are inverses of each other (that is,
I (f * , E (f * , z)) = and E(f*,l(f*,y)) = y for all ",YE { O , l } n) .

Security: For all probabilistic polynomial time (adversary) algorithms A (, , ', .),
for all constants c and sufficiently large n, it is the case that

Pr (E(f*, 2) = y : (f*, f*) G(1") ; y (0, 1}" ; z A(l", f', y) 1
is at most nn-c.

We call G, E , 1 the generating, evaluating and inverting algorithms, respectively.

The standard (conjectured) "trapdoor permutations," such as RSA [RSA] and
the factoring based ones of Blum, Blum and Shub [BBS], do fit this definition,
after some minor transformations (the need for these transformations arises from

449

the fact that these number theoretic functions have domain 2; rather than
(0, l}"; we refer the reader to [BeMi] for details).

If a trapdoor permutation generator (GI El I) is fixed and (f * , f*) E [G(l")j
for some n > 0, then, in informal discussion, we call f' a trapdoor permutation.
It is important to note that not every n bit string f " is a trapdoor permutation:
it is only one if there exists some ft such that (f*, f.) E [G(l")]. In fact, the
set of (n bit strings which are) trapdoor permutations may be a fairly sparse
subset of (0, l}", and, in general, may not be recognizable in polynomial (in n)
time. If a trapdoor permutation generator does have the special property that
it is possible to recognize a trapdoor permutation in polynomial time then we
say that this generator is Cert i f ied . The more formal definition follows.

Definition3. Let (GI E , I) be a trapdoor permutation generator. We say that
(GI E, I) is cert i f ied if the language

~ G , E , I = u,>l{ - f' E { O , l } n : E (0, l}" such that (f* , 7) E [G(l")] }

is in BPP.

We note that standard (conjectured) trapdoor permutation generators a re (proh-
ably) not certified. In particular, RSA is (probably) not certified, and nor is the
trapdoor permutation generator of Blum, Blum and Shub [BBS]. This is because,
in both these cases, the (description of) the trapdoor permutation f' includes a
number which is a product of two primes, and there is (probably) no poiynomial
time procedure to test whether or not a number is a product of two primes.

The importance of certification stems, as we have seen, from applications in
which one party (for example, the prover) gives the other party (for example, the
verifier) a string f' which is supposed to be a trapdoor permutation. For secu-
rity reasons he may not wish to reveal (as proof that it is indeed one) the string
f*, but may nonetheless need to convince the verifier that f' is indeed a trap-
door permutation. In particular, the (implicit) assumption in [FLS] is that the
trapdoor permutation generator being used is certified. As the above indicates,
this means that their scheme cannot be instantiated with RSA or the trapdoor
permutations of [BBS]. In later sections we will show how to extend their scheme
SO that any (not necessarily certified) trapdoor permutation generator suffices
(so that RSA or the generator of [BBS] may in fact be used).

We note that if (G, E , I) is a trapdoor permutation generator, f* E (0, l}",
and IC E (0, l}" then we may assume, without loss of generality, that E(f*, s)
is an n-bit string. Hence E(f* , .) does specify some map from { O , l } " to (0, I}",
even if f * is not a trapdoor permutation. That is, in the terminology of
Definition 1, we may assume, without loss of generality, that the algorithm
E specifies an efficiently computable family of functions. Of course, the map
E (f * , .) need not be a permutation on (0, l}".

2.3 Non-Interactive Zero-knowledge Proof Systems

We will consider non-interactive zero-knowledge proof systems for NP. It is help-
ful to begin with the following terminology.

450

Definition4. Let p (. , .) be a binary relation. We say that p is an NP-relat ion
if it is polynomial time computable and, moreover, there exists a polynomial p
such that p (w , G) = 1 implies 5 p(lw1). For any w E {0, 1>* we let p (w) =
{ w E (0, l}’ : p (w , G) = 1 } denote the witness set of w. We let I;, = { w E
{0,1}* : p(w) # 0 } denote the language defined by p. A witness selector for p is
a map W: L, + (0, l}’ with the property that W(w) E p(w) for each w E L,.

Note that a language L is in NP iff there exists an NP-relation p such that

We recall the definition of computational indistinguishability of ensembles.
First, recall that a function 6: (0, 1}* + R is negligible if for every constant d
there exists an integer nd such that 6 (w) 5 Iwl-d for all w of length a t least n d .

L = L,.

Definition5. An ensemble indexed by L C (0 , l}’ is a collection { E (W) } ~ ~ L of
probability spaces (of finite support), one for each w E L. Let t‘l = {E~(w)) ,EL
and 82 = (E Z (W) } , ~ L be ensembles over a common index set L . We say that
they are (corn putat ional ly) indistinguishable if fcr every family { D w } w E ~ of non-
uniform, polynomial time algorithms, the function

is negligible.

The definition that follows is based on that of Blum, De Santis, Micali and
Persian0 [BDMP]. However, we state the zero-knowledge condition differently;
specifically, we use the notion of a witness selector to state the zero-knowledge
condition in terms of the standard notion of computational indistinguishability,
whereas in [BDMP] the zero-knowledge condition makes explicit reference to
“distinguishing” algorithms. The two formulations are, of course, equivalent (but
we feel this one is a little simpler because of its “modularity.”)

Definition6. Let p be an NP-relation and let L = L,. Let P be a machine, V
a polynomial time machine, and 5’ a probabilistic, polynomial time machine. We
say that (P , V , S) defines a non-interactive zero-knowledge p roo f system (NIZK
proof system) for p if there exists a polynomial I (.) such that the following three
conditions hold.

0 Completeness: For every w E L and W E p(w),

where n = /wl.

0 Soundness: For every machine P and every w # L ,

where n = Iw/.

451

0 Zero-knowledge: Let W be any witness selector for p. Then the following two
ensembles are (computationally) indistinguishable:

(1) { S (W)) W € L

(2) { (a ,p) : c7 : (0, ; p + P (w , W(W), a))WEL.

We call P the prover, V the verifier and S the simulator. The polynomial 1 is the
length of the reference string. We say that P is efficient if it is polynomial time
computable.

We call CT the “common random string” or the “reference string.”
The choice of 1/2 as the error-probability in the soundness condition is not

essential. Given any polynomial k(.), the error-probability can be reduced to
2 - k (n) by running k(n) independent copies of the original proof system in parallel
and accepting iff all suh-proofs are accepting.

A stronger definition (cf. [BDMP]) asks that in the soundness condition the
adversary P be allowed to select a w $ L as a function of the reference string.
This definition is, however, implied by the one above. More precisely, given
(P , V, S) satisfying the above definition, one can construct (P’, V’, S’) satisfying
the more stringent definition, by a standard trick. Hence, we will stick to the
simple definition.

We note we a re considering what have been called “single-theorem” or
“bounded” NIZK proof systems. That is, the given reference string can be used
to prove only a single theorem. The primitive of importance in applications (cf.
[BeGo, NaYu]) is the “many-theorem’’ proof system. However, De Santis and
Yung [DeYu], and Feige, Lapidot and Shamir TFLS], have shown that the exis-
tence (for some NP-complete relatioc) of a bounded NIZK proof system with an
efficient prover implies the existence (for any NP-relation) of a many-theorem
NIZK proof system (with an efficient prover), as long as one-way functions ex-
ist. Hence, given that the (bounded) NIZK proof systems we construct do have
efficient provers, we may, without loss of generality, stick to the bounded case.

h

3 A NIZK Proof that a Map is Almost a Permutation

Suppose E specifies an efficiently computable family of functions (cf.
Definition l), and suppose f“ E {O, t}n for some n > 0. We address in this
section the problem of providing a NIZK proof that the function specified by f*
under E is “almost” a permutation.

We note that although this problem is motivated by the need to fill the gap
in the FLS protocol (cf. §1.3), the results of this section might be of interest in
their own right. Thus, we prefer to view them independently, and will make the
link to [FLS] in the next section.

In addressing the task of providing a NIZK proof that the function specified
by f’ under E is “almost” a permutation, we must begin by clarifying two things.
First, we need to say what it means for a function f: (0, I}” ---f (0, l}” to be

452

"almost" a permutation. Our definition, of an +permutation, follows. Second,
we must also say what we mean, in this context, by an NIZK proof (because the
problem is not one of language membership). This is clarified below and in the
statement of Theorem 8.

Let us begin with the definition. It says that f is an E permutation if a t most
a n E fraction of the points in {0,1>" have more than one pre-image (under f) .
More formally, we have the following.

Definition7. Let n > 0 and f : {O, l}" --f (0 . l}". The collision set o f f , denoted
C (f) , is { y E {O,1}" : If- ' (y)/ > 1 }. Let E E [O , I]. We call f an E-permutation
if IC(f)l 5 tY.

We will now turn to the XSZK proof. The formal statement and proof of the
theorem follow. Let 11s begin, however, by saying, informally, what we achieve,
and giving the idea.

We fix E specifying an efficiently computable family of functions, and we
fix a map E : iO,1>* -r (0 , I]. We consider a prover and verifier who share a
(random) reference string and have as common input a string f' E (0 , I}". If
f (the function specified by f ' under E) is a permutation then the prover can
convince the verifier to accept (this is the completeness condition). If f is not
an e(n)-permutation, then the verifier will usually reject (this is the soundness
condition).

We note the gap between these two conditions: we are guaranteed nothing if
f i s a n c(n)-permutation (but not a permutation). This is one way in which this
"proof system" differs from proofs of language membership, where there are only
two possibilities: either the input is in the language (and completeness applies)
or it is not (and soundness applies).

In addition, when f is a permutation, the interaction yields no (extra) knowl-
edge to the verifier. This is formalized, as usual, by requiring the existence of an
appropriate "simulator."

The idea is very simply stated. Let o be the reference string, which we think
of as divided into blocks of size n. If f is not an c(n)-permutation, then each
block has probability at most 1 - ~ (n) of being in the range of f . So if we ask
the prover to provide the inverse of f on ~ - ' (n) different blocks, then he can
succeed with probability at most (1 - ~ (n)) ~ tn) - < 1/2. Moreover, a collection
of pre-images of f on random points provide no information about (the easily
computed) f , so the proof is zero-knowledge.

Theorem8. L e t E specify a n e f i c i e n t l y compztuble f a m i l y of f u n c t i o n s . Let
E : N -+ (0 , 11, and a s s u m e E - ' is polynomiadly bounded and p o l y n o m i a l t i m e
compu tab le . T h e n there is a p o l y n o m i a l t i m e oracle m a c h i n e A , a po lynomia l
t ame m a c h i n e B , and u probabilist ic, po lynomia l t i m e m a c h i n e M s u c h t h a t the
following three cond i t ions hold.

- 1

Completeness: L e t R > 0 and f * E (0,
b y f* u n d e r E . Suppose f is a p e r m u t a t i o n . T h e n

Let f denote t h e function specified

453

Here Ar- ' deno tes A wzth oracle f-l.

Soundness Le t n > 0 and f ' E { 0 , I}". Le t f deno te t h e f u n c t z o n speczfied
b y f' under E . Suppose f zs not a e(n)-perrnutatzon. T h e n f o r m y func tzon

P ,
A

Pr 1 B (f * , u, pj = 1 : u Z- (0, I } E - ~ (~) ; p +- p*(f* , 0) 1 5
1

Zero-knowledge. Let n > 0 and j * E {U, 1)". Le t f deno te the func taon spec-
zfied by f ' u n d e r E , and suppose f zs a permuta l zon . T h e n t h e dzstrabutzons
n / ~ (f *) and (u, p) ; u 2 (0, I } E - ' (~) R : p +- ~ f - l (f* , c) } are equal.

Proof: We specify the algorithm for verifier. Let f* E (0, l}" and let (r =
ul.. . D ~ - I (~) where each (T; has length n. Let f denote the function specified by
f ' under E. On input f', cr, and a string p , the verifier B rejects if the length
of p is not €-'in) . n. Otherwise! it partitions p into consecutive blocks of size n.
We denote the i-th block by p , , so that p = p , . . . p t - l (q) . Then B accepts iff for
each i = 1, . . . , e - l (n) it is the case that f(p,) = cr,.

Next we specify the prover A . Let f* E (0, 1}" and let 0 = ol.. . g c - ~ (n) where
each ci has length n. Let f denote the function specified by f' under E , and
suppose f is a permutation. On input f' and u, and given f-l as oracle: A
sets p , = f - ' (c r z) for each i = 1 , . . .,€-I(.). It then sets p = p l . . .pE-l(n) and
outputs p . It is easy to see that the completeness condition is true.

We now check the soundness condition. Let f' E (0, and let f denote the
function specified by f* under E . We recall that C(f) = {y E (0, l}" : lf-'(yji >
1 } is the collision set of f . Let D (f) = { y (0 , I}" : I f - ' (y) / = 0 } be the
set of n bit strings not in the range of f . Note that lD(f)i >_ iC(f)i. We let

b(n) 'Zf ID(f) l /2" denote the density of D (f) . Now assume f is not a ~ (n) -
permutation. Then \C(f)l 2 ~ (n) 2 " , and thus 6(n) 2 ~ (n) . For any fixed string

= ~1 . . . U ~ - I (~) , the following are clearly equivalent:

There exists a string p such that B (f * ! (r, p) = 1

For each i = 1,. . . , e-l(n) it is the case that (T, is in the range of f.

However, if u is chosen at random, then for each i = 1, . . . , c - l (n) , the probability
that g i is in the range of f is a t most 1 - 6(n), independently for each i t SO for
any Fl

Pr [~ (f * , c, p) = 1 : u C- (0, I } F - ' (~) . " ; p t ~ (f * , 011 5 [I - h (n)] ~ - ' (n)

w e now specify M . Let f * E (0, l}" and let f denote the function specified
by f' under E. Suppose f is a permutation. On input f', the machine

picks T I , . . . , 7 ; - 1 (~) E (0, I}” at random and sets u1 = f(~?), for each Z =
1,. . .,e-’(n). It sets p = , . rc- l (n) and outputs (r, p) . The zero-knowledge is
easy to check. I

We note that, in the above, we are thinking of f” as being the common input,
and the reference string is chosen at random independently of f’. Of course,
in our application, the prover may choose f* as a function of the reference
string. This, however, is easily dealt with by a standard trick, and so, for the
moment, we focus on the case presented here. When we put everything together
(cf. Theorem 12) we will return to this issue and show explicitly how to deal
with i t , given what we establish here.

We note also that no cryptographic assumptions were needed for the above
proof, and the zero-knowledge is “perfect .”

4 Using the Certification Procedure

In this section we show how the certification procedure of Theorem 8 can be
combined with the results of [FLS] to yield a NIZK proof system for any NP-
relation. We stress that the argument we present here depends little on the
specifics of the protocol of [FLS], and our proof does not presume familiarity with
that paper. We begin by extending Definition 7 with the following terminology.

Definition9. Let n > 0 and f : {O. l}“ --+ (0 , l}n. Let 0 = c1.. .q for some
I E N, where each ut has length n. We say that r is f -bad if there is an i E
{1, . . . , l } such that c? E C(f). We denote by Cl(,f) the set of all In-bit strings
which are f-bad.

We now state without proof, a lemma which can be derived from [FLS]. The
formal statement follows, but, since it is rather long, let us first try to give an
informal explanation of what it says

Briefly, we show how to “measure” the “additional” error incurred by the
[FLS] protocol in the case that the function being used is not a permutation.
More precisely, we fix a trapdoor permutation generator (G, E , I) and a n NP-
relation p. In order to make explicit the role played by the function used in the
proof, we consider an interaction in which the common input is a pair (w. f*)
of n-bit strings. The prover wishes to convince the verifier that w E L = L p ,
using f ” as a (‘tool.” We do not, a priori, know whether or not f a is a trapdoor
permutation.

The completeness condition (below) says that if w E L, then, assuming f’
really is a trapdoor permutation, the prover can convince the verifier that w E L .
Moreover, the zero-knowledge condition says this proof is zero-knowledge. The
part we are really concerned with, however, is the soundness condition.

The soundness condition says that if w @ L then the probability that a
prover can convince the verifier t o accept is bounded by a small error (1/4) plus
a quantity that depends on f *. Specifically, this quantity is the probability that

def

455

the reference string is f-bad (cf. Definition 9), where f is the function specified
by f " under E .

A priori, this quantity may be large. Once we have stated the lemma, we will
show how to use the results of the previous section to decrease it.

Lemma 10. L e t (G , E , I) be a trapdoor permuta t i0 .n generator . Le t p be a n NP-
relat ion, a n d le t L = L p . T h e n there exists a p o l y n o m i a l t i m e m a c h i n e .?, a
po lynomia l time m a c h i n e B , a probabi l is t ic , p o l y n o m i a l t i m e m a c h i n e a, and a
po lynomia l I (.) s uch tha t t he fo l lowing three cond i t ions hold.

Completeness: For every w E L , every 6 E p (w) , and every (f * , f ') E
[G(1")1,

Pr [~ (w , 0, f * , p) = 1 : g E (0, i}l(n).n ; p - ~ (w , w, g, f*, f* j 1 = 1 ,

where n = Iwl.

Soundness: F o r every m a c h i n e F J e v e r y w @ L , and every f' E (0, l}",

h

~ (w , u, f * , p) = 1 : u c { o , I } I (~) . ~ ; p + ~ (w , F, f *)]

l(n)-n 5 + Pr [u E ~ i (~) (f) : 0 E- {0,1>] ,

where n = Iw/ and f denotes t h e function specified by f " u n d e r E .

Zero-knowledge: Let W be a n y watness selector for p . T h e n the following two
ensembles are (computatzonal ly) zndistanguzshable:

(1) { (a , f * , p) :(f*,Pj E G (l ' w ') ; (u , P) : M (w , f * , p ')) w ~ ~

(2) { (a , f * , p) : u (0, l}~~lwl) l w l ; (f ' , p) G(lI"'1) ;

P + A(w, W (w) , g , f', f') }wEL.

We note that the statement of the above lemma makes no explicit reference
to the methods underlying the proof of [FLS]. Our previous discussions should
indicate whence, in the light of the [FLS] protocol, arises the "extra" term in the
soundness condition, but this is not relevant to the present discussion: everything
we need is captured by the statement of the lemma (and we refer the reader to
[FLS] for its proof).

We now show how to remove this extra f' dependent term in the soundness
condition by having the prover certify (using the proof system of Theorem 8)
that f is almost a permutation. The lemma that follows provides the formal
statement and proof, but let us first say, informally, what is happening.

On common input (w , f*), we have the prover give the proof of Lemma 10,
and also, using a separate part of the reference string, run the procedure of
Theorem 8. The verifier accepts iff both of these proofs are accepted (by their
respective verifiers). The completeness and zero-knowledge conditions stay the
Same as in Lemma 10 (except that the reference string is longer, indicated by

456

using a different symbol for its length); clearly, this is because the additional
proof cannot hurt them. The soundness condition, however? now becomes more
like a “real” soundness condition in that the “extra” term of Lemma 10 has
disappeared.

In the proof of the new soundness condition, we will have to consider two
cases. First, we assume that f is “almost” a permutation, and show that in
this case the “extra” term from the soundness condition of Lemma 10 is small.
Second, we assume that f is not ‘‘almost’’ a permutation, and use the fact that
we are guaranteed rejection (with high probability) by the soundness condition
of Theorem 8.

Lemma 11. L e t (G, E , I) be a frapdoor p e r m u t a t z o n genera tor . Let p be a n Np-
relatzon a n d let L = L,. Then there exasts a po lynomza l t z m e machzne A’, a
po lynomza l tzme machzne B‘, a probabalastzc, po lynomia l t z m e m a c h z n e M‘ , and
a po lynomza l m(-) such t h a t t he fol lowing three condztzons hold.

Completeness: FOT every w E L , every W E p (w) , and every (f*,f’) E

[G(1”)1 I

P r [B ’ (w , o , f * , p) - l : ~ E { (o , I } ~ (‘ z) ” ; p + ~ (w , r ~ u , n , f * , f ’ j] = 1 ,

where n = jw(.

Soundness: For every machzne ?, every w @ L , and every f’ E { 0 , I}”,
1

Pr ~’(w,cr, f * , p) = 1 . g (0, I > ~ (~) ; p + F(w,a, f*); 5 + , I
where n = /wl.

Zero-knowledge Let W be a n y watness selector for p . T h e n t h e fol lowzng t w o
ensembles are (compu ta t zona l l y) zndzstznguzshable.

(1) {(U,f* ,P) : (f * , f *) E G (l ’ * ’) ; (v) - f M (w , f * , f ’)) w E L

(2) { (c, f*,p) : ~7 E- {0, l}m(lwI) I w l ; (f*, ,?) G(llwl) ;

P + A(w, W (4 , fl, f*l ,?I L E L .

Proof: Let A , B , M be the machines, and 1 the polynomial, specified by
Lemma 10. Let E (.) = 1/(4l(*)). We apply Theorem 8 (with the algorithm E be-
ing the evaluating algorithm of our trapdoor family) to get a triplet of machines
A, B , M satisfying the conditions of that theorem. We let m(.) = €-I(*) + I(*) =
51(*) .

Nolalion: If u is a string of length m(n).n, then o[l] denotes the first e-l(n).n =
41(n) . n bits and c[2] denotes the last Z(n) . n bits.

We now specify the algorithm for the verifier B’. Let f* E {O,1}” and let u be
a string of length m(n) - n. On input f’, CT, and a string p, the verifier B rejects

457

if lpl < € - ' (T I) . n. Otherwise, it accepts if and only if

B(f*,g[l],p[1]) = 1 and B(wlc[2],f*,p[2]) = 1 ,
where ~ [l] denotes the first E - ' (n . j . n bits of p and pi21 denotes the rest.

Next we specify A'. Let w E L and w E p(w). Let R = IwI. Let i f " , p) E [G(l")].
Let g be a string of length m(n) . R. On input w, G, 0, f', pl the machine A'
sets p[l] = A f - l (f * , g [l]) (note that A' can obtain this output in polynomial
time because, using p, it can compute f-' in polynomial time). It then sets
p[2] = A(w, W, g[2] , f*, p). Finally it sets p = p[l]p[2] and outputs p . The fact
that the completeness condition holds follows from the respective completeness
conditions of Lemma 10 and Theorem 8.

Now for the interesting part, namely the soundness condition. Suppose w @ L.
Let n. = I w / and let f' (0, I}". Let f denote the function specified by f " under
E. W e split the proof into two cases.

Case 1 : f is a c(n)-permutation.

By assumption, lC(f)l 5 ~(n)2.. So

Pr [4 2 1 E c I (~) (~) : 421 (0, l>[(n) ."] 5 e(n)l(n) = 4 1 .
n

By the soundness condition of Lemma 10 it follows that for every machine P ,

The soundness condition follows from the definition of B' . Let us pro
next case.

Case 2: f is not a t(n)-permutation.

The soundness condition of Theorem 8 implies that for any function

Pr [~ (f * , 0-[111 p[ll) = 1 : 0[11 c { O , I } C - ~ [~) . " ; p t ?(f*, 0[1l)

eed to the

9,
5 $.

The soundness condition then follows directly from the definition of B'. This
completes the proof of the soundness condition.

The zero-knowledge, again, follows immediately from Lemma 10 and Theorem 8.
Let w E L and let n = jw/. Let (f', f') E [G(l")]. On input w, f*,P, machine
M' runs M on input f * to get an output (a[l],p[l]). It then runs A? on input
w, f', ft to get an output (a[2],p[2]). It sets c = a[l]u[2] and p = p[l]p[2] and
outputs (q p) . I

One more step is needed to derive from Lemma 11 the existence of NIZK proof
systems for any NP-relation (given the existence of a trapdoor permutation

458

generator). Namely, the interaction must be on input w (alone); the prover must
be allowed to select f' (which in Lemma 11 is part of the common input) not
only as a function of w but also as a function of the reference string. Clearly, in
the completeness condition, we may simply ask the prover to select f * by running
the generation algorithm G. Any problems that arise will be in the soundness
condition, where a cheating prover will take full advantage of the freedom to
choose f' as a function of the reference string.

For w 41 L , we may use the following "trick" (a standard probabilistic one,
used, for the same purpose, in [BDMP] and [FLS]). For each fixed f' E (0, l}",
we reduce the probability that the verifier accepts the interaction on inputs
(w, f*) to 2-(n+1), by parallel repetition. It follows that the probability that
there exists a string f * E (0, l}" such that the verifier accepts on input (w, f*)
is at most 2" . 2-(n+1) = 1/2 . Details are below.

Theorem 12. Let p be a n NP-re la t ion . Suppose there exists a trapdoor p e r m u t a -
t i o n genera tor . Then p possesses a non-interactzue zero-knowledge proof system
with a n eff icient p rover .

Proof: Let (G, El I) be a trapdoor permutation generator. Let A', B', M' be
the machines, and m the polynomial, specified by Lemma 11. Let I(n) = m(n) .
n(n + 1). We construct P, V, S satisfying the conditions of Definition 6.

Notation: If u is a string of length I(n) then we think of it as partitioned into n+ 1
blocks, each of length m(n).n, and denote the i-th block by ~ [i] (i = 1 , . . . , nS1).

We may assume, without loss of generality, that there is a polynomial t such
that B'jw, ., . , p) = 1 only if lp(= t (jw/) . Let t = L,. We specify V . Let w E L
and CT E (0, l}'(n). On input w, ~ , p , machine V rejects if (pi # n + (n + l) t(n).
Otherwise, it sets f' to the first n bits of p and p' t o the rest. It further sets
p'[i] to the i-th t(n)-bit block of p' (i = 1 , . . . , n + 1). Now V accepts iff for each
z = l , . . . , n + 1 i t i s t h e c a s e t h a t B ' (w , a [i] , f " , ~ ' [i]) = l .

We now specify P . Let w E L and G E p (w) . Let n = IwI, and let u E
{0, l}'("). P runs G to obtain a (random) pair (f * , p) E [G(l")]. It sets p'[i] =
A'(w,G, r[Z], f*, ft) for i = 1,. . ., n + 1, and sets p' = p[l]. . . p [n + 11. Finally
i t sets p = f".p' ("." denotes concatenation) and outputs p . The completeness
condition (as required by Definition 6) follows from the completeness condition
of Lemma 11.

Next we check the soundness condition. Suppose w $ L. Let n = Jwl and let
f' E (0, l}". Let 0 E (0, l}'(n). We say that a is f*-bad if there exists an
i E { 1, . . , , n -k l} and a string q E (0, l}t(n) such that B'(w, 44, f", q) = 1. The
soundness condition of Lemma 11 implies that

459

Now let us say that a string
f * such that g is f*-bad. It follows that

E (0, l}'(n) is bad if there exists an n-bit string

This implies the soundness condition (as required by Definition 6) .

Finally, we specify the simulator. Let w t L and let n = IwI. On input w, the
simulator S runs G on input 1" to obtain a (random) pair (f*,p) E [G(ln)].
For i = 1,. . ., n + 1 it runs M' on input P O , f * , f' to ge t an output (.-[i],p'[i]).
It sets n = m [l] . . .a[n + 11 and p' = p'[l] . . .p '[n + 11. It then sets p = f*.p' and
outputs (u , p) . The zero-knowledge (as required by Definition 6) can be argued
based on the zero-knowledge condition of Lemma 11. We omit the details. I

In particular, NIZK proof systems are constructible based on RSA.

Combining Theorem 12 with the result of [NaYu] yields the following.

Corollary 13. S u p p o s e there ex i s t s a t rapdoor p e r m u t a t i o n g e n e r a t o r . T h e n t h e r e
e x i s t s a n e n c r y p t i o n s c h e m e secure a g a i n s t chosen-capher t ex t a t tack .

Similarly, combining Theorem 1 2 with the result of [BeGo] yields the following.

Corollary 14. S u p p o s e there e z i s t s a t r a p d o o r p e r m u t a t i o n g e n e r a t o r . T h e n t h e r e
e x i s t s a n i m p Z e m e n t a t z o n of t h e s i g n a t u r e s c h e m e of [BeGo].

References

[BeGo] M. Bellare and S. Goldwasser. New Paradigms for Digital Signatures and
Message Authentzcatzon Based o n Non-Interactive Zero-Knowledge Proofs.
Advances in Cryptology - CRYPTO 89. Lecture Notes in Computer Science,
Vol. 435, Springer Verlag.
M. Bellare and S. Micali. How to S ign Gzven any Trapdoor Permutation.
JACM, Vol. 39, No. 1, January 1992, pp. 214-233. (Preliminary version in
Proceedings of the 20th STOC, 1988).
M. Bellare, S. Micali and R. Ostrovsky. The True Complesity of Statistzcal
Zero-Knowledge. Proceedings of the 22nd Annual ACM Symposium on the
Theory of Computing, 1990.
L. Blum, M. Blum, and M. Shub. A Szmple Unpredictable Pseudo-Random
Number Generator. SIAM Journal on Computing, Vol. 15, No. 2 , May 1986,

M. Blum, A. De Santis, S. Micali, and G. Persiano, iVon-Interactive Zero-
Knowledge Proof Systems, SIAM Journal on Computing, Vol. 20, No. 6,
December 1991,pp. 1084-1118.
M. Blum, P. Feldman, and S. Micali, Non-Interactive Zero-Knowledge Proof
Sys t ems and Applications, Proceedings of the 20th Annual ACM Symposium
on Theory of Computing, 1988.
A. De Santis and M. Yung. Cryptographic Applications of the Metaproof and
Many-prover Systems. Advances in Cryptology - CRYPTO 90. Lecture Notes
in Computer Science, Vol. 537, Springer-Verlag.

[BeMi]

[BMO]

[BBS]

pp. 364-383.
[BDMP]

[BFM]

[DeYu]

460

[FLS] U . Feige, D. Lapidot, and A. Shamir. Multiple Non-In terac t ive Zero-
Knowledge based o n a Single R a n d o m Strzng. Proceedings of the 31st Annual
IEEE Symposium on Foundations of Computer Science, 1990.
0. Goldreich, S. Micali, and A. Wigderson. Proofs t ha t Yzeld Nothzng but
their Vulidity and a Methodology of Cryptographac Design. JACM, July 1991.
(Preliminary version in the 27th FOCS, 1986).
0. Goldreich and L . Levin. A Hard- Core Predzcate for all One- W a y Func-
tzons. Proceedings of the 21st Annual ACM Symposium on the Theory of
Computing, 1989.
S. Goldwasser, S. Micali, and R. &vest. -4 Digital S ignature S c h e m e Secure
Aga ins t Adapt ive Chosen-Message At tacks . SIAM Journal on Computing,
Vol. 17, No. 2 , April 1988, pp. 281-308.
M. Naor and M. Yung. P,ublrc K e y Cryptosys tems secure against chosen-
czphertest attacks. Proceedings of the 22nd Annual ACM Symposium on the
Theory of Computing, 1990.
R. Rivest, A. Shamir, and L . Adlernan. A Method fo r 05tazning Dzgital Stq-
natures and Puhlzc-Keg Cryptosys tems . Communications of the ACM, Vol.
21, No. 2 , February 1978, pp. 120-26.

[GMW]

[GoLe]

[GMR]

[NaYu]

[RSA;

	Certifying Cryptographic Tools: The Case ofTrapdoor Permutations
	1 Introduction
	1.1 Trapdoor Permutations
	1.2 Non-Interactive Zero-Knowledge Proofs
	1.3 The Need for Certification in the FLS P r o t o c o l
	1.4 Our Solution

	2 Preliminaries
	2.1 Notation and Conventions
	2.2
Trapdoor Permutations and Certified Ones
	2.3 Non-Interactive Zero-knowledge Proof Systems

	3 A NIZK Proof that a Map is Almost a Permutation
	4 Using the Certification Procedure
	References

