Skip to main content

Rotation of the Sources and Normalization of the Fundamental Solutions in the MFS

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2328))

Abstract

The Method of Fundamental Solutions (MFS) is a boundary-type method suitable for the solution of certain elliptic boundary value problems. The basic ideas of the MFS were introduced by Kupradze and Alexidze and its modern form was proposed by Mathon and Johnston. In this work, we investigate certain aspects of a particular version of the MFS, also known as the Charge Simulation Method (CSM), in which the sources are fixed, when this is applied to the Dirichlet problem for Laplace’s equation in a disk.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Balakrishnan AND P. A. Ramachandran, A particular solution Trefftz method for non-linear Poisson problems in heat and mass transfer, J. Comput. Phys., 150, 239–267, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  2. K. Balakrishnan AND P. A. Ramachandran, The method of fundamental solutions for linear diffusion-reaction equations, Mathl. Comput. Modelling, 31, 221–237, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Fairweather AND A. Karageorghis, The method of fundamental solutions for elliptic boundary value problems, Adv. Comput. Math., 9, 69–95, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Freeden AND H. Kersten, A constructive approximation theorem for the oblique derivative problem in potential theory, Math. Meth. Appl. Sci. 3, 104–114, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. A. Golberg AND C. S. Chen, Discrete Projection Methods for Integral Equations, Computational Mechanics Publications, Southampton, 1996.

    Google Scholar 

  6. S. Ho-Tai, R. L. Johnson AND R. Mathon Software for solving boundary-value problems for Laplace’s equation using fundamental solutions, Technical Report 136/79, Department of Computer Science, University of Toronto, 1979.

    Google Scholar 

  7. M. Katsurada, A mathematical study of the charge simulation method II, J. Fac. Sci., Univ. of Tokyo, Sect. 1A, Math. 36, 135–162, 1989.

    MathSciNet  MATH  Google Scholar 

  8. M. Katsurada, Asymptotic error analysis of the charge simulation method in a Jordan region with an analytic boundary, J. Fac. Sci., Univ. of Tokyo, Sect. 1A, Math. 37, 635–657, 1990.

    MathSciNet  MATH  Google Scholar 

  9. M. Katsurada, Charge simulation method using exterior mapping functions, Japan J. Indust. Appl. Math. 11, 47–61, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Katsurada AND H. Okamoto, A mathematical study of the charge simulation method I, J. Fac. Sci., Univ. of Tokyo, Sect. 1A, Math. 35, 507–518, 1988.

    MathSciNet  MATH  Google Scholar 

  11. M. Katsurada AND H. Okamoto, The collocation points of the fundamental solution method for the potential problem, Computers Math. Applic. 31, 123–137, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Kitagawa, On the numerical stability of the method of fundamental solution applied to the Dirichlet problem, Japan J. Appl. Math. 5, 123–133, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  13. T. Kitagawa, Asymptotic stability of the fundamental solution method, J. Comput. Appl. Math. 38, 263–269, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  14. V. D. Kupradze, Potential Methods in the Theory of Elasticity, Israel Program for Scientific Translations, Jerusalem, 1965.

    Google Scholar 

  15. R. Mathon AND R. L. Johnston, The approximate solution of elliptic boundary-value problems by fundamental solutions, SIAM J. Numer. Anal., 14, 638–650, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  16. Y.S. Smyrlis, A. Karageorghis, Some Aspects of the Method of Fundamental Solutions for certain harmonic problems, Technical report, TR/04/2001, Dept. of Math. & Stat., University of Cyprus, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smyrlis, YS., Karageorghis, A. (2002). Rotation of the Sources and Normalization of the Fundamental Solutions in the MFS. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2001. Lecture Notes in Computer Science, vol 2328. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48086-2_85

Download citation

  • DOI: https://doi.org/10.1007/3-540-48086-2_85

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43792-5

  • Online ISBN: 978-3-540-48086-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics