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Abstract. Active networks enable their users to specify how each 
packet is processed on network nodes. One of the essential techniques 
for active networks is the programmable node approach, which 
enables network nodes to evolve their packet processing functions by 
loading new software components into the nodes. Possible component 
loading strategies include demand loading. It reduces the usage of 
node resources and localizes possible problems, although the 
component loading time defers packet processing. This paper 
discusses the component loading time of the demand loading strategy, 
and proposes a scheme to shorten the loading time by masking the 
propagation delay of components. We have implemented the scheme 
pre-supplying on a Java-based system and have evaluated its 
effectiveness. The result shows that the proposed scheme shortens 
the loading time of a test component by as much as 70%. 
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1. Introduction 
As mobile code technology including mobile agents and applets has been 

improved and widely accepted, applying it to the underlying network 
system has been explored. Active networks [1] are ideal examples as they 
stand on mobile code technology. The use of mobile code in active networks 
is split into two approaches: programmable node and capsule. The former 
enables network nodes to evolve their functions including routing, 
modifying and forwarding of the received packets by loading new software 
components into the nodes. The latter approach embeds a piece of program 
code in each packet, or "capsule" in this context, so that the behavior of 
each packet on nodes is self-described. These approaches complement each 
other; the programmable node approach can define a large set of packet 
handling functions that cannot fit into a single capsule, while capsules can 
define the handling of individual packets by choosing which handling 
functions to use and making minor additions to them. 

Since a capsule may decide its next hop during its journey, predeter­
mining which nodes should have software components for the capsule is 
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difficult. Therefore, the possible deployment strategies of software compo­
nents are limited as follows: 
• Broadcasting, i.e. distributing the components to all nodes in advance 
• Accompanying, i.e. letting the components accompany the capsule 
• Demand loading, i.e. nodes load the components when the capsule 

arrives 
None of these alone are suitable for every purpose because each of them 

has its own advantages and disadvantages. The demand loading strategy, 
on which this paper focuses, limits the deployment of components to where 
they are needed, thus reducing node resource usage and localizing possible 
problems, e.g. the emergence of undetected bugs and compatibility 
problems among the new and existing components. However, the packet 
processing must be deferred during the component loading time. 

This paper discusses the component loading time of the demand loading 
strategy, and proposes a scheme to shorten the loading time by masking 
the propagation delay of components. We have implemented the scheme 
pre-supplying on a Java-based system and have evaluated its effectiveness. 

2. System Model 
Before discussing loading time, we define a simplified model of a 

demand loading system. Our system model includes three types of entities: 
module, supplier, and consumer (Figure 1). 

Consumer 

Figure 1: System model. 

2.1. Module 
A module is the unit of a software program. All software components 

are composed of modules. Modules are atomic; i.e. they have no substruc­
tures. In other words, no module contains any other modules. It is also the 
unit of program transmission; components are transmitted from a supplier 
to a consumer module-by-module. 

Programs can be split into two types: binary codes and human-readable, 
also known as scripts. A module may be either type and the difference is 
observed only as initialization overhead. Each module must be initialized 
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in order to be ready to run. The initialization includes the compilation and 
linkage processes. For example, a script typically needs to be compiled to 
an intermediate language or a binary code before running. Compared with 
scripts, binary codes generally need less initialization overhead. We 
assume the initialization of a module cannot be done concurrently with its 
execution. Consequently, initialization must be finished before the module 
is used. 

2.2. Supplier 
A supplier is a subsystem that provides consumers with modules. A 

supplier is assumed to store all modules that consumers potentially need. 
Each module that a supplier stores has a unique name. A consumer 
requests a supplier for a module by its name. The supplier then transmits 
the module specified to the consumer. 

2.3. Consumer 
A consumer is a subsystem that executes components that are composed 

of modules. It may execute many components concurrently. It requests a 
supplier to send modules that are required to continue the component 
execution. Upon receiving a module, a consumer compiles it, links it, 
and/or does on it any other required initialization tasks to make it as the 
part of the running component. Some of the modules that compose a 
component may be left unrequested if the application quits the execution 
prematurely. 

2.4. Example 
An example that conforms to our system model is the Java applet 

system. In this example, a Java class file is a module. Java class files 
compose applets, which correspond to components. An HTTP server and a 
web browser correspond to a supplier and a consumer respectively. 

3. Module Granularity 
In this section, we consider the effect of module granularity on the 

component loading time. In this paper, the granularity of a module is 
defined by its size in bytes. Moreover, we define component loading time as 
the elapsed time between the date a consumer starts loading a component 
and the date the component becomes ready. 

An example of the effect of the module granularity can be observed on 
Java applet systems that support packaged class files. A large Java applet 
which is composed of a number of class files takes considerable loading 
time for a browser to s tar t running the applet if each class file is loaded 
one-by-one via an HTTP connection. Therefore, newer browsers have the 
capability to load packaged class files. With packaged class files, a browser 
can obtain all class files in a package via a single HTTP connection. As the 
number of request-response roundtrips becomes smaller, the browser can 
save the applet loading time. Such loading time reduction can be regarded 
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as the result of module granularity tuning. 
Concerning the elements of component loading time, they are 

(Figure 2): 
• the module loading time, 
• the module initialization time, and 
• the component execution time elapsing until the component becomes 

ready. 
The module loading time is further divided into: 
• the propagation delay, and 
• the module transmission time. 

Consumer 

Propagation 
Delays 
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Time 
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Figure 2: Component loading time. 

The granularity of a module affects its initialization time and 
transmission time. Hence, making the module granularity finer will reduce 
the component loading time (a to b in Figure 3). However, making the 
module finer than a certain amount will increase the component loading 
time (c in Figure 3). As an excessively small module cannot carry enough 
quantity of code, the consumer will have to load another supplemental 
module, but this will add another propagation delay to the component 
loading time. It thus follows that to minimize the component loading time, 
the module granularity chosen must be as small as possible but still 
enough for a component to become ready by loading a single module. This 
means that a "kick-start" module must be prepared for each component. 
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Figure 3: The influence of module granularity on component loading time. 

However, as such tailored modules cannot be shared among components, 
more resources and longer loading time may be required than in finer 
module approaches when the consumer executes many components. Since 
an active network node is considered to execute many components, we 
sought another approach. 

4. Masking of Propagation Delay 
As described above, propagation delay accumulation is the main 

problem of modules with excessively fine granularity. However, if the 
propagation delay can be properly masked, using finer modules will result 
in shorter component loading time. A technique that can mask the 
propagation delay is prefetching. It is widely used in the memory systems 
of computers. In this technique, a memory system attempts to guess which 
data are likely to be accessed by a processor. Then it moves the data from 
the high-latency storage into the low-latency cache before the processor 
actually accesses them. In the rest of this section, we discuss existing 
prefetching techniques and propose an improved technique. 
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4.1. Prefetching Techniques 
Different prefetching techniques are applied to memory systems that 

are accessed in different ways. Sequential prefetching, in which the 
memory system prefetches successive data, is suitable for disk cache 
systems and the paging system for virtual memory implementations 
because they store data of various length into successive fixed-size memory 
blocks and thus successive blocks will likely be accessed one after another. 
In the opposite case, where data are rarely accessed sequentially, 
sequential prefetching is not suitable. A data cache subsystem for a 
processor is an example; although the instruction cache is accessed in a 
nearly sequential manner, the data cache is accessed sparsely. In cache 
systems for filesystems and the world wide web (WWW), a datum is 
specified with the name rather than a number, so there is no a priori idea 
of "successive data" and sequential prefetching is not suitable. For such 
systems, hints and history are used to complement the "successive data" 
information. 

A hint is a piece of information that specifies when and which data 
should be prefetched. Based on obtained hints, a prefetcher fetches and 
caches the specified data. A kind of such hinted prefetching technique is 
adopted in processors. These implement hints as extra instructions 
inserted in software. Then they notify the address and the length of data to 
be prefetched to the memory system. Such a scheme is also called "software 
prefetching" [2]. In the same manner, the use of i o c t l system calls to 
declare the future access to a file is proposed for filesystems [3]. Though 
the hints sources in these examples are the consumers (consumer-hinted), 
the suppliers of data or other entities can also be the source. Such an 
example will be described later. 

Here, "history" refers to the existing information about past accesses. 
By analyzing the history, a prefetcher can discover access patterns, 
extrapolate them, and then predict which data will likely be accessed. As 
the implementation of this history scheme is more complicated than the 
schemes mentioned previously, it is typically applied to software-based 
systems like disk caches [4], filesystems [5], and WWW [6]. 

Among these prefetching schemes, hinted prefetching and history-based 
prefetching can be applied to mask propagation delays of module loading. 
This paper focuses on the history-based prefetching, and leaves the 
consumer-hinted prefetching for future study. 

4.2. Issues of History-Based Prefetching 
There are other history-based prefetching issues beyond the implemen­

tation complexity described above. For example, since the prefetcher must 
have sufficient history to predict correctly, it cannot work well for a certain 
period after being initialized. 

A solution to this issue is introduced in a WWW caching system [6], in 
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Figure 4: Example sequences of (a) hinted-prefetching and 
(b) pre-supplying. 

which the history is centrally maintained on the server side. The 
prefetcher in the client uses hints that the server provides based on the 
history. Hence, the system uses both hinted and history-based prefetching. 
As the history is maintained by the server, the prefetcher located in the 
client side can work well from the beginning, as long as some other clients 
have representatively built up enough history by previously accessing the 
server. 

This solution, however, creates another issue. Because of the propaga­
tion delay of hints, it may fail to mask the propagation delay of prefetched 
data. Figure 4a describes an example in which we have applied the 
history-based hinted prefetching solution to our system model. This 
example assumes the supplier has access history of modules A, B, and C in 
that order. Therefore, when the consumer requests module A, the supplier 
transmits a hint, which tells him that modules B and C will be next. Upon 
receiving this advice, the consumer requests modules B and C. Though the 
second request is made quickly, the consumer has to wait for some period 
since necessary modules are locking at this point. Thus, component loading 
time is lengthened. This issue cannot be solved with the prefetching or 
"consumer-driven module providing" approaches because they incur hint 
propagation delay. 

4.3. Pre-Supplying 
We resolve this issue by making the module providing supplier-driven; 

it is mostly the same as history-based hinted prefetching, except that the 
supplier transmits modules instead of hints to the consumer. In the case of 
the last example, the supplier transmits module A on receiving the request 
for it. Then it further transmits modules B and C (Figure 4b). Thus, the 
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Figure 5: The architecture of pre-supplying system. 

consumer does not have to wait for module B, or the wait time is minimized. 
To make this scheme called "pre-supplying" feasible, a consumer must 
always be ready to receive modules, regardless of whether it has requested 
them. 

5. Architecture of Pre-supplying System 
In this section, we describe the architecture of the pre-supplying system. 

The supplier contains two subsystems: a module repository and a predictor 
(Figure 5). The module repository is a subsystem that provides the 
predictor with modules on request. The predictor sends modules to 
consumers on request and on expectation. When it receives a request for a 
module from a consumer, it loads the requested module from the module 
repository, transmits it to the consumer, and updates the history data. 
Additionally, the predictor analyses the history data to predict which 
module is most likely to be requested next, and transmits the candidate 
module to the consumer if the module has not been transmitted to the 
consumer recently. The predictor then repeats the pre-supplying task by 
transmitting a module that is most likely to be requested after the module 
that it jus t pre-supplied. The task is further repeated until the next 
request from the consumer arrives or when there are no more unsent 
candidates left. 

Figure 6a shows a possible representation of history data. It is a forest 
of height limited to h=2 and thus can model h order Markov processes. 
Each root node of the forest corresponds to a module, and the subsidiary 
nodes are modules requested subsequent to the request for the root module. 
Each edge has weight that is the frequency of the request sequence. For 
example, when the predictor has observed the sequence of requests shown 
in Figure 6b, the forest of Figure 6a is made, and it then predicts that 
module D is the candidate for the next transmission. 

Let us return to Figure 5. The consumer contains three subsystems: an 
executing environment (EE), a loader and a cache. The EE executes 
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(a) An example of history represented as a forest. 

(b) The observed sequence of requests. 

Figure 6: An example of history data. 

software components. While executing components, it loads necessary 
modules from the loader. The loader provides the EE with modules on 
request. When the EE makes a request for a module, the loader first looks 
for the module in the cache, which is a cache for modules and is assumed to 
be empty initially. If the cache already has the requested module, the 
loader gives it to the EE. Otherwise, the loader makes a request for the 
module to the supplier. Some time later, it receives the requested module 
and some pre-supplied modules. It stores them in the cache, and if they 
include modules for which the EE is asking, it gives the modules to the EE. 

6. Experiment 
We conducted a series of experiments to show the efficiency of the pre-

supplying. Figure 7 shows the outline of the test bed system. All the 
software was developed using Java: the supplier and the consumer were 
developed as Java applications, and each was deployed on a Java Runtime 
Environment (JRE) version 1.1.7 virtual machine on a Linux PC. The 
consumer and the supplier are interconnected with a TCP/IP socket on 10 
Mbps switched Ethernet. Using the socket, the consumer requests modules 
(Java class files) and the supplier transmits them. 

We evaluated the loading time of a Java application. The application we 
used is an MPEG filter, which is an experimental code for programmable 
nodes in active networks. As shown in Figure 8, it forwards an MPEG 
stream in RFC 2250 [7] Section 3 format. When the output link is 
congested and the queue is going to be filled, it selectively drops packets in 
less-impact-first manner (B pictures first, next P pictures, and finally I 
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Figure 7: The test bed system. 

pictures). The loading time is defined as the time between the date the 
consumer s tar ts loading the application and the date the application 
indicates it accepts MPEG packets. During the loading time, the supplier 
transmits 11 modules, the average size of which was about 608 bytes. 

We executed the system with pre-supplying (after history data are 
established) and without pre-supplying (history data are initialized), 20 
times for each. The results are shown in Table 1. The results obtained show 
that pre-supplying reduced the loading time by 74% approximately. 

Table 1: Loading time comparison. 

Without pre-supplying 

Pre-supplying 

Loading 

Average 

0.536 

0.138 

time [sec] 

Std. deviation o 

0.042 

0.004 

The result in Table 1 was the ideal one because it was only a single 
application that established history and was executed, hence no prediction 
errors were made. We also evaluated how the performance is degraded 
according to the prediction errors. There are two types of prediction errors: 
ordering and missing errors. Suppose that a consumer is going to use 
modules A, B and C in that order; if the supplier predicts that the order 
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Figure 8: The experimental active networking system. 

will be A-C-B, it is an ordering error; if the supplier predicts A-C but no B, 
it is a missing error. In some cases, an ordering error might not be a 
problem. For example, pre-supplying in order A-C-B will be sufficient for 
the consumer that uses them each a day. In contrast, a missing error 
always leads the consumer to make a request for the missed module 
(provided that the consumer cache did not have the module yet) and thus 
lengthens the component loading time. 

We evaluated the effect of only missing errors because the effect of 
ordering errors is less directly observed as described above. To see the 
effect of missing errors, we forced the supplier to make mistakes. We 
modified it so that it could omit some randomly chosen modules from pre-
supplying. Although it predicts correctly and tries to pre-supply candidate 
modules to the consumer, some of them are not really transmitted. Because 
the number of modules in the MPEG filter is not enough for this 
experiment, we used W3C's Jigsaw Proxy Package1 2.0.1 instead. In this 
case, the supplier transmits 216 modules during the loading time; the 
average size of modules was about 2.80 KB. As shown in Figure 9, the pre-
supplying performance dropped linearly from maximum 68% loading-time 
reduction according to the number of missing errors; i.e. the number of 
omitted modules. 

http://www.w3.org/Jigsaw/ 

http://www.w3.org/Jigsaw/
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Figure 9: Performance degradation due to prediction missing errors. 

7. Conclusion 
In this paper, we have presented a scheme called "pre-supplying" to 

reduce the loading time of software components for active network nodes. 
In this scheme, the supplier maintains access history, predicts future 
accesses, and transmits modules in advance of the requests for them. A 
series of experiments shows that it reduces the component loading time by 
approximately 70% and that the reduction will linearly decrease according 
to the number of prediction errors. 

On the test bed system, the information exchanged between the 
consumer and the supplier was limited to the module requests and the 
modules themselves. We believe more information including cache usage 
must be exchanged to make this scheme practical, otherwise the supplier 
cannot know how many modules can be safely pre-supplied without 
flooding the consumer's cache. 
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