
JAMAP: A Web-Based Management Platform
for IP Networks

Jean-Philippe Martin-Flatin, Laurent Bovet and Jean-Pierre Hubaux

Institute for computer Communications and Applications (ICA)
Swiss Federal Institute of Technology, Lausanne (EPFL)

1015 Lausanne, Switzerland
martin-flatin@epfl.ch
http://icawww.epfl.ch

Abstract. In this paper, we describe JAMAP, a prototype of a Web-based
management platform for IP networks. It is written entirely in Java. It
implements the push model to perform regular management (i.e. permanent
network monitoring and data collection) and ad hoc management (i.e. temporary
network monitoring and troubleshooting). The communication between agents
and managers relies on HTTP transfers between Java applets and servlets over
persistent TCP connections. The SNMP MIB data is encapsulated in serialized
Java objects that are transmitted as MIME parts via HTTP. The manager consists
of two parts: the management server, a static machine that runs the servlets, and
the management station, which can be any desktop running a Web browser. The
MIB data is transparently compressed with gzip, which saves network
bandwidth without increasing latency too significantly.

1 Introduction

Web technologies have proved very attractive to Network and Systems Management
(N&SM) for several years. In July 1996, a special issue of The Simple Times
summarized the different ways of integrating HTTP, HTML and applets with standard
IP network management platforms. Whereas most of the industry, as far as a customer
could see, and most of the press then limited Web-based management to the sole use of
Web browsers to display Graphical User Interfaces (GUIs), this collection of articles
had the merit of widely advertising the wide range of possibilities opened up by Web
technologies in N&SM. The most radical approach came from Wellens and Auerbach,
who suggested to embed not only HTTP servers but also applets in network
equipment, and who based the communication between managers and agents on HTTP
instead of SNMP [16]. The common belief, then, as exposed by Bruins [3], was that
HTTP was useful to initiate the interactive dialog between the administrator and the
agent, but that further interactions should be based on SNMP.

Since then, the industry has trumpeted its adoption of Web technologies very loud,
but the real achievements that we can see on the market today are more modest. HTTP
servers are now routinely embedded by many router vendors, but management applets
are not. Configuration management has probably been the main beneficiary so far of
the recent adoption of Web technologies: several management platforms now enable
administrators to run Java applications on the manager (the cheap alternative to

R. Stadler and B. Stiller (Eds.): DSOM’99, LNCS 1700, pp. 164-178, 1999.
c Springer-Verlag Berlin Heidelberg 1999

downloading an applet from an agent) in order to configure agents. But to the best of
our knowledge, all the main players in the IP systems and network management
market (HP Openview, IBM/Tivoli Netview, Cabletron Spectrum...) still use SNMP for
communication between managers and agents once the configuration phase is
accomplished. We have attended demonstrations by several vendors of Java
applications that included an SNMP stack in order to perform standard SNMP polling
behind the Web interface, which proves that the full potential of Web technologies in
N&SM has still not spread across the entire industry.

Despite this slow pace of the industry, the research community has been very active
in the meantime, leading to a growing understanding of the issues and challenges at
stake. If we ignore the revolutionary approaches that depart entirely from traditional
SNMP-based management (e.g., Java-based mobile agents and multi-agent systems),
we still have a lot of literature witnessing that we have gained experience in the
integration of Web technologies with traditional N&SM. At the end of 1996, Deri [5]
described possible mappings between URLs and command line interfaces, and
Harrison et al. proposed the HTTP Manageable MIB [7]. In 1997, Maston [11]
described the basics of network element management with HTML, while
Kasteleijn [8], Barillaud et al. [2] and Reed et al. [13] reported their experiences with
building management prototypes respectively for ATM backbone networks, local-area
networks and PC systems. More references will be presented in Section 7.

In 1998, we proposed an architecture that goes beyond Wellens and Auerbach’s
[9, 10]. In addition to embedding HTTP servers and management applets in all
managed devices, and to using solely HTTP to communicate between managers and
agents, we suggested to push management data from agents to managers and to rewrite
the managers entirely in Java, thereby leveraging on the simplicity of servlet
programming. In this paper, we present the low-level design of this architecture, we
indicate the design decisions which were made among all the candidates listed in [10],
and we report progress on the building of a prototype called JAMAP (JAva
MAnagement Platform). In particular, we describe how data is structured and encoded
inside HTTP messages (Wellens and Auerbach only gave a high-level description of
HTTP-based management data transfers).

In the IP world, the advantages of our architecture over the classic SNMP
management frameworks (v1, v2c and v3) are fourfold. First, by going from a pull to a
push model, we decrease significantly the network overhead of management data,
because the manager no longer has to keep requesting the same OIDs (Object
IDentifiers) to the same agents at every polling cycle. This almost halves the network
overhead, because the description of the OIDs takes a lot more space than their values.
Second, by grouping all the MIB data of a push cycle together and by compressing
them with gzip, we reduce even more the network overhead without increasing
latency too significantly, which has a positive effect on the scalability of the N&SM
system. Third, by adopting Java, we free vendors from the burden of porting add-ons
like CiscoWorks from one management platform to another (HP OpenView, Cabletron
Spectrum, etc.) and from one operating system to another (Windows x.y, Solaris u.v,
Linux a.b, etc.). Fourth, by using only well-known and pervasive Web technologies
instead of SNMP technologies, we prove that N&SM need not rely on domain-specific

165JAMAP: A Web-Based Management Platform for IP Networks

skills (SNMPv1, SNMPv2c, SNMPv3, SMIv1, SMIv2, BER...). N&SM applications
are just another case of distributed applications, and can rely on standard distributed
technology. Therefore N&SM platforms can be maintained by less expensive and
easier-to-find Java programmers, and can reuse components developed for other
application domains. By combining these advantages with the “write once, run
anywhere” claim of Java, the price of N&SM platforms can be driven down signifi-
cantly, and site-specific developments can be rendered much easier for administrators.

The remainder of this paper is organized as follows. In Section 2, we present an
overview of the architecture of JAMAP. In Section 3, we introduce three advanced
technologies used in JAMAP. In Sections 4, 5 and 6, we describe the different applets
and servlets run by the agent and the two constituents of the manager: the management
station and the management server. In Section 7, we present some related work.
Finally, we conclude in Section 8 with some perspectives for future work.

2 Architecture of JAMAP

Our architecture integrates push and pull communication models to manage IP
networks [9, 10]. For regular management, i.e. when tasks are repetitive and performed
identically at each time step, we use the push model and the publish-subscribe
paradigm. Initially, managers subscribe to some MIB data published by the agents.
Later, the agents push this data at regular time intervals, without the manager
requesting anything else. For ad hoc management, i.e. when tasks are performed over a
short time period (e.g. troubleshooting), we use the pull model for one-shot retrievals,
and the push model otherwise (e.g. short-term monitoring).

For the information model, we keep SNMP MIBs unchanged in the agents because
we believe that they constitute the main achievement of SNMP. It took years for the
industry to define and deploy these MIBs in all sorts of network devices and systems,
and it would not make sense to change them. Their main limitation is that, due to the
SNMP management frameworks, most (all?) of them are confined today to the instru-
mentation level, that is, offer low-level semantics. But there is no reason why we
should not see higher level MIBs appear in the future. From standard SNMP-based
management, we also borrowed the organizational model, with managers and agents,
but we changed the SNMP 2-tier architecture into a 3-tier architecture.

The main novelty demonstrated by JAMAP is that it uses a push model to transfer
management data (i.e., data extracted from SNMP MIBs at the agent) from the agent to
the manager. Fig. 1 depicts push-based monitoring and data collection, while the
handling of notifications is represented on Fig. 2. The push model, also known as the
publish-subscribe paradigm, involves three phases:

– publication: each agent announces the MIBs that it manages and the notifications
that it may send to a manager;

– subscription: agent by agent, the administrator (the person) subscribes the manager
(the program) to different MIB variables and notifications via subscription applets;
the push frequency is specified for each MIB variable;

166 Jean-Philippe Martin-Flatin et al.

– distribution: at each push cycle, the push scheduler of each agent triggers the
transfer of MIB data from the agent to the manager; unlike what happens with
traditional polling, the manager does not have to request this data at each push
cycle; the transfer of notifications is triggered by the health monitor; notifications
and MIB data use independently the same communication path.

Our main motivation for developing of JAMAP was to prove the feasibility and
relative simplicity of our design innovations. The core of JAMAP, that is, the push
engine and the communication between the agent and the manager, was implemented
in only two weeks, thereby demonstrating that our design was simple to implement.
The different servlets and applets depicted in Fig. 1 and Fig. 2 took a lot longer to
write and debug, as expected, and we had to make a number of simplifications to finish
the first version of JAMAP in time to demonstrate it internally in March 1999. First,
the persistence of data (MIB data, log of events, agents’ configuration files, network
topology, etc.) currently relies on flat files. Eventually, it will be ensured by a public-
domain RDBMS (Relational DataBase Management System, e.g. msql) accessed via
JDBC (Java DataBase Connectivity), as represented on the figures. Second, we have

Fig. 1. Push-based monitoring and data collection

MIB data
dispatcher

Agent

HTTP
server

MIB data
formatter

Management server

Event
handler

Event
correlator

Web browser

Network
map GUI
(applet)

client

server

Mgmt station

servlet

Pushed data
collector

Pushed data
interpreter

JDBC
client

Data server

General
purpose data

repository

JDBC
server

Administrator
or Operator

PagerEmail Telephone

Network map
registry

network
monitoring

Pushed data
filter

data collection

Siren

MIBs

Push
scheduler

Push definitions and
schedules repository

HTTP
client

servlet

servlet

HTTP
server

so
ck

et

167JAMAP: A Web-Based Management Platform for IP Networks

not yet written a network map GUI applet. Instead, as illustrated by Fig. 3, we use an
event notification applet that simply displays incoming events, line by line, in a
window. For the future, we plan to generate automatically a network map from a file
describing the network topology, and to change the color of the icons according to the
events received. Third, our event correlator is still very simple, with many rules hard-
coded on an ad hoc basis. We are currently investigating whether we could integrate a
full-blown event correlator written in Java by another research team.

Fig. 3 and Fig. 4 are synthetic views of the communication between the different
Java applets and servlets running on the agent and the manager. They both illustrate
our 3-tier architecture with the management station, the management server and the
agent. The push arrow between the MIB data dispatcher servlet and the MIB data
subscription applet represents the path followed by MIB data retrieved for ad hoc
management. The other push arrows depict regular management. The dotted arrows
represent the applet-to-servlet dialogs that take place at the subscription phase. These
figures will be explained in detail in Sections 4, 5 and 6.

Fig. 2. Push-based notification handling

Agent

HTTP
server

Management server

Event
handler

Event
correlator

Web browser

Network
map GUI
(applet)

client

server

Mgmt station

servlet

Notification
collector

JDBC
client

Data server

General
purpose data

repository

JDBC
server

Administrator
or Operator

PagerEmail Telephone

Network map
registry

Notification
filter

Siren

HTTP
client

servlet

HTTP
server

Notification
dispatcher

Notification
generator

Health
monitor

sensors

servlet
so

ck
et

168 Jean-Philippe Martin-Flatin et al.

3 Advanced Technologies Used in JAMAP

In this section, we describe three advanced technologies used in JAMAP: MIME-based
push, Java servlets and Java serialization.

3.1 MIME multipart and MIME-based push

Unlike other distributed application technologies such as sockets and Java Remote
Method Invocation (RMI), HTTP offers no native support for bidirectional persistent
connections [9]. With HTTP, a connection is always oriented: it is not possible to
create a persistent connection in one direction (from the client to the server) and to
send data afterward in the opposite direction (from the server to the client). Before an
HTTP server can send data to a client, it must have received a request from this client.
In other words, an HTTP server cannot send unsolicited messages to an HTTP client.

Fig. 3. Communication between Java applets and servlets:
monitoring and data collection

Fig. 4. Communication between Java applets and servlets: notifications

Agent

Management station

Event notification
applet

Rule edition
applet

MIB data subscription
applet

Event manager
servlet

Pushed data collector
servlet

MIB data dispatcher
servlet MIB

Management server

push push

push push

Agent

Management station

Event notification
applet

Rule edition
applet

Notification subscription
applet

Event manager
servlet

Notification collector
servlet

Notification dispatcher
servlet

Management server

push push

push

169JAMAP: A Web-Based Management Platform for IP Networks

This is an important difference between SNMP and HTTP. SNMP implements a
generalized client-server communication model, whereby the request from the client
can either be explicit (e.g., pull-based get and set operations) or implicit (e.g., push-
based snmpv2-trap operation). Conversely, HTTP implements a strict client-server
model: all its methods adhere to the request-response paradigm, and the request cannot
be implicit. As a result, the implementation of the push model is not natural in HTTP.

A simple and elegant way to circumvent this limitation was proposed by
Netscape [12] in a different context: How can a GUI displayed by a Web browser be
automatically updated by an HTTP server? Netscape’s idea was to initiate the data
transfer from the HTTP client, and send an infinitely long response from the HTTP
server, with separators embedded in the payload of the response (see Fig. 5). These
separators enable the HTTP client to work out what, in the incoming stream of data, is
the data for a given push cycle. To achieve this, Netscape recommended to use the
multipart type of MIME (Multipurpose Internet Mail Extensions [6]).

We proposed to do the same in Web-based network management [9], and
implemented it very simply in JAMAP. At every push cycle, the agent sends a new
MIME part including a number of {OID, value} pairs, as specified by the push
scheduler. A MIME separator delimits two consecutive push cycles; the manager
interprets it as metadata meaning “end of push cycle”. In the case of notifications, we
encode only one notification per MIME part. In this case, the MIME separator is
considered by the manager as metadata meaning “end of notification”.

MIME parts transferring MIB data are compressed with gzip (MIME content
transfer encoding). This saves a lot of network bandwidth when the manager
subscribes to many MIB variables, and does not increase latency too significantly.
MIME parts carrying notifications are not compressed because the compression ratio
would be poor for so little data, and the increased latency would not be worth the
meager savings in network overhead.

3.2 Java servlets

JAMAP relies heavily on HTTP-based communication between Java applets and
servlets. Servlets [4] only recently appeared on the Web; they are an improvement over
the well-known CGI (Common Gateway Interface) scripts. Unlike the CGI scripts that
are typically written in a scripting language like Perl or Tcl/Tk, servlets are Java
classes loaded in a Java Virtual Machine (JVM) via an HTTP server. The HTTP server
must be configured to use servlets and associate a URL with each loaded servlet. At
startup time, one servlet object is instantiated for each configured servlet. When a

Fig. 5. TCP payload of the infinite HTTP response

gzip’ed data MIME separator ...MIME part header

HTTP header MIME message header MIME part header gzip’ed data MIME separator

170 Jean-Philippe Martin-Flatin et al.

request is performed on a servlet URL, the HTTP server invokes a method of the
servlet depending on the HTTP method used by the request. All servlets implement
one method per HTTP method. For instance, the doGet() method is invoked when
an HTTP GET request comes in for the corresponding URL.

Modern operating systems generally support multithreading. As a result, most
HTTP servers now support concurrent accesses. Several HTTP clients may therefore
invoke concurrently the same method of the same servlet. This allows the sharing of
the same servlet by multiple persistent connections. We used this feature extensively in
JAMAP when we tested it with several agents. Like any URLs, Java servlets can also
leverage on the general-purpose features of HTTP servers (e.g. access control).

As we write this paper, servlet environments are still in constant evolution. During
our work, Sun’s specification of the servlets changed from version 2.0 to version 2.1,
but public-domain implementations remained at 2.0. For JAMAP, we first used the
Apache HTTP server version 1.3.4 and the Apache servlet engine Jserv 0.8. But we
had problems because Jserv 0.8 did not support concurrent accesses to servlets and the
response stream was buffered (both problems were later corrected in Jserv 1.0). In the
meantime, we switched to another HTTP server, Jigsaw 2.0.1, which offered good
support for servlets.

3.3 Java serialization

Serialization is a feature of Java that allows the translation of an arbitrarily complex
object into a byte stream. In JAMAP, we used it for ensuring the persistence of the
state of an object and for transferring objects over the network. Objects containing
references to other objects are processed recursively until all necessary objects are
serialized. The keyword transient can be added to the declaration of an attribute
(e.g. an object reference) to prevent its serialization.

For network transfers, instead of defining a protocol, one can use serializable
classes dedicated to communication. Such classes offer a writeObject() method
on one side, and a readObject() method on the other. For persistence, serialization
proved very useful to store rules and agents configurations.

In the next three sections, we will describe the different applets and servlets
running on the different machines of the management system (see Fig. 3 and Fig. 4):
the management station, the management server and the agent.

4 Management Station

The management station is the desktop of the administrator or operator. It can be any
machine (a Linux PC, a Windows PC, a Mac, a Unix workstation, etc.) as long as it
runs a Web browser and supports Java. Unlike the management server, it is not static:
the administrator can work on different machines at different times of the day. In the
subscription phase of the push model, he/she configures the agent via the MIB data
subscription applet and the notification subscription applet. The rules used by the
pushed data collector and the event manager servlets can be modified at any time via
the rule edition applet. Events are displayed by the event notification applet.

171JAMAP: A Web-Based Management Platform for IP Networks

4.1 MIB data subscription applet

The MIB data subscription applet communicates directly with the agent. It provides
the subscription system for regular management. It is also used to perform push-based
and pull-based ad hoc management. Its main tasks are the following:

– browse MIBs graphically;

– select MIB variables or SNMP tables and retrieve their values once (pull model);

– select MIB variables and monitor them for a while (text fields, time graphs or
tables);

– monitor some computed values (e.g. interface utilization); and

– subscribe to MIB variables or SNMP tables and specify a push frequency (per MIB
variable).

Computed values are typically the results of equations parameterized by multiple
MIB variables. We implemented a sort of multiplexer to support them. This kind of
simple preprocessing could be delegated to the agent in the future.

4.2 Notification subscription applet

Similarly, the notification subscription applet also communicates directly with the
agent. It enables the administrator to set up a filter for notifications at the agent level.
Notifications that have not been subscribed to by the manager are silently discarded by
the agent.

4.3 Rule edition applet

The rule edition applet controls the behavior of two objects:

– the pushed data interpreter object living in the pushed data collector servlet; and

– the event correlator object living in the event manager servlet.

The administrator can write rules in Java via the applet, or can edit them separately
and apply them via the applet. (Java is used here as a universal scripting language.) For
instance, an event can be generated by the pushed data interpreter if the value of a MIB
variable exceeds a given threshold. A typical rule for the event correlator would be that
if a system is believed to be down, then all applications running on it should also be
down, so events reporting that NFS (Network File System) is not working or that an
RDBMS is not working should be discarded.

More complex rules can easily be written. For instance, the pushed data interpreter
can check if the average value of a given MIB variable increased by 10% or more over
the last two hundred push cycles. In fact, these rules can be arbitrarily complex, as
there is no clear-cut distinction between what is in the realm of offline data mining and
what should be performed immediately, in pseudo real-time. The trade-off is that the
pushed data interpreter should not be slowed down too much by an excessive amount
of rules, otherwise it might not be able to apply all the relevant rules to incoming data
between two consecutive push cycles.

172 Jean-Philippe Martin-Flatin et al.

4.4 Event notification applet

The event notification applet is connected to the management server to receive events.
We use it as a debugger, as we do not manage a production network with our platform.
This applet displays a simple list of events and manages a blinking light and sound
system to grab the operator’s attention in case of incoming events. It is intended to
remain permanently in a corner of the administrator’s and operator’s desktop screens.
Eventually, it will be complemented by the network map GUI applet.

5 Management Server

The management server runs three servlets: the pushed data collector, the notification
collector and the event manager. In principle, this management server could easily be
distributed over multiple machines if need be (e.g. for scalability reasons), as the
communication between servlets relies on HTTP, and the data server is already a
separate machine. For instance, we could run the three servlets on three different
machines, and data mining on a fourth. But so far, we have only tested our software
with a single management server.

5.1 Pushed data collector servlet

The pushed data collector servlet consists of three core objects (see Fig. 1), plus a
number of instrumentation objects not represented on that figure. The pushed data
collector object connects to the agent upon startup, and enters an infinite loop where it
listens to the socket for incoming data and passes on this data “as is” to the pushed data
filter object. If the connection to the agent is lost, e.g. due to a reboot of the agent, the
pushed data collector immediately reconnects to it so as to ensure a persistent
connection [9].

The pushed data filter object controls the flow of incoming data. If it detects that
too much traffic is coming in from a given agent (that is, from a given socket), it tells
the pushed data collector object to close permanently the connection to that agent (that
is, the collector should not attempt to reconnect to the agent until the administrator
explicitly tells it to do so). The rationale here is that a misbehaving agent is either
misconfigured, bogus, or under the control of an intruder pursuing a denial of service
attack, and that the good health of the management system should be protected against
this misbehaving agent. When this happens, the administrator is informed via email.

If the pushed data filter object is happy with the incoming data, it passes it on “as
is” to the pushed data interpreter object. The latter unmarshalls the data and checks,
MIB variable by MIB variable, whether it was subscribed to for monitoring, data
collection or both.

In the case of data collection, the MIB variable is not processed immediately.
Instead, it is stored in a persistent repository (an NFS-mounted file system currently, an
RDBMS in the future) via a logger object. We assume that an external process will
process it afterward to perform some kind of data mining (e.g., it could look for a trend
in the variations of the CPU load of an IP router to be able to anticipate when it should
be upgraded).

173JAMAP: A Web-Based Management Platform for IP Networks

In the case of monitoring, the MIB variable is processed immediately. The pushed
data interpreter object applies the rules relevant to that agent and that MIB variable. If
it notices something important (e.g., a heartbeat is received from an IP router which
was considered down), the pushed data interpreter object generates an urgent event and
sends it via HTTP to the event correlator object living in the event manager servlet. We
took special care for the case where the same MIB variable is used for both monitoring
and data collection. The data is then duplicated by the pushed data interpreter.

A nice feature of our rule system is that rules may be dynamically compiled and
loaded in by the servlet. Dynamic class loading is a feature of the Java language. The
core API provides a method to instantiate objects from a class by giving its name in the
form of a string. The class loader of the JVM searches the class file in the file system,
and loads it into the JVM’s memory. This enables the servlet to load a class at runtime
without knowing its name in advance. Once a class is loaded, it behaves just as any
other class. We are limited only by the fact that a class cannot be modified at runtime.
This means that if a rule is already registered under a certain class name and that rule is
modified by the administrator, another class name must be used for that new version of
the rule.

To solve this problem, we implemented a simple technique that consists in
postfixing the class name with a release number and incrementing this release number
automatically. As a result, the administrator can create, modify and debug rules
dynamically. The drawback is that the memory used by loaded classes (especially
those corresponding to the “old” rules) is freed only when the JVM is restarted. The
administrator should therefore be careful not to fill up the memory in the rule
debugging phase. Clearly, this feature should be used with special care on a production
system; but it proved to be particularly useful for debugging rules.

5.2 Notification collector servlet

As depicted in Fig. 2, the notification collector servlet consists in principle of two core
objects, the notification collector and the notification filter. Contrary to pushed data,
we do not need an interpreter for notifications because we know already what
happened: we do not have to work it out.

The notification collector object works exactly as the pushed data collector object.
The notification filter object also works as the pushed data filter object. In fact, in the
current version of JAMAP, the notification collector servlet and the pushed data
collector servlet are just one single servlet. This enables us to use a single persistent
connection between the agent and the manager for transferring MIB data and notifi-
cations. (Note that this would not be the case if we were to distribute the servlets over
several machines.) Notifications received by the pushed data interpreter object are
currently passed on “as is” to the event correlator object living in the event manager
servlet, without any further processing.

5.3 Event manager servlet

The event manager servlet connects to one or more pushed data collector servlets (one,
in the case depicted in Fig. 3 and Fig. 4) and waits for incoming events. Events are

174 Jean-Philippe Martin-Flatin et al.

processed by the event correlator object. This object performs a simple correlation
with regard to the network topology, in order to discard masked events. For instance, if
a router is down, all machines accessed across it will appear to be down to the pushed
data interpreter. Based on its knowledge of the network topology (which is hardcoded
in the current version of JAMAP), the event correlator is able to keep only those events
that cannot be ascribed to the failure of other equipment.

When an event is not discarded by the event correlator object, it is transmitted to
the event handler object corresponding to its level of emergency (this level of
emergency is encapsulated inside the event). Each event handler is coded to interface
with a specific notification system (e.g., an email system, a pager, a telephone, a siren,
etc.). In our prototype, we only implemented an email-based notification system.

6 Agent

The agent runs a lightweight JVM [9] and two servlets: the MIB data dispatcher and
the notification dispatcher.

6.1 MIB data dispatcher servlet

The MIB data dispatcher servlet consists of three core objects (the push scheduler, the
MIB data formatter and the MIB data dispatcher) plus a number of instrumentation
objects not represented on Fig. 1. During the subscription phase, the push scheduler
object stores locally the subscription sent by the MIB data subscription applet (we call
it the agent’s configuration). Later, during the distribution phase, the push scheduler
object uses this configuration to trigger the push cycles. It tells the MIB data formatter
object what MIB variables should be sent at a given time step. The MIB data formatter
object accesses the in-memory data structures of the MIBs via some proprietary, tailor-
made mechanism, formats the MIB data as a series of {OID, value} pairs, and sends it
to the MIB data dispatcher object. The latter compresses the data with gzip,
assembles the data in the form of a MIME part, pushes the MIME part through and
sends a MIME separator afterward to indicate that the push cycle is over.

In the future, the MIB data dispatcher servlet will be able to retrieve the agent’s
configuration from the data server via the management server. Thus, the agent will not
necessarily have to store its configuration in nonvolatile memory, a useful feature for
bottom-of-the-range equipment.

6.2 Notification dispatcher servlet

The notification dispatcher servlet consists of two core objects (the notification
generator and the notification dispatcher) plus a number of instrumentation objects not
represented on Fig. 2. During the subscription phase, the notification generator object
stores locally the subscription sent by the notification subscription applet. In other
words, it sets up a filter for notifications coming in from the health monitor. During the
distribution phase, the health monitor checks continuously the health of the agent
based on input from sensors. When a problem is detected, the health monitor
asynchronously fires an alarm to the notification generator object in the servlet via

175JAMAP: A Web-Based Management Platform for IP Networks

some proprietary mechanism. The notification generator object checks with the filter if
this alarm should be discarded. If it was not subscribed to by the manager, the alarm is
silently dropped. If it was, the notification generator object formats it as an SNMPv2
notification and sends it to the notification dispatcher object, which, in turn, wraps it in
the form of a MIME part, pushes it to the management server via HTTP, and sends a
MIME separator afterward to indicate that this is the end of the notification.

As we do not manage a real-life network with JAMAP, the notifications that are
generated by the health monitor are all simulated. Instead of using real sensors, we fire,
from time to time, one notification taken in a pool of predefined notifications; the
selection of this notification is based on a random number generator. As with the
previous servlet, the notification dispatcher servlet will eventually be able to retrieve
the agent’s notification filter from the data server via the management server.

7 Related Work

In the recent past, two very promising contributions came from industrial research: the
Web-Based Enterprise Management (WBEM) initiative and Marvel.

WBEM came to life in 1996, by making sensational marketing announcements that
it would unify (at last) N&SM by defining a new information model and a new
communication model. By obsoleting all existing technologies and management
frameworks, it did not gain much credibility. In1997, the WBEM Consortium became
more realistic: it adopted HTTP as its transfer protocol, selected the Extensible
Markup Language (XML) to structure management data, and delivered the specifi-
cations for a new information model: the Common Information Model (CIM) [15].
Then, the WBEM initiative was taken over by the Distributed Management Task Force
(DMTF) and integrated into its more global work plan—a guarantee of its
independence toward any particular vendor. A lot of work is currently under way, split
across 14 Technical Committees. Apart from CIM, whose specifications were updated
several times already and are now fairly stable, most of the technical specifications are
still ongoing work, e.g. the definition of CIM operations over HTTP. Several of our
proposals could fit into this framework, such as the use of push rather than pull
technologies and the encapsulation of XML into MIME parts.

The most interesting prototype freely available to date is probably Marvel by
Anerousis [1]. The main difference with JAMAP is that Marvel relies on RMI for
manager-agent communication, and builds on it to offer a distributed object-oriented
N&SM platform. This enables a very elegant architecture and a clean design, but is
exposed to a well-known criticism: can we reasonably expect all managed devices to
support RMI in the future? For the Jini camp [14], which advocates universal plug-
and-play based on Java, the answer is clearly yes. We have doubts about it: bottom-of-
the-range devices are very price sensitive, and despite the decreasing prices of CPU
and memory, the extra cost of embedding Java software still makes a difference
today—enough to win or lose customers. For top-of-the-range devices, the support for
Java RMI makes perfect sense. But if we want to have a unified N&SM framework for
all devices, we should be careful not to have too stringent requirements—otherwise,
our proposals will simply be rejected by the industry. Our requirement that a

176 Jean-Philippe Martin-Flatin et al.

lightweight JVM be embedded in all devices seems to be the farthest we can
reasonably go for the next couple of years. It should be noted that Sun’s
EmbeddedJava technology might bring an answer to this question in the future.

8 Conclusion

We have presented JAMAP, a prototype of N&SM platform written entirely in Java. It
implements the push model to perform regular management (i.e. permanent
monitoring and data collection for offline analysis) and ad hoc management (i.e.
temporary monitoring and troubleshooting). The communication between agents and
managers relies on HTTP transfers between Java applets and servlets over persistent
TCP connections. The SNMP MIB data is encapsulated in serialized Java objects that
are transmitted as MIME parts via HTTP. The manager consists of two parts: the
management server, a static machine that runs the servlets, and the management
station, which can be any desktop running a Web browser. The MIB data is
transparently compressed with gzip, which saves network bandwidth without
increasing latency too significantly.

Our approach offers many advantages over traditional SNMP-based management:
it reduces the network overhead of management data transfers; it delegates part of the
processing overhead from the manager to the agents; it reduces the development costs
of management software for both equipment and N&SM platform vendors (and
consequently the cost of the N&SM platform for the customers); and it makes it easier
to find engineers with the expertise necessary for customizing a management platform
to specific sites. Other advantages not developed in this paper include the better
potential for distributing management with mobile code, the simplicity to implement
low-level security, the potential for high-level semantics, and the usual advantages of
3-tier over 2-tier architectures. The main disadvantage is the slow speed of execution
of Java code, especially JDBC, which may cause scalability problems. More work is
necessary to assess if we can work around these difficulties, or if we have to resort to
alternatives to manage large production systems and networks.

For future research, we plan to investigate different schemes to structure and
encode management data, instead of serializing Java objects that encapsulate SNMP
MIB data. Our objective is to get a higher level of semantics while keeping both
network overhead and end-to-end latency reasonably low. In particular, we want to
study the pros and cons of going from a string-based to an XML-based representation
of MIB data, and to measure the effects of gzip compression in both cases. It would
also be useful to perform a detailed performance analysis of these different structuring
and encoding schemes, and to compare them with SNMP.

Acknowledgments

This research was partially funded by the Swiss National Science Foundation (FNRS)
under grant SPP-ICS 5003-45311. We wish to thank H. Cogliati for proofreading this
paper. We are also grateful to AdventNet, IBM and R. Tschalär for making useful Java
classes freely available to academic researchers.

177JAMAP: A Web-Based Management Platform for IP Networks

References

1. N. Anerousis. “Scalable Management Services Using Java and the World Wide Web”. In
A.S. Sethi (Ed.), Proc. 9th IFIP/IEEE Int. Workshop on Distributed Systems: Operations &
Management (DSOM’98), Newark, DE, USA, October 1998, pp. 79–90.

2. F. Barillaud, L. Deri and M. Feridun. “Network Management using Internet Technologies”.
In A. Lazar, R. Saracco and R. Stadler (Eds.), Integrated Network Management V, Proc. 5th
IFIP/IEEE Int. Symp. on Integrated Network Management (IM’97), San Diego, CA, USA,
May 1997, pp. 61–70. Chapman & Hall, London, UK, 1997.

3. B. Bruins. “Some Experiences with Emerging Management Technologies”. The Simple
Times, 4(3):6–8, 1996.

4. J.D. Davidson and S. Ahmed. Java Servlet API Specification. Version 2.1a. Sun
Microsystems, November 1998.

5. L. Deri. HTTP-based SNMP and CMIP Network Management. Internet draft <draft-deri-
http-mgmt-00.txt> (now expired). IETF, November 1996.

6. N. Freed and N. Borenstein (Eds.). RFC 2046. Multipurpose Internet Mail Extensions
(MIME). Part Two: Media Types. IETF, November 1996.

7. B. Harrison, P.E. Mellquist and A. Pell. Web Based System and Network Management.
Internet draft <draft-mellquist-web-sys-01.txt> (now expired). IETF, November 1996.

8. W. Kasteleijn. Web-Based Management. M.Sc. thesis, University of Twente, Enschede, The
Netherlands, April 1997.

9. J.P. Martin-Flatin. The Push Model in Web-Based Network Management. Technical Report
SSC/1998/023, version 3, SSC, EPFL, Lausanne, Switzerland, November 1998.

10. J.P. Martin-Flatin. “Push vs. Pull in Web-Based Network Management”. In Proc. 6th IFIP/
IEEE International Symposium on Integrated Network Management (IM’99), Boston, MA,
USA, May 1999, pp. 3–18. IEEE Press, 1999.

11. M.C. Maston. “Using the World Wide Web and Java for Network Service Management”. In
A. Lazar, R. Saracco and R. Stadler (Eds.), Integrated Network Management V, Proc. 5th
IFIP/IEEE Int. Symp. on Integrated Network Management (IM’97), San Diego, CA, USA,
May 1997, pp. 71–84. Chapman & Hall, London, UK, 1997.

12. Netscape. An Exploration of Dynamic Documents. 1995. Available at
<http://home.mcom.com/assist/net_sites/pushpull.html>.

13. B. Reed, M. Peercy and E. Robinson. “Distributed Systems Management on the Web”. In
A. Lazar, R. Saracco and R. Stadler (Eds.), Integrated Network Management V, Proc. 5th
IFIP/IEEE Int. Symp. on Integrated Network Management (IM’97), San Diego, CA, USA,
May 1997, pp. 85–95. Chapman & Hall, London, UK, 1997.

14. Sun Microsystems. Jini. Available at <http://www.sun.com/jini/>.

15. J.P. Thompson. “Web-Based Enterprise Management Architecture”. IEEE Communications
Magazine, 36(3):80–86, 1998.

16. C. Wellens and K. Auerbach. “Towards Useful Management”. The Simple Times, 4(3):1–6,
1996.

178 Jean-Philippe Martin-Flatin et al.

	Introduction
	Architecture of JAMAP
	Advanced Technologies Used in JAMAP
	MIME multipart and MIME-based push
	Java servlets
	Java serialization

	Management Station
	MIB data subscription applet
	Notification subscription applet
	Rule edition applet
	Event notification applet

	Management Server
	Pushed data collector servlet
	Notification collector servlet
	Event manager servlet

	Agent
	MIB data dispatcher servlet
	Notification dispatcher servlet

	Related Work
	Conclusion
	Acknowledgments
	References

