
H.Unger, T.Böhme, and A.Mikler (Eds.): I²CS 2002, LNCS 2346, pp. 27-38, 2002.
 Springer-Verlag Berlin Heidelberg 2002

A Data Mining Architecture for Distributed
Environments

Mafruz Zaman Ashrafi, David Taniar, and Kate Smith

School of Business Systems, Monash University
PO BOX 63B, Clayton 3800, Australia

{Mafruz.Ashrafi,David.Taniar,Kate.Smith}@infotech.monash.edu.au

Abstract. Data mining offers tools for the discovery of relationship, patterns
and knowledge from a massive database in order to guide decisions about future
activities. Applications from various domains have adopted this technique to
perform data analysis efficiently. Several issues need to be addressed when
such techniques apply on data these are bulk at size and geographically
distributed at various sites. In this paper we describe system architecture for a
scalable and a portable distributed data mining application. The system contains
modules for secure distributed communication, database connectivity,
organized data management and efficient data analysis for generating a global
mining model. Performance evaluation of the system is also carried out and
presented.

1 Introduction

The widespread use of computers and the advance in database technology have
provided huge amounts of data. The explosive growth of data in databases has
generated an urgent need for efficient data mining techniques to discover useful
information and knowledge. On the other hand, the emergence of network-based
distributing computing such as the private intranet, internet, and wireless networks
has created a natural demand for scalable techniques of data mining that can exploit
the full benefit of such computing environments.

Distributed Data Mining (DDM) aims to discover knowledge from different data
sources geographically distributed on multiple sites and to combine it to build a global
data-mining model [3,4,8]. However, several issues emerge when data mining
techniques are used on such systems. The distributing computing system has an
additional level of complexity compared with centralized or host-based system. It
may need to deal with heterogeneous platforms and multiple databases and possibly
different schemas, with the design and implementation of scalable and effective
protocol for communication among the nodes, and the selective and efficient use of
the information that is gathered from several nodes [9].

A fundamental challenge for DDM is to develop mining techniques without having
to communicate data unnecessarily. Such functionality is required for reasons of
efficiency, accuracy and privacy. In addition, appropriate protocols, languages, and

Mafruz Zaman Ashrafi et al.

28

network services are required for mining distributed data to handle the required
metadata and mapping.

In this paper, we present a system architecture for developing mining applications
for distributed systems. The proposed architecture is not focused on any particular
data mining algorithms, since our intention is not to propose new algorithms but to
suggest a system infrastructure that makes it possible to plug in any mining algorithm
and enable it to participate in a highly distributed real time system. The system is
implemented in Java because it supports portable distribute programming on multiple
platforms. Java thread, socket and data compression, JDBC techniques were utilized.

2 Related Work

In this section, we provide some background material and related work in this area.
Several system including JAM, PADMA, Papyrus, BODHI, Kensington, PaDDMAS,
and DMA have been developed/proposed for distributed data mining.

JAM [3] is distributed agent-based data mining system that uses meta-learning
technique. It was develops local patterns of fraudulent activity by mining the local
databases of several financial institutes. Than final patterns are generated by
combining these local patterns. It assumes that each data site consists of a local
database, learning agents, meta-learning agents and configuration modules which
perform the major task of distributing computing by sending and receiving different
requests from different sites.

PADMA [7] is an agent-based architecture for parallel /distributed data mining. It
is a document analysis tool that works on a distributed environment based on
cooperative agents. It aims to develop a flexible system that exploits data mining
parallels. The data-mining agents in PADMA perform several parallel relational
operations with the information extracted from the documents. The authors report on
a PADMA implementation of unstructured text mining although the architecture is
not domain specific.

The Papyrus [4] system is able to mine distributed data sources on a local and wide
area cluster and a super cluster scenario. It uses meta-clusters to generate local
models, which are exchanged to generate a global model. The originator reports that
the system can support the moving of large volumes of mining data. The idea is
founded on a theory similar to JAM system. Nevertheless they use a model
representation language (PMML) and storage system called Osiris.

The BODHI [8] is a hierarchical agent based distributed learning system. The
system was designed to create a communication system and run time environment for
Collective Data Mining. It employs local learning techniques to build models at each
distributed site and then moves these models to a centralized location. The models are
then combed to build a meta-model whose inputs are the outputs of various models.

Kensington [13] Architecture is based on a distributed component environment
located on different nodes on a generic network, like the Internet or Intranet.
Kensington provides different components such as user oriented components,
Application servers and Third level servers. It warps the analysis algorithm as
Enterprise Java Bean components. PaDDMAS [8] is a Parallel and Distributed Data

A Data Mining Architecture for Distributed Environments

29

Mining Application Suite, which uses a similar approach as the Kensington but has
extended a few other features like, support for third party components, and a XML
interface which able to hide component implementation.

The mining of association rules in distributed database has also been examined by
David W.C. et al. They presented Distributed Mining of Association Rules (DMA)
algorithm, which takes advantage of the inherent parallel environment of a distributed
database. It uses the local counts of the large item-sets on each processor to decide
whether a large item-set is heavy (both locally large in one database partition and
globally large in the whole database), and then generates the candidates from the
heavy large item-sets.

The proposed system was developed to support data mining in a distributed or
parallel environment but has some significant differences from the abovementioned
systems or architecture. In contrast with JAM, PADMA, and Papyrus, our model not
only generated a global model from the homogeneous database but also from
heterogeneous database. We also employ some secure communication techniques that
are required in distributed environment. The Kensington and PaDDMAS systems are
component-based. In BODHI system local models are gathered into a centralized site
from the different remote sites and then they are combined to generate a global model.
In our approach every individual site is capable of doing the same task as the
centralized site of BODHI. It allows us to overcome the single point of failure.
Moreover, we designed a repository for each site, which allows each site to do further
analysis if needed. In contrast with DMA, in our system we analyze the association
rule not only with support and confidence but we also consider the total number of
record.

3 Design Rationale

The architecture of a data mining system plays a significant role in the efficiency with
which data is mined. A typical DDM involves two tasks: local data compression
and/or analysis for the minimization of network traffic, and the generation of global
data models and analysis by combining various local data and models [12]. To
perform these tasks successfully, a DDM system depends on various factors such as
data source, security, multiple results etc. In the following paragraphs we evaluate our
proposed architecture of distributed data mining on the basis of these factors:

3.1 Data Sources

The distributed data mining applications must run on multiple architectures and
different operating systems (for example Windows, Unix). To achieve this, we use
Java programming language and hence eliminate incompatibilities. Another challenge
of distributed mining application is to find mining rules from different sources of
formatted or unformatted data with diverse semantics. Because there are many kinds
of data and databases used in different applications, and one may expect that
distributed data mining system should be able to perform efficient data mining on

Mafruz Zaman Ashrafi et al.

30

different kinds of data [2]. In our module we used JDBC ODBC technology to handle
different sources of RDBMS, which are distributed in different locations.

3.2 Multiple Results

In distributed data mining application, different kinds of knowledge can be elicited
from large amounts of data including patterns which can be established by examining
different mining algorithms (for example Decision Tree, Association rule, Sequential
Patterns) in the same set of data. Because discovering knowledge from large database
involves huge amounts of data processing cost, it is important to produce an
organized way to devise rules, which can be used in the future. On the other hand,
technology is evolving day by day, which makes us to think about the future
communication between the distributed applications. Extensible Markup Language
(XML) has become the standard for communication between applications. With
XML, an application defines markup tags to represent the different elements of data
in a text file so it can be read and handled by any application that uses XML. In this
module, the data mining rule repository stores rules in XML format to achieve the
abovementioned goal.

3.3 Technological Issues

As mentioned earlier we used Java technology for eliminating incompatibilities. Java
allows us to achieve this by using several techniques: such as RMI and socket. The
primary goal is for the RMI to enable programmers to develop distributed Java
programs with the same syntax and semantics used for non-distributed programs. To
do this, RMI allows Java classes and objects in different machines to communicate
and work in a single Java Virtual Machine (JVM). As a result, Java RMI has some
communication and implementation overheads. Java Socket level programming (a
socket is a software endpoint that establishes bi-directional communication between a
server program and one or more client programs) allows us start the server program
with a specific hardware port on the machine where it runs so any client program
anywhere in the network can be communicated with the server program. As a result
Java Socket have less communication and implementation overheads.

3.4 Security

The security of network system is becoming increasingly important as more and more
sensitive information is stored and manipulated online [11]. Distributed applications,
which are guaranteed to be ‘network friendly’, pose a larger threat than usual.
Whenever a request comes from outside the local environment, it poses a threat to
security and privacy. Consequently special care must be taken to handle those kinds
of attack. The system should support authentication and message security. In the
proposed module we use one of the primitive approaches to resolve the authentication

A Data Mining Architecture for Distributed Environments

31

problem. And message level security implementation can be obtained by using the
Java Secure Socket Extension API.

3.5 Cost Effectiveness

The volumes of data in databases are increasing day-by-day. Large-scale data sets are
usually physically distributed. Current methods can handle data in the tens-of-
gigabytes range. Association rule mining algorithms do not appear to be suitable for
the terabyte range [10]. On the other hand, the Distributed Data Mining Application
involves transferring huge amounts data through the networks. This requires
implementing some kinds of compression technology. In our module we use Java ZIP
compression technology for reducing the data traffic cost.

4 Distributed Data Mining Architecture

Our proposed mining architecture is a client/server-based system developed for
performing knowledge discovery from large distributed sources of data. Due to the
diversity of mining algorithms and the diversity of data sources, it is difficult to
generate a mining model by combining mining rules on different sites. Our proposed
system works independently to combine result from different sites. This section
describes the abstract architecture model of the Distributed Data Mining and the
interaction between its various subsystems. The architecture has the following
subsystems: communication, mining, analyzing, and database. Figure 1 shows the
architecture and the relationship between the different subsystems.

Rule
Repository Mining Manager

Configuration
Manager

Rule Generator

Mining Subsystem

Algorithm
Manager

DB

Database
Manager

Query Engine

Database Subsystem

Transaction Monitor

Prediction Table

Prediction
Manager

Analyzer

Analyzing Subsystem

Web Server Mining Server

Communication Subsystem

Fig. 1. Distributed Data Mining Architecture

Mafruz Zaman Ashrafi et al.

32

4.1 Communication Subsystem

The communication subsystem is the heart of the network communication. It is
responsible for sending and receiving requests to or from other sites registered with
the local site. Because distributed systems are vulnerable, special care has been taken
on this subsystem to handle unauthorized access. The following steps reduce
vulnerability:

• Every time on the outside mining application wants to join with the local mining
system, an object is generated which holds various information of that site and
places that object in the active site table.

• Whenever any request arrives from that site a new object will be created and
verify the active site table.

Sending mining rules to other sites is simple. It sends mining rules to those sites,
which can be found on the active site table. Figure 2 shows the class diagram of the
communication subsystem. The MineServer is an interface, which defines a certain set
of functionality of the mining server. The MineServerImpl class implements the
MineServer interfaces. It provides a coordinating facility between the other
subsystems. The class MineServerImpl uses the Java thread model to concurrently
handle multiple requests.

MineServer

ServerObjMineServerImpl

SendData

ReceivedDataSecurityManager

Fig. 2. Class Diagram of Communication Subsystem

The Server class is responsible for implements server sockets on a specified port. A
socket is a software endpoint that establishes bi-directional communication between a
server program and one or more client programs. The socket associates the server
program with a specific hardware port on the machine on which it runs so that any
client program anywhere in the network with a socket associated with that same port
could be communicated with the server program. This class waits for requests to
come in over the network. When it gets request from the authorized site, it opens the
input stream for reading and saves it in a local file. The Server class reads the input
stream as a ZIP file format. This class maintains a log file for management purposes.
The SendData class is responsible for sending mining rules to the other sites. It sends
data as a ZIP file format. The ServerObj class is responsible for registering new
servers (that is wants to join with the data mining process) with the local sites. The
SecurityManager class is responsible for verifying different security aspects.

A Data Mining Architecture for Distributed Environments

33

4.2 Mining Subsystem

Figure 3 shows the class diagram of the Mining Subsystem. This is the core
subsystem of the proposed distributed data mining system. It basically deals with the
various data mining algorithms and manages the existing rules, in an organized way,
into the repository.

M ineM anager

O bjectToolKits

XM LD ataExtraction

ScheduleM anagerAlgorithm M anager

TaskM anager

RuleGeneratorXM LGenerator

RepositoryM anager

Fig. 3. Class Diagram of Mining Subsystem

The MineManager class is responsible for data processing and initiating different
tasks. The XMLDataExtraction class deals with various incoming XML encoded data
(received from the other sites), extracts them and saves them into a repository. The
XMLGenerator class is responsible for encoding mining rules into the XML format.
To define the legal building blocks of an XML document, we use a Document Type
Definition (DTD). The DTD specification is actually part of the XML specification,
which allows us to create a mining rule in a valid XML structure with a list of legal
elements. This can be used it to ensure that the XML encoded data we read from the
other site is indeed valid.

The RuleGenerator class is responsible for generating rules by using a specific
mining algorithm on a particular data set. The AlgorithmManager class is responsible
for implementing different mining algorithms that are part of the distributed data
mining system. It generates rules based on those algorithms. The RepositoryManager
class is responsible for maintaining the existing rules in an organized way. The
ScheduleManager is responsible for performing different tasks on a routine basis.

4.3 Analyzing Subsystem

A successful DDM project involves several tasks including, examining and pruning
the mining results and reporting the final result. Data mining results include
classification, association, clustering, prediction, estimation, and deviation analysis.
This subsystem is responsible for analyzing different data mining pattern gathered
from multiple sites. It also generates a global model. Figure 4 shows the class diagram
of this subsystem.

Mafruz Zaman Ashrafi et al.

34

AnalyzerManager

ParamObj

AnalyzerFactory

DecisionTreeAnalyzer

Analyzer

AttributeTableClassifierTable

DecisionResult AssociationAnalyzer

Fig. 4. Class Diagram of Analyzing Subsystem

The AnalyzerManager class initiates the global data-mining model generation task.
Since the generation of global mining depends on various mining rules, we
implemented a different rule analyzing class to achieve that. The AnalyzerFactory
class returns an instance of a class depending on the data provided by
AnalyzerManager class.

In this project we implemented two rules analyzed for two algorithms, the Rule
Induction (Decision Tree) and the Association Mining. The former is a model that is
both a predictive and a descriptive representation of a collection of rules. Rule
induction is one of the most descriptive forms of knowledge discovery. It is a
technique for discovering a set of "If / Then" rules from data in order to classify the
different cases. Because it looks for all possible interesting patterns in a data set, the
technique is powerful.

In the DecisionTree class we combined decision tree mining rules, each which has
a classifier and a set of attributes. The classifier indicates the label or category to
which the particular rule belongs. Attributes can be continuous that is, coming from
an ordered domain, or categorical that is, coming from an unordered domain. We
divided each rule on two parts, the classifier and the rule and represented them into
two tables. The classifier table holds the classifier name and the corresponding rule
number. The rule part is further divided into the attribute level and put into two
different tables, the root and child, with the attribute name and rule number.

In a distributed computing environment, the database may fragment in different
sites, as a result, can generate an overwhelming number of rules from several sites. To
handle this kind of scenario we closely observed whether the attributes (root as well
as child) of one rule fully or partly belongs to other rules or not and eliminated the
fragmented rules. The rules in the rule induction form are independent and many may
contradict each other. If we found any contradiction rule, we marked that rule as clash
between the corresponding classifier. Human interaction is required to overcome such
scenarios.

The association rule is used to find the set of all subsets of items or attributes that
frequently occur in many database records or transactions, and additionally, to extract
rules about how a subset of items influences the presence of another subset. The two
important measures in the association rule are support and confidence.

The AssociationAnalyzer class analyzes different association mining rules received
from the multiple sites and generates the global association-mining model. In a
traditional (centralized-based) system, association rules are generated on the basis of

A Data Mining Architecture for Distributed Environments

35

local support and the confidence of the itemsets. In distributed environment the
database may fragment, and the size of the database may vary from one site to
another. This requires us to consider some additional parameter for generating a
global model. This class generated global association mining model based is on four
parameters: support, confidence, total support, and total confidence. The first two
parameters provide the percentage of support and confidence of any particular itemset
pattern. The parameter total support is measured by numbers of records present in the
training set. Total confidence is measured by the numbers of times a particular item
set with minimum confidence satisfies a particular pattern on it. In this class we
implemented two different methods for generating a global model.

4.4 Database Subsystem

This subsystem is responsible for retrieving data from storage and saving it back to
the database. To do this, it maintains a connection with a specific database. It has the
capacity to generate a result by using SQL queries and stored-procedures within the
context of a particular connection. Figure 5 shows the class diagram of this
subsystem.

SQLUtilAbstractManager

DriverFactorySQLUtilManager Driver

QueryManager

Fig. 5. Class Diagram of Database Subsystem

The SQLUtilManager class is the heart of this subsystem. It represents an

individual session with the database and provides the methods necessary to save and
retrieve objects it. It has the capability to support connections in various well-known
databases and the DriverFactory class instantiate the corresponding driver for that
database. The QueryManager class retrieves results from the database. The retrieve
operation uses a simple SQL statement or calls a store procedure, which are, resides
in the database.

5 Performance Evaluation

In this section we review the preliminary experiments of the proposed DDM
architecture. We carried out a sensitivity analysis through a simulation. A sensitivity
analysis is performed by varying performance parameters. The parameters were

Mafruz Zaman Ashrafi et al.

36

varied with different fragment schema, redundant rules, numbers of base classifier
and total number of rules.

The experiments were run on a Windows 2000 server environment. The local rule
model was generated from the data replicated and fragmented into three different
sites. The local model consists of several thousand descriptive decision tree rules in
If/Than format. We conducted this experiment by varying 5500 to 55500 of rules. The
rule data contained a total number of 14 attributes. Some of the attributes are numeric,
the rest categorical. The average length of each rule is 60 bytes. The experiment
compared the total time of generating a global rule model by combining different
local rules (that is generated each individual sites).

5.1 Result of Experiment

Figure 6 shows a comparative performance by varying the rules (received from three
different sites) with a different base classifier. Each base classifier was equally
distributed among the rules. In the first phase, each rule was scanned to identify the
classifier of that rule and then to create the corresponding root and attribute table.
The data are fragmented (both vertically and horizontally) and in a local rule model
same rule may exist in a different format (that is the combination of attribute may
appear differently).

Comparative Performance

0

50000
100000
150000

200000

250000
300000
350000

5580 11120 16680 22630 27900 33480 39060 44660 50220 55800

Number of rules

Ti
m

e
in

 m
ili

se
co

nd

6 classifiers 12 classifiers 16 classfiers

Fig. 6. Comparative Performance

The preliminary results indicate that the global rule model for the classifier set with 6
elements perform extensive data processing because its attribute table size increases
with the proportion of rules. The major cost for scanning the data and finding rules
with the same attributes. On the other hand, rules with elements of 12 and 16
classifier sets have smaller attribute tables compared with the classifier set of 6

A Data Mining Architecture for Distributed Environments

37

elements. Hence, they scanned less data. On average, the classifier set with 16
elements is nearly two to three times faster then the classifier set with 6 elements.

6 Conclusions and Future Work

The distributed data mining uses communication networks to extract new knowledge
from a large data set that exists in a distributed environment. It can enhance the
computational time of knowledge extraction. In this paper we have defined and
designed a system architecture for Distributing Data Mining, which allows us to
combine local and remote patterns and to generate a global model for a different
mining algorithm. The architecture is based on Java language. XML technique is
used for data translation with support distributing computing. The secure socket layer
is designed for communication between different sites. The Java thread is used to
achieve parallelism.

Future work is being planned to investigate data security and privacy. It is
important to consider when distributed knowledge discovery may lead to an invasion
of privacy and what kind of security measures could be developed for preventing the
disclosure of sensitive information.

References

1. David W. Cheung, Vincent T. Ng , Ada W. Fu, and Yongjian fu “Efficient Mining of
Association rules in Distributed Databases”. IEEE Transaction on Knowledge and Data
Mining, Vol. 8, No 6, December 1996.

2. Chen M.S., Han J., and Yu P.S. “Data mining: An overview from a database perspective”.
IEEE Transactions on Knowledge and Data Engineering, Vol 8, No 6, pages 866-883,
1996.

3. Stolfo S.J., Prodromidis A.L., Tselepis S., Lee W., Fan D.W., and Chan P.K. “Jam: Java
agents for meta-learning over distributed databases”. Proceedings of the 3rd International
Conference on Knowledge Discovery and Data Mining, pages 74-81, Newport Beach, CA,
August 1997. AAAI Press.

4. Bailey S.M., Grossman R. L., Sivakumar H., and Turinsky A.L., “Papyrus: A System for
Data Mining over Local and Wide Area Clusters and Super-Clusters”. Technical report,
University of Illinois at Chicago.

5. Rana O., Walker D., Li M., Lynden S., and Ward M., ”PaDDMAS: Parallel and
Distributed Data Mining Application Suit”. Proceedings of the Fourteenth International
Parallel and Distributed Processing Symposium, pages 387-392.

6. Kusiak A., ”Decomposition in Data Mining: An Industrial Case Study”. IEEE Transaction
on Electronics Packaging Manufacturing, Vol. 23 No 4 October 2000.

7. Kargupta H., Hamzaoglu I., and Stafford B. “Scalable, Distributed Data Mining An Agent
Based Application”. Proceedings of Knowledge Discovery And Data Mining, August,
1997.

8. Kargupta, H., Park, B., Hershberger, D., and Johnson, E., (1999), "Collective Data Mining:
A New Perspective Toward Distributed Data Mining". Advances in Distributed and
Parallel Knowledge Discovery, 1999. MIT/AAAI Press.

Mafruz Zaman Ashrafi et al.

38

9. Prodromidis, A., Chan, P., and Stolfo, S. (2000). “Meta-Learning in Distributed Data
Mining Systems: Issues and Approaches”. Advances in Distributed and Parallel
Knowledge Discovery, AAAI/MITPress.

10. Zaki M. “Parallel and Distributed Association Mining: A survey”. IEEE Concurrency,
special issue on Parallel Mechanisms for Data Mining, 7(4):14--25, December.

11.Lee W., Salvatore J. S., Philip K. C., Eleazar E., Wei F., Matthew M., Shlomo H., and
Junxin Z.. ”Real Time Data Mining-based Intrusion Detection.” Proceedings of DISCEX II.
June 2001.

12. Sally M., “Distributed Data Mining”. Proceeding of Intelligence in Industry, Issue 3, 2001.
13. Chattratichat J., Darlington J, Guo Y., Hedvall S., Kohler M., and Syed J., “An

Architecture for Distributed Enterprise Data Mining”. HPCN, Amsterdam, 1999.

	1 Introduction
	2 Related Work
	3 Design Rationale
	3.1 Data Sources
	3.2 Multiple Results
	3.3 Technological Issues
	3.4 Security
	3.5 Cost Effectivness

	4 Distributed Data Mining Architecture
	4.1 Communication Subsystem
	4.2 Mining Subsystem
	4.3 Analyzing Subsystem
	4.4 Database Subsystem

	5 Performance Evaluation
	5.1 Result of Experiment

	6 Conclusion and Future Work
	References

