Integrating SNMP into
a Mobile Agent Infrastructure

Paulo Simoes, Luis Moura Silva, and Fernando Boavida Fernandes

University of Coimbra, CISUC - Dep. Eng. Informatica
Pélo II, Pinhal de Marrocos
P-3030 Coimbra, Portugal
{psimoes,luis,boavida}@dei.uc.pt

Abstract. Mobile Code is an emerging paradigm that is gaining mo-
mentum in several fields of application. Network Management is a po-
tential area for the use of this technology, provided it will be able to
interoperate with well established solutions for Network Management.
This paper presents the integration a classic NM protocol, like SNMP,
into a platform of Mobile Agents. Our platform, called JAMES, has been
developed in the context of an Eureka Project (X11921) where the project
partners are University of Coimbra, Siemens SA and Siemens AG. Since
the main target of the platform is network management, it includes a set
of SNMP services allowing mobile agents to easily interface with SNMP
agents, as well as with legacy SNMP-based management applications.
In the paper we present a brief overview of the general architecture of
the platform and we describe in some detail the framework we used to
provide for integration between mobile agent applications and SNMP.

1 Introduction

Typically, existing Network Management (NM) applications are based on one
of two protocols established almost a decade ago to address the problem of
interoperability in heterogeneous environments: SNMP [1], for data networks,
and CMIP [2], for telecommunication networks. These protocols are based on
static and centralized client/server solutions, where every element of the network
sends all the data to a central location that processes the whole data and provides
the interface to the user operator. By this reason, the management applications
are not flexible, have problems of scalability and produce too much traffic in the
network.

It is now widely recognized that the use of decentralization in this kind
of applications potentially solves most of the problems that exist in centralized
client /server solutions [3, 4]. The applications can be more scalable, more robust,
can be easily upgraded or customized and they reduce the traffic in the network.

Several approaches have been followed in this quest for decentralized man-
agement, starting with early work on Management by Delegation [5] and in-
cluding Active Networks [6], management environments based on CORBA [7],
Web-based network management [8], Intelligent Agents [4] and Mobile Agents

R. Stadler and B. Stiller (Eds.): DSOM’99, LNCS 1700, pp. 148-163, 1999.
(© Springer-Verlag Berlin Heidelberg 1999

Integrating SNMP into a Mobile Agent Infrastructure 149

[9]. For an extensive typology of distributed network management paradigms,
please refer to [10].

Of these approaches, Mobile Agent technology is one of the most promising
but still requires some detailed study. A Mobile Agent corresponds to a small
program that is able to migrate to some remote machine, where it can execute
some function or collect some relevant data and then migrate to other machines
in order to accomplish some other tasks. The basic idea of this paradigm is to
distribute the processing throughout the network: that is, send the code to the
data instead of bringing the data to the code.

In the last few years the use of Mobile Agent technology has received an
extraordinary attention from several Universities and research institutes and a
notable investment from leading companies, including IBM, Oracle, Digital and
Microsoft [11]. Mobile agents have been applied in several areas, like mobile
computing, electronic commerce, Internet applications, information retrieval,
workflow and cooperative work, network management and telecommunications
[12-14].

Several commercial implementations of mobile agents have been presented
in the market, including Aglets from IBM [15], Concordia from Mitsubishi [16],
Odyssey from General Magic [17], Voyager from ObjectSpace [18] and Jumping
Beans from AdAstra [19]. However, although these software products have some
interesting features, we believe they are too much general-purpose for most NM
applications.

In the JAMES project [20], we are developing from scratch a new Mobile
Agent infrastructure that is being tuned and customized for the applications
we have in mind in the area of telecommunications and network management.
Although the discussion of the issues we take into account is beyond the scope of
this paper, we can point to aspects like efficient code migration; fault-tolerance
and robustness; flexible code distribution and easy upgrading; mechanisms for
resource control; disconnected operation; portability; and interoperability with
existing management technologies.

This issue of interoperability with existing management technologies, like
SNMP, CORBA and CMIP, is crucial for the success of mobile agents in the
network management area. In order to insure the deployment of applications for
the management of large and heterogeneous systems, mobile agent systems need
to provide interoperability. The reasons are twofold.

First, those technologies provide access to management information and ser-
vices. Mobile agents are a very attractive approach to incorporate mobile code
into the existing local management services, in order to perform intelligent tasks
closer to management data. However, they will not entirely replace the proto-
cols used by classic management applications to interface with management ser-
vices in heterogeneous environments. Instead, they will complement them with
powerful programming constructs allowing more efficient solutions for network
management. Nevertheless, some management protocols are still necessary to
retrieve and process the management information. This is the case when some
of the managed Network Elements (NEs) are unable to host mobile agents,

150 Paulo Simoes et al.

when the management services of NEs are not directly available to the hosted
mobile agents or when the direct interfaces with management services are non-
standardized.

Second, management applications based on mobile agents often need to coex-
ist with legacy management systems. Mobile agents are particularly well suited
to develop and deploy new network management services, but it seems much
more attractive to use these services from installed management applications
than to develop separate specialized applications. If these services provided us-
ing mobile agents include SNMP or CORBA interfaces, for instance, they may
integrate into the legacy management systems at use. In this way, mobile agents
can be introduced, in an incremental and integrated fashion, to solve specific
problems for larger management frameworks still based on classic paradigms.

CORBA has been one of the first technologies to be addressed by mobile
agent systems, which is not surprising given its usefulness in a wide variety of
application fields. The most visible initiative in this area is the MASIF standard
(Mobile Agent System Interoperability Specification [21]). Although MASIF is
mainly a CORBA interface for interoperability between agent systems, its con-
cepts that can also be used for interoperability with CORBA-based manage-
ment applications and CORBA services. Right now only Grasshopper [22], from
IKV++, claims to be MASIF compliant, but other platforms that already pro-
vide CORBA access to and from external objects are expected to follow soon.

Integration between mobile agents and classic NM paradigms, like SNMP,
was not given the same level of attention. Few platforms provide some degree
of support for their usage, and even fewer include a well-defined framework for
interoperability with classic management architectures.

One can argue that integration of classic management protocols with mobile
agents can be relegated to the applications developer, eventually using the same
general-purpose libraries used by static management systems. However, code mo-
bility, security constraints and resource usage control imposed on mobile agents
applications seriously limit the usage of these protocols without explicit support
from the underlying infrastructure. This is why JAMES includes explicit support
for interoperability with SNMP devices and applications.

The SNMP support that is offered by the JAMES platform might be used
whenever it is necessary to interact with SNMP agents (local or remote) or
to provide SNMP services to legacy applications. It includes support for agent
mobility and it can be dynamically installed or removed from the platform. Fur-
thermore, it is transparent to SNMP devices and SNMP Managers, not requiring
any kind of specific adaptation from them.

In this paper, we will describe how we have done the integration of SNMP into
our system of mobile agents, in order to provide this support for interoperability.
The rest of the paper is organized as follows: Section 2 discusses related work
and some of the design premises that lead to the JAMES design. Section 3 presents
a brief overview of the JAMES Platform and Section 4 describes the design and
functionality of the SNMP modules of JAMES. Section 5 concludes the paper.

Integrating SNMP into a Mobile Agent Infrastructure 151

2 Related Work

SNMP is not directly supported by any of the commercial implementations of
mobile agents. However, there are a few ongoing research projects mixing SNMP
with mobile agents.

The INCA Architecture [23], from NEC CCRLE-Berlin, provides access to
SNMP devices based on a common Java SNMP library. Unfortunately, the lack of
available documentation restricted us from an accurate analysis of this proposal.

The Discovery Platform [24], from the University of Maryland, proposes the
use of the SNMP information model to represent the internal knowledge base of
the platform. In this way, the host management information and the platform
management information are unified in a single MIB tree, accessible directly
from the mobile agents platform. This approach claims a few advantages: the
agent information base and the host management information can be accessed
using the same mechanisms and it is possible to add any object with arbitrary
complexity to the tree. However, it requires specific support from the native
SNMP agent residing at the local host and assumes that SNMP is always the
most adequate protocol to access local management information. It also ties the
agent management information with the SNMP functional limitations. Further-
more, it does not address the problem of accessing external SNMP agents, which
continues to require a separate SNMP engine.

The Astrolog/MAGENTA platform [25], from IRISA, employs mobile agents
to support the mobility of the network operator. However, the core NM system
is based on a hierarchy of stationary agents. The mobile agents execution envi-
ronments, designated as lieus, include a built-in SNMP agent available directly
to local mobile agents as well as to the remote applications that use SNMP. Ap-
parently, these SNMP agents do not support dynamic expansion, which means
offered services are monolithic. This approach also affects the system portabil-
ity: since SNMP agents are internal to lieus, it is necessary to adapt the lieu
implementation for each type of managed NE, reproducing functionality that
was, quite probably, already provided by native SNMP agents.

The Perpetuum Mobile Procura (PMP) Project [26,27], from the Carleton
University, proposes the use of DPI (SNMP Distributed Protocol Interface [28])
as a means to talk with local SNMP agents whenever there is not a more sophis-
ticated interface with local resources. DPI is also used to extend SNMP agents
through the download of Java classes. This is one of the few projects where
SNMP is used both to access local management services and to interface with
legacy management applications. However, the need for DPI support from the
native SNMP agent affects the system portability.

All these projects provide interesting features. However, none of them is com-
pletely satisfactory. INCA doesnt seem to address interoperability with SNMP
applications. Discovery and Astrolog do provide higher levels of interoperabil-
ity but their design is too committed with SNMP and requires explicit support
from SNMP devices, which affects portability. The PMP architecture is more
independent (SNMP is seen as an optional feature) but usage of SNMP depends
on DPI, which also affects portability.

152 Paulo Simoes et al.

In the JAMES project we considered a novel approach for SNMP support, with
three key goals in mind.

First, we also want to provide operability with both SNMP devices and ap-
plications, in order to keep a large set of potential application fields.

Second, we see SNMP just as another tool to be added to the Swiss Army
knife that mobile agents may use to solve management problems. Some problems
require SNMP, others need to use CORBA or proprietary interfaces to interface
with NEs, while for others it is sufficient to access relational databases (using
JDBC) or even raw text files. This means that solutions where SNMP would
affect the platform portability or functionality were not acceptable.

Third, we want SNMP support to be transparent to existing SNMP devices
and applications. Any requirement of changes to SNMP devices or applications
would jeopardize one of the main reasons to use SNMP: the fact that it is
immediately available almost anywhere.

These premises led to the design of a new framework for SNMP integration
that:

— provides maximum interoperability, covering three different service ranges:
interaction with local and remote SNMP-agents; interaction between SNMP-
managers and mobile agents; and infrastructure management using SNMP,

— supports agents mobility - usage of SNMP does not restrict the migration of
mobile agents,

— is an optional feature of JAMES, not imposing additional overheads to the
platform when turned-off,

— is non-intrusive to the SNMP architecture, in the sense that no intervention
is required on existing SNMP devices and SNMP Managers. This preserves
the overall portability.

3 The General Architecture of the JAMES Platform

The JAMES Platform provides the running environment for mobile agents. There
is a distinction between the software environment that runs in the manager host
and the software that executes in the NEs: the central host executes the JAMES
Manager while the nodes in the network run a JAMES Agency. The agents are
written by application programmers and will execute on top of that platform.
The JAMES system provides a programming interface that allows the full manip-
ulation of Mobile Agents. Fig. 1 shows a global snapshot of the system, with a
special description of a possible scenario where mobile agents will be used.
Every NE runs a Java Virtual Machine and executes a JAMES Agency that
enables the execution of mobile agents. JAMES agents will migrate through these
machines in the network to access some data, execute some tasks and produce
reports that will be sent back to the JAMES Manager. There is a mechanism
for authentication in the JAMES Agencies, to control the execution of agents
and to avoid the intrusion of non-official agents. The communication between
the different machines is done through stream sockets. A special protocol was

Integrating SNMP into a Mobile Agent Infrastructure 153

Network
Element

Mobile Agent o
) JAMES
Manager

Network
Element /[

Centra

Mobile Agent

Network
Element

JAMES
agent

JAMES
Agency

User
Operator

Code Server

fi

JAMES
Code Server

Application Developer

Fig. 1. An Overview of the JAMES Platform

developed to transfer the agents across the machines in a robust way and is
atomic to the occurrence of failures.

The application developer writes the applications that are based on a set of
mobile agents. These applications are written in Java and should use the JAMES
APT for the control of mobility. After writing an application, the programmer
should create a JAR (Java Archive) with all the classes that make part of the
mobile agent. This JAR file is placed in a JAMES Code Server. This server can be
a different machine or in the same machine where the JAMES Manager is execut-
ing. In both cases, it maintains a code directory with all the JAR files available
and the mapping to the corresponding mobile agents. The communication be-
tween the client program that is used by the application developer and the Code
Server is done by the HTTP protocol. The Code Server interacts with the JAMES
Manager through a dedicated stream socket.

The host machine that runs the JAMES manager is responsible for the whole
management of the mobile agent system. It provides the interface to the end-
user, together with a Graphical User for the remote control and monitoring of
agents, places and applications. Management applications using mobile agents
can bypass this end-user interface using a Remote API. This interface includes

154 Paulo Simoes et al.

tools to manage all the Agents and Agencies in the system, and it is available
in two different communication methods: Java RMI and CORBA.

The JAMES platform is still in its first version but the main features of the
platform can be summarized in the following list:

— Kernel of the JAMES Manager and JAMES Agency,

— Service for remote updating of Agents and Agencies,

— Flexible code distribution (caching and prefetching schemes),

— Atomic migration protocol,

— Support for fault-tolerance through checkpoint-and-restart,

— Reconfigurable itinerary,

— Support for disconnected computing,

— Watchdog scheme and system monitoring,

— Mechanisms for resource control,

— Logging and profiling of agent activity,

— GUI interface to allow the remote control of agents,

— Remote Access to the platform through a Java RMI interface,

— Remote Access to the platform through a CORBA interface,

— CORBA access to and from external objects,

— Integration of Java-based SNMP services into the platform,

— Inter-agent communication (through JavaSpaces [29]),

— Multi-paradigms for agent execution (simple agent, migratory agents and
Master/Worker model).

The explanation of all these mechanisms is out of scope of this paper, but we will
give some emphasis to a few of the issues considered important for our domain
of applications: remote software upgrading, reliability and robustness.

3.1 Remote Software Upgrading

The JAMES platform provides a flexible mechanism for the remote upgrading of
mobile agents as well as Agencies. Each Agency is seen as a stationary agent: it
cannot move around the network once installed in a machine but it should be
easy to upgrade, customize and install by a central host.

Two modules compose the JAMES Agency: a small rexec daemon and the
Agency itself. The rexec daemon is a static piece of software: once installed it
does not need to be constantly upgraded. The Agency itself is a more dynamic
module, since it can be changed whenever required.

The Java rexec daemon (JREXEC) implements an instance of the Class Loader
and receives some network commands regarding the installation and control of
the JAMES Agency. This daemon will be instantiated every time the machine is
booted. The daemon can receive a JAR file containing a JAMES Agency and it
will perform its local installation. After this first step, the JAMES Manager can
send some remote commands to the JREXEC Daemon:

— Refresh the local memory by calling the Java garbage collector.
— Kill the local Agency.

Integrating SNMP into a Mobile Agent Infrastructure 155

— Install a new Agency on the local machine.
— Upgrade the local Agency with a new set of classes.

This scheme will be useful in dynamic environments since it provides a flexible
way to upgrade remote software.

3.2 Fault-Tolerance

The JAMES platform has some special support for fault-tolerance. The first ver-
sion includes a checkpoint-and-restart mechanism, a failure detection scheme, an
atomic migration protocol and some support for fault-management. The plat-
form is able to tolerate any failure of a mobile agent, a JAMES Agency or the
JAMES Manager.

Fault-Tolerance at the Agencies. Periodically, the internal state of the JAMES
Manager and Agencies will be saved as a checkpoint in persistent storage. The
internal state consists of all the internal objects that keep all the relevant state
about the platform and the execution of the agents. If any of the servers (Agency
or Manager) fails or is simply shut down the system has enough information to
recover the server to a previous consistent state. This state is retrieved from
persistent storage and all the internal state can be reconstructed. The check-
pointing mechanism will make use of the Java object serialization facility and is
completely transparent to the application programmer.

Fault-Tolerance at the Mobile Agents. If there is a communication or
node failure that affects the execution of the agent, the system insures a for-
ward progress of the mobile agent. This is also achieved through a checkpointing
mechanism. When a mobile agent finishes a task in a JAMES Agency its internal
state is saved to stable storage before being transmitted to the next destina-
tion. The agent is migrated to another host but its data will remain in stable
storage until it has been successfully restarted in the next Agency. When it is
restarted in the new place the system takes a new checkpoint of the agent and
the previous place is informed. The previous checkpoint of the agent can then
be removed from stable storage. This checkpointing mechanism is transparent
to the application developer and is incorporated in the migration protocol to
assure the atomicity of the agent transfer. This means that either the agent is
completely migrated to its destination or whenever is a failure the agent is not
lost and the system is able to recover the agent in the previous Agency. We
have used a conventional two-phase commit, protocol to achieve the exactly-once
property in the migration of the agents.

When there is a failure in a migration protocol or one of the Agencies in
the itinerary is not available, the agent can execute one of the three following
procedures:

1. go back to the JAMES Manager,

156 Paulo Simdes et al.

2. jump to the next available Agency in the itinerary,
3. or just wait until the destination Agency is up and running.

The procedure to follow by a mobile agent in the occurrence of a failure can be
customized by the application programmer.

3.3 Resource Control

One important feature in a platform of mobile agents is a good set of mechanisms
for resource control. In the JAMES platform we have included some schemes to
control the use of some important resources of the underlying operating system,
namely: the use of threads, sockets, memory, disk space and CPU load.

These schemes have proved to be very effective when we were doing some
stress testing. In some situations when the Agencies are running almost out
of any of those resources it was still possible to maintain the platform up and
running. Without such mechanisms the Agencies would normally hang up. With
resource control the platform has become clearly more robust and this is a crucial
step if we want to use it in production codes.

4 Integration of SNMP into the JAMES Platform

JAMES includes a framework of full-fledged SNMP services already integrated and
available to the NM-application developer, resulting in broader application fields
and reduced development costs. In order to preserve the platform portability,
these services have been written in Java. As represented in Fig. 2, three basic
SNMP services are considered:

— a service allowing mobile agents to interact with SNMP-agents, acting as
SNMP-managers,

— support for communication between SNMP-managers and mobile (or sta-
tionary!) agents,

— a management service allowing legacy management platforms to administer
the JAMES infrastructure itself using SNMP.

These services provide the following features:

— management of NEs not supporting JAMES Agencies but equipped with
SNMP-agents,

— management of NEs supporting JAMES Agencies but restricting direct access
to management information for security or architecture reasons,

— management of the JAMES infrastructure itself as an SNMP-service,

— usage of mobile agents to deploy intermediary management services layered
between NEs (SNMP capable or not) and legacy SNMP-managers. These
could be new services or just management information processing closer to
the NEs,

— usage of mobile or stationary agents for fast development and deployment
of SNMP services.

1 JAMES supports ”stationary agents” in the sense that agents can make little or no
use at all of their migration capability.

Integrating SNMP into a Mobile Agent Infrastructure 157

Legacy SNMP-based
Management Applications
(not aware of Mobile Agents)

Management Applications
based on Mobile Agents

CORBA, Java RMI, ..
SNMP based-communication

SNMP as a front-end for services

‘ provided to legacy SNMP-based
applications (by Mobile Agents
and by JAMES itself)

SNMP JAMES
Administration

SNMP JAMES
Administration

services provided
by mobile agents

services provided

Remote API by mobile agents

Remote API

= D

JAMES JAMES

NE with JVM NE with JVM

SNMP

SNMP as a tool to access
management services on NEs

ml l not hosting JAMES or not
— — offering direct access to

mgmt. services)

Fig. 2. Proposed Integration Framework

4.1 Design of SNMP Services

SNMP Since SNMP is just one of several protocols to be used by NM applica-
tions, the following design constraints were considered:

— SNMP support must be optional, not increasing resource usage when turned-
off.

— SNMP support may not increase the complexity of the platform.

— The design of SNMP support may not compromise the platform scalability
and functionality.

— SNMP support must be portable across different hosts without conflicting
with SNMP services already installed in the hosts, like native SNMP agents.

These issues resulted in a modular design (Fig. 3) where SNMP services are
placed outside the platform core and can be dynamically installed and removed,
without imposing a permanent overhead in the JAMES infrastructure. Most ser-
vices consist themselves of mobile agents (the Service Agents, granted with ex-
ceptional permissions to access necessary resources) providing services to com-
mon agents through inter-agent communication. The Agency offers a directory
service where common mobile agents can locate the Service Agents (or implicitly
require their installation). This solution provides an elegant lightweight frame-
work to support specific services. In the future, new kinds of services can be
easily integrated in the JAMES platform.

4.2 SNMP Data Handling Services

These services include all the tools needed to handle SNMP data and SNMP Pro-
tocol Data Units. These tools are available as a set of Java classes for high level

158 Paulo Simdes et al.

e D
Legacy SNMP-based JAMES-aware
Management Application Management Application
SNMP | CORBA, RMI...
I
JAMES SNMP-agent
Core
JAMES Remote API
(CORBA, RMI,
Mobile Agents Provided Platform Management Enterprise Java Beans)
SNMP Services SNMP Service

‘ JAMES Native Administration API H

SNMP Data
Handling Services

Mobile
Mobile

SNMP-Manager
Service JAMES Agency

SNMP
Legacy SNMP Agent
(& J

Fig. 3. High-Level Structure of SNMP Services of JAMES

representation of SNMP data types and PDUs. A set of Java-based ASN.1/BER
[30] encoding methods is also available to be used by other SNMP Services. Mo-
bile agents impose no particular requirements to this service, meaning general-
purpose Java-based SNMP tools, like [31], could have been used without prior
adaptation.

Presentation of the internal information of the platform, as suggested by [24],
was not considered because the SNMP information model was considered too
poor for that purpose.

4.3 SNMP Manager Service

This service allows mobile agents to interact with SNMP Agents using a manager-
API, to query SNMP-agents, and a Trap Listener that receives SNMP Traps and
redirects them to the interested mobile agents. When compared with similar Ser-
vices integrated in classical management applications, this Service presents two
key differences: support for mobility - mobile agents receive SNMP Traps in-
dependently of their present location and migrate without abandoning ongoing
SNMP queries - and the service location within the platform - based on the
already mentioned Service Agents.

The SNMP Manager-API is based on the traditional concepts found in most
high-level SNMP stacks (sessions or contexts, request operations and event han-
dlers), with protocol details being transparently handled. This Service, located

Integrating SNMP into a Mobile Agent Infrastructure 159

Legacy SNMP Management Application
Management Station aware of Mobile Agents
Remote API
SNMP Requests (Corba, RML...)
SNMP Responses & Traps
SNMP Services Provided
by Mobile Agents

JAMES Remote API
Registration & Request for (server side)
deregistration of Values, Actions Request Trap
SNMP Objects and Results Generation Platform Administration,
Mobile Agents Execution

Control,
Communication with Mobile

SNMP Services Provided Agency Management Agents
by Mobile Agents SNMP Service

Mobile Mobile ‘ JAMES Native Administration API H
Agent Agent

Fig. 4. JAMES Services for Integration with Management Applications

in Service Agents, might be replaced with a third-party classic SNMP stack
integrated in the Agents code, trading-off mobility support.

This possible trade-off is based on the assumption that JAMES mobile agents
can delay migration whenever completion of on-going SNMP transactions is
crucial, since they implicitly control their migration. This degrades performance
and affects the programming model (agent migration has to become aware of
SNMP transactions) but still allows for some mobility.

The Trap Listener also uses traditional concepts found on other Trap Multi-
plexers. Mobile agents register their interest on the reception of certain SNMP
Traps. Registrations may be valid just while the agent remains at the Agency,
for a pre-defined period of time or for the agents entire lifetime (in the last two
options, the Trap Listener may have to forward the Trap Arrival Notification to
the new location of the agent). The arriving SNMP Traps produce Trap Arrival
Notifications.

4.4 Services for Interoperability with Legacy SNMP Managers

While the Service described in the previous section covers communication be-
tween mobile agents and SNMP agents, there are three other services providing
interoperability with legacy SNMP Managers (Fig. 4). The SNMP-agent Core
maintains an SNMP-agent with data being supplied by the two underlying ser-
vices. The present interface used to register new variables or groups at the MIB-
table, to issue Traps and to reply to SNMP requests is proprietary, although

160 Paulo Simdes et al.

future adaptation of standard protocols for expansible SNMP agents like DPI is
not excluded.

The JAMES SNMP-agent is independent of eventually existing native SNMP-
agents although integration, as proposed by [32], would be more in the spirit of
SNMP?2. Since native agents are either monolithic or based on a wide diversity
of agent-expansion mechanisms, like SMUX [33], DPI or AgentX [34], there is
no truly portable and non-intrusive integration method.

The JAMES SNMP-agent allows SNMP communication between legacy appli-
cations and mobile agents, opening the way for easy installation of new manage-
ment services (corresponding to one or several mobile agents) available to legacy
SNMP-based network management systems.

In such a scenario mobile agents can be used to pre-process data gathered
from existing management services (thus offering higher level functionality), op-
erate as SNMP proxies for NEs using proprietary management interfaces and
dynamically install new management services.

The use of stationary or mobile agents for fast deployment of management
services available to legacy applications is not new. The Java Dynamic Manage-
ment Toolkit (JDMK) [35], a commercial product from Sun, is not based on mo-
bile agents but shares the vision of a flexible scheme to build new management
services. JDMK is meant for fast development and deployment of Java-based
management services, including a complete set of tools to create and remotely
install these services using Java and push/pull techniques®. It provides a so-
phisticated set of development tools and includes support for SNMP, CORBA
(IIOP), HTTP and Java RMI. The PMP Project presents a framework where
mobile agents use DPI to provide services to SNMP Managers.

The JAMES approach consists of a Service Agent where mobile agents inter-
ested on providing an SNMP interface must register their SNMP objects. Later
on, SNMP requests from outside applications result in events passed to mobile
agents. These events will then trigger predefined management actions resulting
in SNMP responses.

The JAMES SNMP agent also allows SNMP-based management of the JAMES
platform itself. Although a richer interface is available to dedicated applications
using Java RMI and CORBA, a subset of management functions has been trans-
lated into an SNMP MIB that provides monitoring, fault-management and per-
formance management. This is implemented using a Service Agent (the Agency
SNMP Management Service) that acts as a translator between the SNMP-agent
Core and the internal JAMES administration API (Figure 4). The intention is not
to use SNMP to fully administer JAMES but to provide a basic set of SNMP-based
management services.

It should be stressed that the option of separating the SNMP services pro-
vided by the JAMES mobile agents from the native SNMP-agents, although jus-
2 i.e., it is preferred to maintain two separate agents answering in different ports than

to try integration of both agents into a single one
This means JDMK management services do not have support for full mobility across
different hosts.

Integrating SNMP into a Mobile Agent Infrastructure 161

tified for sake of portability, imposes a small constraint when compared to more
integrated solutions, like the one of the PMP project. It is not possible, for in-
stance, to extend a MIB of the native SNMP-agent. This is not problematic since
the most usual use of mobile agents, in this context, will be the provision of new
services and not a very localized expansion of existing SNMP Services. That is
considered outside our scope and more appropriate for products like JDMK.

5 Conclusions

The JAMES Project exploits the paradigm of mobile agents in the field of network
management. We are developing a Java-based platform of mobile agents and
we have some important goals in mind, like: high-performance, flexible code
distribution, remote software upgrading, reliability, robustness, and support for
CORBA and SNMP. Within this project we expect to show that Mobile Agents
can overcome some of the problems that exist with traditional Client/Server
solutions.

During this project, the platform will be used in software products in the
area of network management. Our industrial partners (Siemens S.A.) have been
developing prototype applications in the area of performance management that
use our platform of mobile agents. These prototypes are already finished and
we are now conducting a benchmarking study to compare the use of mobile
agents over traditional client/server solutions to see if we corroborate some of
the advantages of this new paradigm in the field of distributed computing.

In this paper we discussed the provision of explicit SNMP support for man-
agement applications based on mobile agents. This kind of support is important
whenever SNMP is the only available interface to access management informa-
tion. Another reason to provide SNMP support is the possibility of using mobile
agent technology to develop new management services to be used by legacy man-
agement applications. However, integration of SNMP into mobile agent systems
has not received as much attention as CORBA-based interoperability and the
number of mobile agent platforms providing such integration is still very reduced.

The framework in the JAMES project for the integration of SNMP differs from
previous work because a great deal of attention is given to keep it transparent
for SNMP devices and applications. Another distinctive issue of our approach
is the fact that SNMP support is dynamically installable and removable, not
affecting the platforms functionality or complexity when not being used.

Acknowledgements

This project was accepted in the European Eureka Program (X!1921) and it
is partially supported by ADI (Agéncia de Inovacdo) and FCT (Fundacdo para
a Ciéncia e Tecnologia). Special thanks to Rodrigo Reis, for the help in the
development, of several SNMP services, and to the rest of the project team from
University of Coimbra and Siemens.

162 Paulo Simoes et al.

References

1. Rose M.: The Simple Book - An Introduction to Management of TCP /IP-based
Internets, 2nd Edition. Prentice-Hall International Inc. (1994)

2. ISO/IEC: ISO/IEC 9595: Information technology - Open Systems Interconnection
- Common Management Information Service Definition. International Organization
for Standardization, International Electrotechnical Commission (1990)

3. Goldszmidt, G., Yemini, Y.: Decentralizing Control and Intelligence in Network
Management. Proceedings of the 4 th International Symposium on Integrated Net-
work Management, Santa Barbara (1995)

4. Magedanz, T., Rothermel, K., Krause, S.: Intelligent Agents: An Emerging Tech-
nology for Next Generation Telecommunications. Proceedings of INFOCOM96, San
Francisco, CA (1996)

5. Yemini, Y., Goldszmidt, G., Yemini, S.: Network Management by Delegation. Pro-
ceedings of IFIP 2 nd International Symposium on Integrated Network Management,
Washington (1991)

6. Tennenhouse, D., Smith, J., Sincoskie, W., Wetherall, D., Minden, G.: A Survey of
Active Network Research. IEEE Communications Magazine (1997)

7. OMG: The Common Object Request Broker Architecture and Specification. (1995)

8. Wellens, C., Auerbach, K.: Towards Useful Management. The Simple Times, Volume
4, Number 3 (1996)

9. Bieszcad, A., Pagurek, B., White, T.: Mobile Agents for Network Management.
IEEE Communications Surveys, 4Q (1998)

10. Martin-Flatin, J., Znaty, S.: Annotated Typology of Distributed Network Man-
agement Paradigms. Technical Report SSC/1997/008, cole Polytechnique Fdrale de
Lausanne (1997)

11. Agent Product and Research Activities. http://www.agent.org/pub/activity.html

12. Intelligent Agents. Communications of the ACM, Vol. 37, No. 7 (1994)

13. Hermans, B.: Intelligent Software Agents on the Internet.
http://wwu.hermans.org/agents/index.html

14. Pham, V., Karmouch. A.: Mobile Software Agents: An Overview. IEEE Commu-
nications Magazine, pp. 26-37 July (1998)

15. IBM Aglets Workbench. http://www.trl.ibm.co.jp/aglets/

16. Concordia. http://www.meitca.com/HSL/Projects/Concordia/

17. General Magic Odyssey. http://www.genmagic.com/agents/

18. Voyager. http://www.objectspace.com/voyager/

19. Jumping Beans. http://www.JumpingBeans.com/

20. Silva, L., Simes, P., Soares, G., Martins, P., Batista, V., Renato, C., Almeida, L.,
Stohr, N.: JAMES: A Platform of Mobile Agents for the Management of Telecom-
munication Networks. Proceedings of TATA’99 (3rd International Workshop on In-
telligent Agents for Telecommunication Applications), Stockholm (1999)

21. Mobile Agent System Interoperability Facilities Specification. OMG TC Document
orbos/97-10-05 (1998)

22. Grasshopper. http://www.ikv.de/products/grasshopper/

23. Nicklish, J., Quittek, J., Kind, A., Arao, S.: INCA: an Agent-based Network Con-
trol Architecture. Proceedings of IATA’98 (2nd International Workshop on Intelli-
gent Agents for Telecommunication Applications), Paris (1998)

24. Lazar, S., Sidhu, D.: Discovery, A Mobile Agent Framework for Distributed Appli-
cation Development. Technical Report, Maryland Center for Telecommunications
Research, University of Maryland Baltimore County (1997)

Integrating SNMP into a Mobile Agent Infrastructure 163

25. Sahai, A., Morin, C.: Enabling a Mobile Network manager (MNM) Through Mo-
bile Agents. Proceedings of Mobile Agents, Second International Workshop MA9S,
Stuttgart, Germany (1998)

26. Perpetuum Mobile Procura Project. Carlton University,
http://www.sce.carleton.ca/netmanage/perpetum.shtml

27. Bieszczad, A.: Advanced Network Management in the Network Management Per-
petuum Mobile Procura Project. Technical Report SCE-97-07, Systems and Com-
puter Engineering, Carleton University (1997)

28. Wijnen, B., Carpenter, G., Curran, K., Sehgal A., Waters, G.: Simple Network
Management Protocol Distributed Protocol Interface Version 2.0, RFC 1592 (1994)

29. JavaSpaces. http://java.sun.com/products/javaspaces

30. Information Processing, Open Systems Interconnection: Specification of Basic En-
coding Rules for Abstract Syntax Notation One. ISO (1987)

31. AdventNet SNMP. http://www.adventnet.com/products/snmpbeans

32. Susilo, G., Bieszczad, A. and Pagurek, B.: Infrastructure for Advanced Network
Management based on Mobile Code. Proceedings of the IEEE/IFIP Network Oper-
ations and Management Symposium NOMS’98, New Orleans (1998)

33. Rose, M.: SNMP MUX protocol and MIB. RFC 1227 (1991)

34. Daniele, M., Wijnen, B., Francisco, D.: Agent Extensibility (AgentX) Protocol
Version 1, RFC 2257 (1998)

35. Java Dynamic Management Kit. http//www.sun.com/software/java-dynamic

	Introduction
	Related Work
	The General Architecture of the JAMES Platform
	Remote Software Upgrading
	Fault-Tolerance
	Resource Control

	Integration of SNMP into the JAMES Platform
	Design of SNMP Services
	SNMP Data Handling Services
	SNMP Manager Service
	Services for Interoperability with Legacy SNMP Managers

	Conclusions
	Acknowledgements
	References

