
Accelerating Code Deployment on Active Networks
Toru Egashira and Yoshiaki Kiriha

C&C Media Research Laboratories, NEC Corporation
4-1-1, Miyazaki, Miyamae-ku, Kawasaki 216-8555, Japan

Tel: +81-44-856-2314, Fax: +81-44-856-2229
{egashira ,kir iha}@ccm.CL.nec.co. jp

Abstract. Active networks enable their users to specify how each
packet is processed on network nodes. One of the essential techniques
for active networks is the programmable node approach, which
enables network nodes to evolve their packet processing functions by
loading new software components into the nodes. Possible component
loading strategies include demand loading. It reduces the usage of
node resources and localizes possible problems, although the
component loading time defers packet processing. This paper
discusses the component loading time of the demand loading strategy,
and proposes a scheme to shorten the loading time by masking the
propagation delay of components. We have implemented the scheme
pre-supplying on a Java-based system and have evaluated its
effectiveness. The result shows that the proposed scheme shortens
the loading time of a test component by as much as 70%.

Keywords. Management of active networks, Mobile code, Demand
loading, Code server, Prefetching

1. Introduction
As mobile code technology including mobile agents and applets has been

improved and widely accepted, applying it to the underlying network
system has been explored. Active networks [1] are ideal examples as they
stand on mobile code technology. The use of mobile code in active networks
is split into two approaches: programmable node and capsule. The former
enables network nodes to evolve their functions including routing,
modifying and forwarding of the received packets by loading new software
components into the nodes. The latter approach embeds a piece of program
code in each packet, or "capsule" in this context, so that the behavior of
each packet on nodes is self-described. These approaches complement each
other; the programmable node approach can define a large set of packet
handling functions that cannot fit into a single capsule, while capsules can
define the handling of individual packets by choosing which handling
functions to use and making minor additions to them.

Since a capsule may decide its next hop during its journey, predeter­
mining which nodes should have software components for the capsule is

R. Stadler and B. Stiller (Eds.): DSOM'99, LNCS 1700, pp. 211-223, 1999.
© Springer-Verlag Berlin Heidelberg 1999

212 Toru Egashira and Yoshiaki Kiriha

difficult. Therefore, the possible deployment strategies of software compo­
nents are limited as follows:
• Broadcasting, i.e. distributing the components to all nodes in advance
• Accompanying, i.e. letting the components accompany the capsule
• Demand loading, i.e. nodes load the components when the capsule

arrives
None of these alone are suitable for every purpose because each of them

has its own advantages and disadvantages. The demand loading strategy,
on which this paper focuses, limits the deployment of components to where
they are needed, thus reducing node resource usage and localizing possible
problems, e.g. the emergence of undetected bugs and compatibility
problems among the new and existing components. However, the packet
processing must be deferred during the component loading time.

This paper discusses the component loading time of the demand loading
strategy, and proposes a scheme to shorten the loading time by masking
the propagation delay of components. We have implemented the scheme
pre-supplying on a Java-based system and have evaluated its effectiveness.

2. System Model
Before discussing loading time, we define a simplified model of a

demand loading system. Our system model includes three types of entities:
module, supplier, and consumer (Figure 1).

Consumer

Figure 1: System model.

2.1. Module
A module is the unit of a software program. All software components

are composed of modules. Modules are atomic; i.e. they have no substruc­
tures. In other words, no module contains any other modules. It is also the
unit of program transmission; components are transmitted from a supplier
to a consumer module-by-module.

Programs can be split into two types: binary codes and human-readable,
also known as scripts. A module may be either type and the difference is
observed only as initialization overhead. Each module must be initialized

Module

<c Supplier

Accelerating Code Deployment on Active Networks 213

in order to be ready to run. The initialization includes the compilation and
linkage processes. For example, a script typically needs to be compiled to
an intermediate language or a binary code before running. Compared with
scripts, binary codes generally need less initialization overhead. We
assume the initialization of a module cannot be done concurrently with its
execution. Consequently, initialization must be finished before the module
is used.

2.2. Supplier
A supplier is a subsystem that provides consumers with modules. A

supplier is assumed to store all modules that consumers potentially need.
Each module that a supplier stores has a unique name. A consumer
requests a supplier for a module by its name. The supplier then transmits
the module specified to the consumer.

2.3. Consumer
A consumer is a subsystem that executes components that are composed

of modules. It may execute many components concurrently. It requests a
supplier to send modules that are required to continue the component
execution. Upon receiving a module, a consumer compiles it, links it,
and/or does on it any other required initialization tasks to make it as the
part of the running component. Some of the modules that compose a
component may be left unrequested if the application quits the execution
prematurely.

2.4. Example
An example that conforms to our system model is the Java applet

system. In this example, a Java class file is a module. Java class files
compose applets, which correspond to components. An HTTP server and a
web browser correspond to a supplier and a consumer respectively.

3. Module Granularity
In this section, we consider the effect of module granularity on the

component loading time. In this paper, the granularity of a module is
defined by its size in bytes. Moreover, we define component loading time as
the elapsed time between the date a consumer starts loading a component
and the date the component becomes ready.

An example of the effect of the module granularity can be observed on
Java applet systems that support packaged class files. A large Java applet
which is composed of a number of class files takes considerable loading
time for a browser to s tar t running the applet if each class file is loaded
one-by-one via an HTTP connection. Therefore, newer browsers have the
capability to load packaged class files. With packaged class files, a browser
can obtain all class files in a package via a single HTTP connection. As the
number of request-response roundtrips becomes smaller, the browser can
save the applet loading time. Such loading time reduction can be regarded

214 Toru Egashira and Yoshiaki Kiriha

as the result of module granularity tuning.
Concerning the elements of component loading time, they are

(Figure 2):
• the module loading time,
• the module initialization time, and
• the component execution time elapsing until the component becomes

ready.
The module loading time is further divided into:
• the propagation delay, and
• the module transmission time.

Consumer

Propagation
Delays

J '

Component
Loading

Time

The component
becomes ready

Figure 2: Component loading time.

The granularity of a module affects its initialization time and
transmission time. Hence, making the module granularity finer will reduce
the component loading time (a to b in Figure 3). However, making the
module finer than a certain amount will increase the component loading
time (c in Figure 3). As an excessively small module cannot carry enough
quantity of code, the consumer will have to load another supplemental
module, but this will add another propagation delay to the component
loading time. It thus follows that to minimize the component loading time,
the module granularity chosen must be as small as possible but still
enough for a component to become ready by loading a single module. This
means that a "kick-start" module must be prepared for each component.

Accelerating Code Deployment on Active Networks 215

Component
Loading

Time

Coarser < - Module
Granularity ■>• Finer

Figure 3: The influence of module granularity on component loading time.

However, as such tailored modules cannot be shared among components,
more resources and longer loading time may be required than in finer
module approaches when the consumer executes many components. Since
an active network node is considered to execute many components, we
sought another approach.

4. Masking of Propagation Delay
As described above, propagation delay accumulation is the main

problem of modules with excessively fine granularity. However, if the
propagation delay can be properly masked, using finer modules will result
in shorter component loading time. A technique that can mask the
propagation delay is prefetching. It is widely used in the memory systems
of computers. In this technique, a memory system attempts to guess which
data are likely to be accessed by a processor. Then it moves the data from
the high-latency storage into the low-latency cache before the processor
actually accesses them. In the rest of this section, we discuss existing
prefetching techniques and propose an improved technique.

216 Toru Egashira and Yoshiaki Kiriha

4.1. Prefetching Techniques
Different prefetching techniques are applied to memory systems that

are accessed in different ways. Sequential prefetching, in which the
memory system prefetches successive data, is suitable for disk cache
systems and the paging system for virtual memory implementations
because they store data of various length into successive fixed-size memory
blocks and thus successive blocks will likely be accessed one after another.
In the opposite case, where data are rarely accessed sequentially,
sequential prefetching is not suitable. A data cache subsystem for a
processor is an example; although the instruction cache is accessed in a
nearly sequential manner, the data cache is accessed sparsely. In cache
systems for filesystems and the world wide web (WWW), a datum is
specified with the name rather than a number, so there is no a priori idea
of "successive data" and sequential prefetching is not suitable. For such
systems, hints and history are used to complement the "successive data"
information.

A hint is a piece of information that specifies when and which data
should be prefetched. Based on obtained hints, a prefetcher fetches and
caches the specified data. A kind of such hinted prefetching technique is
adopted in processors. These implement hints as extra instructions
inserted in software. Then they notify the address and the length of data to
be prefetched to the memory system. Such a scheme is also called "software
prefetching" [2]. In the same manner, the use of i o c t l system calls to
declare the future access to a file is proposed for filesystems [3]. Though
the hints sources in these examples are the consumers (consumer-hinted),
the suppliers of data or other entities can also be the source. Such an
example will be described later.

Here, "history" refers to the existing information about past accesses.
By analyzing the history, a prefetcher can discover access patterns,
extrapolate them, and then predict which data will likely be accessed. As
the implementation of this history scheme is more complicated than the
schemes mentioned previously, it is typically applied to software-based
systems like disk caches [4], filesystems [5], and WWW [6].

Among these prefetching schemes, hinted prefetching and history-based
prefetching can be applied to mask propagation delays of module loading.
This paper focuses on the history-based prefetching, and leaves the
consumer-hinted prefetching for future study.

4.2. Issues of History-Based Prefetching
There are other history-based prefetching issues beyond the implemen­

tation complexity described above. For example, since the prefetcher must
have sufficient history to predict correctly, it cannot work well for a certain
period after being initialized.

A solution to this issue is introduced in a WWW caching system [6], in

Accelerating Code Deployment on Active Networks 217

Figure 4: Example sequences of (a) hinted-prefetching and
(b) pre-supplying.

which the history is centrally maintained on the server side. The
prefetcher in the client uses hints that the server provides based on the
history. Hence, the system uses both hinted and history-based prefetching.
As the history is maintained by the server, the prefetcher located in the
client side can work well from the beginning, as long as some other clients
have representatively built up enough history by previously accessing the
server.

This solution, however, creates another issue. Because of the propaga­
tion delay of hints, it may fail to mask the propagation delay of prefetched
data. Figure 4a describes an example in which we have applied the
history-based hinted prefetching solution to our system model. This
example assumes the supplier has access history of modules A, B, and C in
that order. Therefore, when the consumer requests module A, the supplier
transmits a hint, which tells him that modules B and C will be next. Upon
receiving this advice, the consumer requests modules B and C. Though the
second request is made quickly, the consumer has to wait for some period
since necessary modules are locking at this point. Thus, component loading
time is lengthened. This issue cannot be solved with the prefetching or
"consumer-driven module providing" approaches because they incur hint
propagation delay.

4.3. Pre-Supplying
We resolve this issue by making the module providing supplier-driven;

it is mostly the same as history-based hinted prefetching, except that the
supplier transmits modules instead of hints to the consumer. In the case of
the last example, the supplier transmits module A on receiving the request
for it. Then it further transmits modules B and C (Figure 4b). Thus, the

218 Toru Egashira and Yoshiaki Kiriha

Consumer

zxecutinc
Environmeit

Loader

S
Cache

_BequesL

Module ()

Supplier

Predictor

M
History

Module
Ffepositoity

o<=>

Figure 5: The architecture of pre-supplying system.

consumer does not have to wait for module B, or the wait time is minimized.
To make this scheme called "pre-supplying" feasible, a consumer must
always be ready to receive modules, regardless of whether it has requested
them.

5. Architecture of Pre-supplying System
In this section, we describe the architecture of the pre-supplying system.

The supplier contains two subsystems: a module repository and a predictor
(Figure 5). The module repository is a subsystem that provides the
predictor with modules on request. The predictor sends modules to
consumers on request and on expectation. When it receives a request for a
module from a consumer, it loads the requested module from the module
repository, transmits it to the consumer, and updates the history data.
Additionally, the predictor analyses the history data to predict which
module is most likely to be requested next, and transmits the candidate
module to the consumer if the module has not been transmitted to the
consumer recently. The predictor then repeats the pre-supplying task by
transmitting a module that is most likely to be requested after the module
that it jus t pre-supplied. The task is further repeated until the next
request from the consumer arrives or when there are no more unsent
candidates left.

Figure 6a shows a possible representation of history data. It is a forest
of height limited to h=2 and thus can model h order Markov processes.
Each root node of the forest corresponds to a module, and the subsidiary
nodes are modules requested subsequent to the request for the root module.
Each edge has weight that is the frequency of the request sequence. For
example, when the predictor has observed the sequence of requests shown
in Figure 6b, the forest of Figure 6a is made, and it then predicts that
module D is the candidate for the next transmission.

Let us return to Figure 5. The consumer contains three subsystems: an
executing environment (EE), a loader and a cache. The EE executes

Accelerating Code Deployment on Active Networks 219

(a) An example of history represented as a forest.

(b) The observed sequence of requests.

Figure 6: An example of history data.

software components. While executing components, it loads necessary
modules from the loader. The loader provides the EE with modules on
request. When the EE makes a request for a module, the loader first looks
for the module in the cache, which is a cache for modules and is assumed to
be empty initially. If the cache already has the requested module, the
loader gives it to the EE. Otherwise, the loader makes a request for the
module to the supplier. Some time later, it receives the requested module
and some pre-supplied modules. It stores them in the cache, and if they
include modules for which the EE is asking, it gives the modules to the EE.

6. Experiment
We conducted a series of experiments to show the efficiency of the pre-

supplying. Figure 7 shows the outline of the test bed system. All the
software was developed using Java: the supplier and the consumer were
developed as Java applications, and each was deployed on a Java Runtime
Environment (JRE) version 1.1.7 virtual machine on a Linux PC. The
consumer and the supplier are interconnected with a TCP/IP socket on 10
Mbps switched Ethernet. Using the socket, the consumer requests modules
(Java class files) and the supplier transmits them.

We evaluated the loading time of a Java application. The application we
used is an MPEG filter, which is an experimental code for programmable
nodes in active networks. As shown in Figure 8, it forwards an MPEG
stream in RFC 2250 [7] Section 3 format. When the output link is
congested and the queue is going to be filled, it selectively drops packets in
less-impact-first manner (B pictures first, next P pictures, and finally I

220 Toru Egashira and Yoshiaki Kiriha

Consumer

Q:>

4

\

<
Module

MPEG filter

o
Java class file 11 Modules

TCP/IP Socket on
10 Mbps switched Ethernet

JDK-1.1.7
on Linux

Supplier

»

IH=HP

I
o
a
i

/

Figure 7: The test bed system.

pictures). The loading time is defined as the time between the date the
consumer s tar ts loading the application and the date the application
indicates it accepts MPEG packets. During the loading time, the supplier
transmits 11 modules, the average size of which was about 608 bytes.

We executed the system with pre-supplying (after history data are
established) and without pre-supplying (history data are initialized), 20
times for each. The results are shown in Table 1. The results obtained show
that pre-supplying reduced the loading time by 74% approximately.

Table 1: Loading time comparison.

Without pre-supplying

Pre-supplying

Loading

Average

0.536

0.138

time [sec]

Std. deviation o

0.042

0.004

The result in Table 1 was the ideal one because it was only a single
application that established history and was executed, hence no prediction
errors were made. We also evaluated how the performance is degraded
according to the prediction errors. There are two types of prediction errors:
ordering and missing errors. Suppose that a consumer is going to use
modules A, B and C in that order; if the supplier predicts that the order

Accelerating Code Deployment on Active Networks 221

Supplier

(Module)

V Consumer
Video client

Figure 8: The experimental active networking system.

will be A-C-B, it is an ordering error; if the supplier predicts A-C but no B,
it is a missing error. In some cases, an ordering error might not be a
problem. For example, pre-supplying in order A-C-B will be sufficient for
the consumer that uses them each a day. In contrast, a missing error
always leads the consumer to make a request for the missed module
(provided that the consumer cache did not have the module yet) and thus
lengthens the component loading time.

We evaluated the effect of only missing errors because the effect of
ordering errors is less directly observed as described above. To see the
effect of missing errors, we forced the supplier to make mistakes. We
modified it so that it could omit some randomly chosen modules from pre-
supplying. Although it predicts correctly and tries to pre-supply candidate
modules to the consumer, some of them are not really transmitted. Because
the number of modules in the MPEG filter is not enough for this
experiment, we used W3C's Jigsaw Proxy Package1 2.0.1 instead. In this
case, the supplier transmits 216 modules during the loading time; the
average size of modules was about 2.80 KB. As shown in Figure 9, the pre-
supplying performance dropped linearly from maximum 68% loading-time
reduction according to the number of missing errors; i.e. the number of
omitted modules.

http://www.w3.org/Jigsaw/

http://www.w3.org/Jigsaw/

222 Toru Egashira and Yoshiaki Kiriha

Component
loading

time
[sec]

50 100 150 200
Number of prediction missing errors

Figure 9: Performance degradation due to prediction missing errors.

7. Conclusion
In this paper, we have presented a scheme called "pre-supplying" to

reduce the loading time of software components for active network nodes.
In this scheme, the supplier maintains access history, predicts future
accesses, and transmits modules in advance of the requests for them. A
series of experiments shows that it reduces the component loading time by
approximately 70% and that the reduction will linearly decrease according
to the number of prediction errors.

On the test bed system, the information exchanged between the
consumer and the supplier was limited to the module requests and the
modules themselves. We believe more information including cache usage
must be exchanged to make this scheme practical, otherwise the supplier
cannot know how many modules can be safely pre-supplied without
flooding the consumer's cache.

References
1. D. L. Tennenhouse, et al., "A Survey of Active Network Research," IEEE

Communications Magazine, Vol. 35, No. 1, pp. 80-86, January 1997.
2. S. P. VanderWiel and D. J. Lilja, "When Caches Aren't Enough: Data

Prefetching Techniques," IEEE Computer, Vol. 30, No. 7, pp. 23-30,
July 1997.

3. R. H. Patterson et al., "Informed Prefetching and Caching," Proc. 15th

Accelerating Code Deployment on Active Networks 223

ACM Symp. Operating Systems Principles, December 3-6, 1995, pp. 79-
95.

4. K. Salem, "Adaptive Prefetching for Disk Buffers," NASA Goddard
Space Flight Center, CESDIS TR-91-46, January 1991.

5. J. Griffioen and R. Appleton, "The Design, Implementation, and
Evaluation of a Predictive Caching File System," Technical Report
CS264-96, Univ. Kentucky, June 1996.

6. V. N. Padmanabhan and J. C. Mogul, "Using Predictive Prefetching to
Improve World Wide Web Latency," ACM SIGCOMM Computer
Communication Review, Vol. 26, No. 3, July 1996.

7. D. Hoffman, et a l , "RTP Payload Format for MPEG1/MPEG2 Video,"
RFC 2250, January 1998.

	Introduction
	System Model
	Module
	Supplier
	Consumer
	Example

	Module Granularity
	Masking of Propagation Delay
	Prefetching Techniques
	Issues of History-Based Prefetching
	Pre-Supplying

	Architecture of Pre-supplying System
	Experiment
	Conclusion
	References

