Software Verification Based on Linear
Programming*

S. Dellacherie**, S. Devulder* * *, and J-L. Lambert?

GREYC, CNRS UPRESA 6072, Université de Caen,
BP 5186, 14032 Caen cedex, France
dellache@info.unicaen.fr, devulder@info.unicaen.fr, jll@info.unicaen.fr

Abstract. We introduce a new software verification method based on
plain linear programming. The problematic is being given a software S
and a property P, to find whether there exists a path (i.e. a test sequence)
of S satisfying P, or a proof that P is impossible to satisfy.

The software S is modelized as a set of communicating automata which in
turn is translated into a system of linear equations in positive numbers.
Property P is then translated as extra linear equations added to this
system.

We define the extended notion of flow-path (which includes the notion
of path) permitting the automata to carry flows of data rather than
undividable tokens. By applying linear programming in a sophisticated
way to the linear system, it is possible, in time polynomial in the size of
(S, P), either to display a flow-path of S satisfying P or to prove that P
is impossible to satisfy.

The existence of a flow-path does not always imply the existence of a
path, as it can be non-integer valued. Yet, on all our modelized examples,
the study of the flow-path solution always permitted either to display a
path satisfying P or to underscore a reason proving P to be impossible
to satisfy.

The first part of this document introduces the theoretical background of
our method. The second part sums up results of the use of our method
on some systems of industrial size.

Keywords: software, concurrent program, distributed system, formal verifica-
tion, validation, simulation, test case generation, proof, linear programming,
integer programming.

URL: http://www.info.unicaen.fr/lpv

* This work was partly supported by CNET under grant n#95 5B 046, by Région
Basse-Normandie and CNRS under contract CON950207DR19
** PhD Student, CNET and University of Caen
*** PhD Student, CNRS and University of Caen
T Professor, University of Caen

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1147-[I165}, 1999.
© Springer-Verlag Berlin Heidelberg 1999

1148 S. Dellacherie, S. Devulder, and J-L. Lambert

1 Introduction

Linear programming gathers means for optimizing a linear function subject to
a set of linear constraints in real positive numbers [fag]. Due to its efficiency
and the range of its applications areas (production management, networks or-
ganization, resources planification, ...), it is the cornerstone of combinatorial
optimization techniques. Still at present, due to the arising of interior-point al-
gorithms, linear programming attracts an important research power, both in
theoretical and practical fields. Linear programming algorithms now routinely
solve on a desktop computer problems involving hundreds of thousand rows per
hundreds of thousand columuns.

Linear programming is also a classical mean for tackling the much more diffi-
cult integer programming problem where all (or part of) variables need to have
an integer value. A wide range of techniques are available for this particular
problem.

Attempts to use linear programming in the verification domain is not new. The
Petri-nets community has been using linear programming for almost fifteen years.
Yet, it seems to be only used on very constrained models, not well suited for the
modelization of real-world systems [ES92] or for the generation of the set of
the model invariants, which is constructed blindly and whose size increases very
quickly [CMR9] [CHP92]. More recently, Corbett and Avrunin [CA95] studied
the use of a general purpose integer programming algorithm directly on a com-
municating automata model. Unfortunately, the use of a general purpose integer
programming algorithm destroys the efficiency of mere linear programming, and
prevents the possibility of constructing proofs on the model.

Thus, to our knowledge, none of these attempts make a complete use of the
powerful theoretical background bind to linear programming: the duality theory.
We will overview in this document how the use of linear programming duality
permits to obtain a non-trivial and efficient (polynomial time) completeness
theorem on the proof of existence of a flow-path or the proof of non-existence of
any flow-path.

Furthermore, as we will see in this document, our method shares very few features
with other existing methods. Unlike model-checking techniques (see for example
[McM93] [Kur92] [Hol97]) our method works directly on the automata model
without constructing a representation of the reachability graph, thus enabling
the handling of huge models. Unlike theorem-proving techniques (see for example
[Abr95][ORRF96] [GHI3]), the proofs given by our method are automatic and
fastly computed directly on the automata model.

Now considering its negative points, the main drawback of the method is the fact
that if a flow-path is proved to exist, it does not always induce the existence of a
path (i.e. a test sequence on the automata): linear programming works with real
numbers, and the proposed flow-path is not always integer-valued. When such
a fractional solution occurs, one has to make the property more precise and/or
slightly transform the model in order to conclude.

Software Verification Based on Linear Programming 1149

Yet, as we will see in this document, a flow-path is not “very far” from a path.
In practice on the automata models we have studied, the careful reading of the
flow-path solution has always led us to find a path satisfying the property or a
proof that the property is impossible to satisfy.

The first part of this document presents the theoretical background of the
method. The first section formally defines the automata model, the set of prop-
erties handled, the synchronization and flow-synchronization rules. The second
section explains how the automata model and a property are translated into a
system of linear equations, and introduces the main theoretical result obtained
using linear programming theory.

The second part of this document summarizes the results of the use of the method
on three different systems:

1. A generic telephony system. We used our method on instances using from
5 to 7 telephones communicating through fifo-channels of size 3 to 7. Such
a model uses more than 800 automata and 2500 different synchronization
messages. The corresponding state space is more than 10° wide. Resolutions
took a few tens of minutes.

2. A generic access control system. We used our method on instances using
up to 20 cards, 8 doors and 4 buildings, communications being done using
buffers. Such a model uses 230 automata and 2800 different synchronization
messages. The corresponding state space is more than 10°? wide. Resolutions
took a few hours.

3. A generic bus arbiter. The method was used on instances going up to 1200
cells. The state space is then about 10°°° wide. Resolutions took a few tens
of minutes.

On all three systems we have always been able for all properties checked, either
to find a test-suite or a proof of impossibility.

Note that the method described herein is subject to a patentﬂ and is about to
be industrialized.

2 Theoretical Principles

2.1 The Model

Our linear programming verification method works with a communicating au-
tomata formalism. Using communicating automata is quite common in the ver-
ification domain (StateCharts, part of the SDL and UML formalisms, ...). They
are easy to understand and to use while being powerful enough to modelize a

1 patent #97 15217 registered on Dec. 3rd of 1997 and owned in common by France

Telecom, the CNRS, and the University of Caen

1150 S. Dellacherie, S. Devulder, and J-L. Lambert

large variety of software components. They also consitute a dynamic model of a
software and are thus easily implementable and executable.

The use of communicating automata means that our verification method is
mainly suited to verify the control part of a software, interactions between com-
ponents of a software, and interactions between the control and the data of a
software. A great part of verification needs in industrial software developments
are of this kind.

Synchronized Automata The automata we use communicate via rendez-
vous, synchronizing themselves on messages carried by the transitions. We will
call them in the remaining synchronized automata.

We modelize every possible component of the software with synchronized au-
tomata: the data, the control-flow, the communication channels (fifo-channels,
stacks, ...). Of course, all these components need to have a finite domain, fur-
thermore not too large. Yet we will see in the second part of this document that
rather huge models can be handled by our verification method. Moreover, ab-
straction principles such as described in [CCT77] can also be used in our approach
to handle larger validity domains.

Figure [1 presents a small example that we are going to use to illustrate the
method all along this document.

Acy Q Be, @ Cey Q
/\ ay /\ by /\ &)
ms3 \ \
ms3 ma
My
m ma mao
\ :
a2

e S

Fig. 1. A small example of synchronized automata.

Each automaton has states (the nodes, labeled A.,, B, or C.,) and transitions
(the arcs, labeled a;, b; or ¢;). Each automaton has a single token that can
move from state to state using the transitions. Transitions carry synchronization
messages (my, mz, msg and my). A transition may have multiple messages. For
instance, arc a; bears two messages m, and mo.

An automaton can go (i.e. move its token) from a state to another if and only
if there exists a transition between those two states and all the synchronization
messages present on that transition can be emitted. A message can be emitted
if and only if all automata that know the message (ie. that have at least one
transition carrying this message) can use simultaneously a transition carrying
this message.

Software Verification Based on Linear Programming 1151

For example, automaton A can go from state A., to state A., if and only if
both synchronization messages m; and ms can be emitted. This is possible if,
for example, automata B and C are (ie. have their token) respectively in states
Be, and C,,. In this situation, the three automata will arrive in state A.,, Be,
and C,, respectively.

On the other hand, if A is in state A., while automaton B is in state B,,, we
are in a deadlock situation. Using transition a; requires the ability of emitting
message my which is impossible. Indeed B knows m; —carried by b;— but is
not in a state where it can emit it. So transition a; cannot be used and both
my and ms cannot be emitted which means that transition ¢; cannot be used
and that all the automata will have to stay on the same state, thus the deadlock
situation.

Let us state the formal definition of a system of automata, the definition of
the synchronization rule, and then the definition of a system of synchronized
automata.

Definition (automata). A system of automata S is composed of N sub-systems
Sn, 1 <n < N called automata, and of a set M = {m* 1 < k < |M|} containing
the messages mF of S. Every automaton S, is described by

1. the set B, = {ef, 1 <i < |E,|} of its states;
2. the set A, = {al, 1 < j < |A,|} of its transitions;
3. the set of messages M,, C M carried by A,.

To every transition a, of S, is associated a unique starting state el € E,, and
a unique arriving state el> € E,. Every transition a}, of S, carries a set of
messages M; C M,. &

Definition (synchronization rule). Let us call configuration a mapping C
which associates to every automaton S, a unique state e, € 5, called the
activated state of S,, and let us call synchronization a subset s of M. We then
define the synchronization rule as follows: the synchronization s has S changed
from configuration C' to configuration C” if and only if VS,, € S,

1. if sN M, =0 then C’'(S,) = C(S,)

2. if s N M, # 0 then JaJ, = (el!,el2) € A, such that
(a) MJ =snNM,
(b) el = C(Sh), efz = C"(Sn)

We then say that transition a?, is fired and that messages m € M are activated
during the change from C to C". &

Definition (synchronized automata). A system of synchronized automata is
a system of automata endowed with the synchronization rule.

Furthermore, let C and C’ be two configurations of S. The change from C to
C’ by synchronization s defines a step (C,s,C") for S. A succession of steps
(Co,50,Cg)s - (Cn1,8n_1,C,) such that C;,; = C, defines a path for S. <

1152 S. Dellacherie, S. Devulder, and J-L. Lambert

The synchronization rule can be interpreted in two ways: an automaton which
aims at firing a transition can be considered forcing the other automata to fol-
low him, or having to ask the other automata the permission to do so. The
appropriate interpretation has to be given at higher level by the semantic of the
system.

To our knowledge this kind of synchronization rule we defined is not classical, as
all automata have to get simultaneously in accordance to fire their transitions.
Note however that more classical formalisms as Statecharts or the BLIF format
were easily translated in our own formalism.

We now introduce a set of properties which can be verified with our method.

Accessibility Properties The kind of requests we will check on a system
of synchronized automata corresponds to the classical set of accessibility (or
reachability) properties. For every automaton, we give a set of states within
which is the activated state at start, and a set of states within which we want
the activated state to arrive. The question is then whether there exists or not a
path connecting these two sets.

On our small example, such a request could be: having each automaton in its
state A¢,, Be, or Ce, respectively, can automata A and B reach its state A,

and B, respectively, C' being in state Ce¢, or Ce,?
Such a set of requests can be formally stated as follow:

Definition (accessibility property). Let S be a system of synchronized au-
tomata. An accessibility property on S is a couple P = (C,C’) of sets of states of

S. &

Definition (path-satisfiability). An accessibility property P = (C,C’) on S
has a path satisfying P if and only if there exists a path in k € N steps going
from a configuration Cy to a configuration C,, such that VS, € S,

— if B, NC # 0 then Co(S,) € C
— if B, NC’ # 0 then C,,(S,,) € C’ %

The expressiveness of this set of properties is quite large if we consider the
appending of “observing automata” to the system S. These observers permit to
express the necessity of using a particular message before another, the necessity
to avoid a particular message, to avoid a particular transition, etc. On such
automata one can then state an accessibility request, and thus extend the amount
of properties which can be expressed directly on S. It has been shown to have
at least the ability of expressing temporal logic safety formulae [JPO95].

Sub-section 2Tl now introduces a different automata model based on a general-
ization of the synchronization rule. This new model will be useful to state the
main theoretical result given later in this document.

Software Verification Based on Linear Programming 1153

Flow-Synchronized Automata Our method is based on mere linear program-
ming, which means that results given by the linear programming solver won’t
always be integer results. This motivates the introduction (which will be fully
relevant in section 2.2) of a non-integer variation of the synchronization rule and
the definition of flow-synchronized automata. We begin with the introduction of
various kinds of flows:

Definition (message-flow). A message-flow is a function f,,, which associates
to every message m of S a real quantity f,,(m) € [0, 1]. &

Definition (transition-flow). A transition-flow is a function f, which asso-
ciates to every transition a/, of S a real quantity f,(a?,) € [0,1]. &

Definition (state-flow). A state-flow is a function f, which associates to every
state e!, of S a real quantity f.(e%) € [0,1]. &

We are now ready to state the definition of the non-integer variation of the
synchronization rule:

Definition (flow-synchronization rule). Let

— A™ be the set of transitions of S,, carrying message m: A™ = {a), € A,,/m €
M},

— E'F be the set of transitions of S,, having e}, as starting state: E4F = {a/, €
An/367 agz = (67’;176)}7

— E'~ be the set of transitions of S,, having e! as arriving state: E.~ = {a/, €
Ap/3e, al, = (e, el)}.

Let us call

— flow-configuration a state-flow fc such that V.S,, >, cg fo(el) =1 (ie.
the quantity of token on each automaton is equal to 13,

— flow-synchronization a pair fs = (fm, fa) such that Ym € M, VS,,, A™ # ()
= fs(m) = aleAm fa(a?) (i.e. for all automata that know m, the quantity
of m emitted is equal to the flow going through the transitions carrying m).

We define the flow-synchronization rule as follows: the flow-synchronization fs =
(fm, fa) has S changed from fc to for if and only if Ve?,, the following equations
hold:

Lo Y cpir falal) < foley,) (ie. the flow leaving e, is not greater than the
quantity of token which is on €f,),

2. Ygiepi- fala)) < fer(el,) (ie. the flow arriving on €], is not greater than
the total amount of token which is on e?),

3. fol(el) 7Za¥v14€Eff falal) = for(en) =2 4i cpi- fa(al,) (ie. the new quantity
of token on e}, is the previous quantity plus the flow arriving on e!, and less
the flow leaving e?).

1154 S. Dellacherie, S. Devulder, and J-L. Lambert

If f(al) > 0 then we say that transition af, is flow-fired and that messages
m € MJ are flow-activated during the change from fc to for. &

This flow-synchronization-rule then defines a new kind of automata:

Definition (flow-synchronized automata). A system of flow-synchronized
automata is a system of automata endowed with the flow-synchronization rule.
Furthermore, let fo and for be two flow-configurations of S. The change from
fc to for by flow-synchronization fs defines a flow-step (fc, fs, for) for S. A
succession of flow-steps (fc,, fs(,,fc(f)), - (fcnfl7f5n71’fcil) such that f, =
foy., defines a flow-path for S. "o

We also have by extension of path-satisfiability:

Definition (flow-path-satisfiability). A property P = (C,C’) is flow-path-
satisfiable if and only if there exists a flow-path going from C to C’ in a finite
number of flow-steps. &

A system of flow-synchronized automata is a “continuous” version of the cor-
responding system of synchronized automata. On synchronized automata the
quantity of information can be modelized for every automaton with a token
that moves from state to state following the synchronization rule. On flow-
synchronized automata, the information which is in quantity still equal to one
token per automaton, can this time flow through states as would do a liquid,
following the flow-synchronization rule.

The synchronization rule is obviously a special occurence of a flow-synchroniza-
tion rule (it is an integer-valued flow-synchronization), which implies that all
notions binded to this former rule are also special occurences of the equivalent
notions binded to the latter rule (step, path, satisfiability, ...).

The flow-automata model will be used to state the theoretical result of section
22 We yet need one more automata model to fulfill this first section. This last
model, derived from the two former ones, will be the one used in practice by our
method.

The Storied Extension of Automata The idea is to “unfold” through
time the automata model in order to have each synchronization step (or flow-
synchronization step) mapped to a given time step. Thus, during a time step,
every automaton will have to use one of its transitions in accordance with the
(flow-)synchronization rule, or to use a special transition, named an e-transition,
which will leave the automaton in the same state.

Figure [2 shows the storied version of the previous small example, unfolded
through 3 time steps. All automata are respectively in their state A, (0), Be, (0)
and C,, (0) before the first synchronization occurs. Suppose the first synchro-
nization is the empty-set: all automata will use an e-transition to stay in the
same state, but ready for the second synchronization: respectively state A, (1),
Be, (1) and C, (1). Now if the second synchronization includes the emission of

Software Verification Based on Linear Programming 1155

Acy o) Aey(0) B, (o) By e1(0) Jen(0)
a1 b.(1) (1)
€

E

my(0) ma(0)
\ ms(0) m» (o '"3 m1(0) x ma(0) ma 0)
x \1 4
Aey (1) A (1) Beyy Bey) e (1) Ce 2(!)
w(?) r.(l) 1a(2)
\ Z:d; :::‘El m 1 mi (1) ma(1)
X Y , N
Aey(2) Aey2) B.y(2) e2(2) ('H(?) Cen(2)
w®)) nE) b a®) o)

ma(2) mi(2) m / :
2 2 3(2) my(2) / \ my(2)
nn() mal)J / \ N %

my
Acy3) O 20 O By O o O Cam O Cey

{

K

K

e

Fig. 2. storied automata of figure[on 3 time steps.

my and ma, this will make the automata to use respectively transitions a;(2),
b1(2) and ¢1(2) to reach respectively A.,(2), Be,(2) and C,,(2). And so on.

We see that there is a one to one correspondence between synchronization (or
flow-synchronization) steps on the automata model and time steps on the storied
extension. A solution on the latter will thus give directly a solution path (or flow-
path) for the studied automata model. Section explains how to use linear
programming on this storied extension of the automata model.

Here is the formal definition of the storied extension of an automata model:

Definition (storied automata). Let S be a system of automata. We consider
S on T + 1 time steps as follow: for each automaton S,, € S we associate

1. to every value t € {0,..., T} and every state e, a state e, (t);

2. toevery valuet € {1,...,T} and every transition al = (el el?), a transition
ah(t) = (e (t - 1), e (0);

3. to every value t € {1,...,T} and every message m* € M, ;, a message
mk(t) € M, 43 ‘

4. to every value t € {1,...,T} and every state e’, an e-transition € (t) =

(en,(t — 1), €,(1)).
The system thus constructed from S is called the storied system of automata St
of S on T time steps. &

A storied system of automata St is clearly a special occurence of a system of
automata, and both the definitions of synchronisation and flow-synchronisation
rules are valid on S7. The translation of an accessibility property from S to S
is obvious: the starting set of configurations C is specified on the first time step
t = 0, and the ending set of configurations C’ is specified on the last time step
t =T. Formally, it gives:

Definition. Let S be a system of automata and St the corresponding storied
system. Let (C,C’) be an accessibility property on S. The corresponding acces-
sibility property on S is given by C = C(0) and ' = C'(T). &

1156 S. Dellacherie, S. Devulder, and J-L. Lambert

Furthermore we have the trivial following result binding a path in S and a path
in Sp:

Proposition. Let S be a system of automata, St the corresponding storied sys-
tem of automata. An accessibility property (C,C’) on S is (flow-)path satisfiable
in n steps if and only if (C(0),C’(T")) is (flow-)path satisfiable on St with T = n.
¢

We are now ready to see how the storied system of automata is used in accordance
with linear programming to verify accessibility properties.

2.2 The Use of Linear Programming

As stated in the introduction, linear programming is a very efficient mean for
solving systems of linear equations in positive numbers when a real (i.e. not
always integer) solution is searched for.

Here is a classical way of formally expressing the kind of problems treated by
linear programming: the problem is to find an z*, a vector of size n, optimal
solution of

max ctx
Az =10
x>0

where A is an m rows, n columns matrix, ¢ a vector of size n, b a vector of size
m.

The optimization criteria ¢’z is optional, and the problem of only finding an =

subject to { Az = b,z > 0} is of the same difficulty (it constitutes for example the
first phase of the two-phases simplex algorithm). Our method relies mainly on
finding such an x subject to a system of constraints that translates the properties
of the automata system.

This implies first the necessity of constructing a system of linear constraints that
catches the structural properties of the system of automata. This is the subject
of the following sub-section.

Linear Constraints Drawn out of Automata The system of linear equa-
tions in positive numbers is drawn out of the storied extension St of the au-
tomata system S as follows:

Two kinds of equations are constructed: flow equations which translate the
preservation of information on every state of every automaton of S, and syn-
chronization equations which translate the synchronization (or flow-synchroniza-
tion) rule for every message of St.

Software Verification Based on Linear Programming 1157
To this set of equations are added equations which translate the accessibility
property, by forcing the value of some states at step t = 0 and at step t =T to
be equal to 1.

= 3) of our small ex-

B, (0), Ce, (0)}

Here are the equations drawn out of the storied extension (T
ample, the accessibility property being given by C(0) = { A, (0),
and C'(3) = {Ae,(3), Be, (3), Cey (3)}-

The flow equations are for i € {0, ...

, 3}

Ael (7’) CL1<Z + 1) +ea, (7’ + 1)
Ae,(1) =az(i+1)+€a,,(i+1)
A, i+ 1) =ag(i+1)+ea, (i +1)
A, (i+1)=a1(i+1)+ea,(i+1)
Bel (7’) b1<7/ + 1) +€B,, (7’ + 1)
Be, (i) = b2(i +1) + €, (i + 1)
B, (i+1)=0ba(i+1)+ep, (i+1)
B.,(i+1)=bi(i+1)+ep,(i+1)
Cey(i) =c1(i+1) +ec., (i +1)
Ce,(1) =ca(i+ 1) +ec,(i+1)
Co(i+1)=ca(i+1)+ec,(i+1)
Ceo,(i+1)=c1(i+1)+ec,(i+1)

miq (Z) = al(i) mao (Z) = al(i)
miq (Z) = b1 (Z) mao (Z) = C1 (Z)
mg(i) = ag(i) ma(i) = az(i)
m3<l) = bQ(Z) m4(z) = CQ(i)

Let us see the formal definition of these three sets of equations:

Definition (system of equations). Let S be a system of automata, S the
storied extension of S on T time steps, and P = (C,C’) an accessibility property
on S. We recall that for every automaton S, € S, Ei is the set of transitions
having e, as starting state, Ei~ is the set of transitions having e!, as arriving
state, and A" is the set of transitions carrying message m.

The system of linear equations L(St,P) drawn out of St and P is given by the
three following sets of equations:

1158 S. Dellacherie, S. Devulder, and J-L. Lambert
— flow equations: ¥S,, € S, Vt € {1,...,T}, Ve!, € Sy, we have

ent=1)= Y al(t)+e,(b)

LEELT

()= D al(t) +e,(t)

J2EEL

— synchronization equations: VS, € S, Vt € {1,...,T}, Ym € M,,, we have

mt) = Y e)

Js€A™

— property equations: VS, € S, we have Ze;eEn et (0) =1

if N E, # 0 then Z el (0) =1

if C'NE, #0then Y e (T)=1

&

We clearly have a one to one correspondence between the use of a transition, a
state or a message of the storied system of automata at a given time step and
the value of the corresponding variable of the system of equations, whether the
synchronization rule or the flow-synchronization rule is used.

If we use the synchronisation rule on S, we need to add to L(Sp,P) positivity
and integrality constraints on all its variables. If we use the flow-synchronisation
rule on S, we need to add to L(S7,P) ounly the positivity constraints.

Proposition. Let St be a storied system of automata on T time steps, and
(C(0),C'(T)) an accessibility property on Sr.

If the synchronization rule is used on St, then (C(0),C’(T)) is satisfiable on St if
and only if L(S7,P) has a solution with all variables being positive and integer
valued.

If the flow-synchronization rule is used on S, then (C(0),C’(T)) is satisfiable on
St if and only if L(St,P) has a solution with all variables being positive. <

Linear programming can handle systems of positive variables without integrality
constraints. Thus we are only able to use linear programming on a system of
automata using the flow-synchronization rule.

The solving of L(St,P) gives either a flow-path or a proof (via the classical
duality theory of linear programming) of the inexistence of any flow-path on a
model of T" stories. Subsection Z2lwill show that this completeness result on the
existence or inexistence of flow-paths is independent of the number of steps T'.

Software Verification Based on Linear Programming 1159

The Completeness Theorem Being given L(S7,P), the idea is to eliminate
in an iterative way transitions, messages and states that, whatever the value of T
is, can never be used if one wants to satisfy property P. The fundamental point
is that this iterative mechanism, called the proof system, works independently of
the number of time steps T'. This proof system permits to establish the following
completeness theorem:

Theorem (completeness). Let S be a system of automata and P an acces-

sibility property on S. The proof system establishes, in time polynomial in the
size of (S, P), the following alternative:

— it proves the existence of a flow-path on S satisfying P and gives an upper
bound on the number of flow-steps;

— it proves the non-existence of any flow-path of S satisfying P, and thus of

any path of S satisfying P. &

The details of the proof of this theorem are technically difficult and too long to
be given in this document (the proof system is fully developed in [Devd9]). We
yet can give an idea of how the proof system works.

Let us suppose P = (Cy, C¢) (we ask the system to go from a configuration Cj to
a configuration Cy). The proof system is made of three kind of inferences. Each
inference can deduce from the conclusions of the previous one that some data
(transitions, states or messages) of the system are useless and can be eliminated
safely, or that the accessibility property is impossible to satisfy.

First kind of inference:

If one can find a set of states Q1 such that any entering transition (say a)
must flow-synchronize with another one (say b1) that goes out of this set,

then we infer: if Co N Q1 = 0 then Cy N Q1 = 0, which implies that all the
in-going and out-going transitions of @ (here a, b1, bz, b3) cannot be used.
These transitions are proved impossible to use and are thus eliminated.

Second kind of inference:

Similarly, if one can find a set of states Q2 such that any transition that
goes out of it must flow-synchronize with another one that goes inside this
set

)

1160 S. Dellacherie, S. Devulder, and J-L. Lambert

then we infer: if Cy N Q2 = O then Cy N Q2 = 0, which implies that all
the in-going and out-going transitions of Q2 (here a, b1, ba, b3) cannot be
used. These transitions are proved impossible to use and are eliminated.

Third kind of inference:

If one can find a vector Y such that for any configuration C,, we have
YiCy < Y'C,, then we infer: if C satisfies YCy > Y*'Cy, Cf cannot
be accessed and the request is proved infeasible, or else we must have
Y'Cy = Y'Cy and any transition that strictly increases Y*C,, is forbidden
and eliminated.

All inferences are computed using linear programming, which is a numerical
algorithm. All data eliminated by an inference are yet proved impossible to use.
The key idea of the proof is given by the well known following linear programming
result:

Lemma (Farkas). Let A be a m rows, n columns matrix, and b a vector of size
m. Then one and only one of the following statements is true:

1. there exists a vector x > 0 such that Ax = b;
2. there exists a vector y such that y*A > 0, y'b < 0. O

Based on this lemma, for all inferences linear programming gives a certificate
(the y vector) justifying the elimination of the selected set of data.

The remaining question is whenever the existence of a flow-path is proved, how
the existence of a true path can be proved and constructed.

The Effective Search of a Solution Path The proof of non-existence of any
flow-path implies the non-existence of any path, which implies the accessibility
property to be impossible to satisfy. In this case, the proof system is sufficient
to conclude. On the contrary, whenever the proof of existence of a flow-path
is given, it does not imply the existence of a path (as it is not always integer-
valued), and it is thus not directly possible to know whether the accessibility
property can be satisfied or not.

This constitutes the non-polynomial part of our method, and illustrates the in-
trinsic difficulty of software verification as the gap between linear programming
and integer programming. Yet several remarks make this gap not so overwhelm-
ingly difficult in our case. The remainder of this sub-section will give only prag-
matic and rather subjective arguments to understand why it seems to work in
practice.

The first thing to note is that the obtaining of a flow-path is very easy. It suffices
to use a linear programming solver on the storied extension with enough time
steps: the resulting solution is directly interpretable on the flow-synchronized
automata model.

Software Verification Based on Linear Programming 1161

Having the flow-path solution, a general way of finding a path is to force some of
the data to have integer values and to relaunch the linear programming solver.
Iterating this technique permits eventually to find an all integer-valued solution,
which is a path. A general strategy of this kind is yet heavily combinatorial,
with a branching on every forced variable (0 or 1 value), and also combinatorial
on the number of time steps.

However one has to notice that both the automata model and the flow-path
have a semantic meaning. Taking into account this meaning in order to choose
which data (transition, message or state) to force to a particular value, it re-
duces drastically the number of branching necessary to conclude. This guided
branching strategy seems very efficient in practice when a path does exist: on
all our examples, a few forcing steps were sufficient to find a true path.

When no paths exist, it gets more intricated and a guided branching strategy is
not always sufficient. Indeed, the property has to be proved impossible whatever
the number of time steps is. Yet, again guided by the semantic of the model and
of the flow-path solution, the idea is then to find on the automata model the main
reason permitting a non integer-valued solution to exist, and to slightly modify
the automata model in order to eliminate this non integer solution (the theoret-
ical meaning relying behind these slight modifications is given in [Del99D]).

Using this final technique together with some guided branching, we have always
been able to conclude on all the examples we considered.

3 Some Case Studies

We summarize now some experiments we have done with our verification method
on three different systems modelized with our automata-like formalism: a tele-
phony system, an access control system and a bus arbiter.

All computations were done on a 168MHz UltraSparc2 with 256 Mb of memory.
The linear programming software used was CPLEX V4.0.

3.1 A Telephony System

This system modelizes mainly a connection/deconnection protocol between enti-
ties — telephones — which communicate between them using fifo channels. The
system is not centralized, which means that any telephone can communicate
directly with any other telephone by sending messages to its fifo channel. Some
more details on this system are given at the end of article [DDIL99].

The complexity of this telephony system is due to the increasing amount of differ-
ent messages which can travel through the fifo channels. The connection/decon-
nection protocol uses 12 different messages (6 in emission and 6 in reception) for

1162 S. Dellacherie, S. Devulder, and J-L. Lambert

every possible pair of telephones, these messages being possibly stored on any
place of the corresponding fifo channel.

A telephone is made of two automata (one of 16 states, and one of 3 states).
A fifo channel of size k is made of a write automaton (k + 1 states), a read
automaton (one state) and k memory-cell automata (6 * n(n — 1) + 1 states, n
being the number of telephones).

The experiments were done with n = 7 telephones using fifo channels of size
k = 3, or n = 5 telephones using fifo channels of size k = 7. The resulting
systems is made of more than 800 automata and uses more than 2500 different
synchronization messages. The state space is more than 10%° wide.

Here are some samples of properties for which a test-suite was found:

can phone#5 send a ABANDON to phone#6 ?
can phone#6 read a BUSY_LINE from phone#3 ?
can phone#3 send a STOPPING to phone#2 ?
can phone#4 be in its state S13.3.4 7

can phone#1 and phone#4 be in conversation ?

Here are some samples of properties for which a proof of impossibility was found:

can phone#3 ring while offhooked ?

can phone#5 send BUSY_LINE to phone#1 while onhook ?
can phone#2 ring while nobody ever called it ?

can phone#7 be alone in communication ?

can phones #1, #4 and #6 be in circular communication ?

We also proved that with 5 telephones, fifo channels of size 6 were sufficient, by
finding a test suite that fills a fifo of size 6 and by finding a proof that a fifo of
size 7 can never be entirely filled.

In all cases, the computations took always less than an hour and used less than
200Mb of memory.

3.2 An Access Control System

The purpose of the system is to check in and out-goings of people through
doors of some buildings. All doors have a reading-card device and communicate
through buffers with a centralized controlling device. This centralized device
controls the validity of the request (activated and authorized card for the given
building), manages the opening-closing protocol of the door and records the
entrance or exit of the card-bearer. An emergency circuit is also specified in
order to open all doors of a given building in first priority, as well as a reset

Software Verification Based on Linear Programming 1163

protocol to end the emergency and put the doors of the building in a ready-to-
work state. The full technical details on this case study are in [Del99a].

The size of the system grows cubiquely with the number of cards i, the number
of doors j and the number of buildings k. The complexity of this system relies
in the amount of data which has to be maintained while processing the opening-
closing and the emergency-reset protocols (for example the centralized controller
knows for every card in which building it is).

A door is made of 6 automata (of respectively 7, 3, 2, 2, 2, and 2 states). The
centralized controller is made of many automata which represent mainly data. A
door’s buffer has 6 states, and the centralized controller’s buffer has 2ij + 35 + 1
states.

The experiments were done on a small instance made of 5 cards, 4 doors and
2 buildings, and then checked again on a huge instance made of 20 cards, 8
doors and 4 buildings. On this last instance the resulting system is made of 230
automata and uses more than 2800 different synchronization messages. The state
space is more than 10°? wide.

Here are some samples of properties for which a test-suite was found:

can card#1 go in and out of building#2 with all doors locked behind him?
can card#1 go in-out of building#1 and then get in-out of building#27?
can door#3 be open with all its data in its expected state?
can card#4, being deactivated, get in building#2 after being reactivated?
can all doors of a building on emergency be opened without using a card?

Here are some samples of properties for which a proof of impossibility was found:

can card#1 be in building#2 but registered out of it?
can card#1, who entered building#1, enter building#2
without getting first out of building#17?
can door#3 be open with one of its data in an unexpected state?
can card#4, which is deactivated, get in building#2

without being reactivated?

can a door of a building under emergency stay locked?

can a door being on a building not on emergency

get an emergency message?

The computations on the small instance took always a few minutes and used a
few tens of Mb of memory; on the huge instance it took from 4 to 15 hours and
used less than 200Mb of memory.

3.3 A Bus Arbiter

The bus arbiter is a hardware circuit whose purpose is to give to a single client
an access to a resource shared by several different clients. This is a well known

1164 S. Dellacherie, S. Devulder, and J-L. Lambert

example which has been treated with several techniques. The complete details
on this case study are given in [Dev9g].

The bus arbiter used for our experiments was a direct translation from the one
given in the Xeve/Estrel package. It is made of several local cells which decide
whether or not to allow the access to the resource for a client. The client claims
the access by activating a cell which in turn activates a signal if it can access the
resource. Cells are connected one to another to form a ring, allowing information
to propagate. A token goes from one cell to the next on the ring. The cell who
owns the token can access the bus if it wants to. If not, it tells the next cell that
it can access the bus it it wants to. If this next cell doesn’t want to use the bus,
it tells the next cell and so on.

An arbiter with n cells has at least 2™ input configurations. We made experiments
for systems with up to 1200 cells. The state space is then at least 10°°° wide,
and the computation took around one hour. The property checked was to know
whether a client could access the bus at the same time as client#1. A proof of
impossibility was found for all instances checked.

4 Conclusion

We have presented a new method for software verification which can be used
either to exhibit test suites satisfying a property or proofs that a property is
unsatisfiable.

In comparison with existing verification techniques, the main advantage of our
method is its ability to handle huge models of automata without doing any
abstraction, and to give at worse an answer which has always a semantic meaning
helpful for further study. On the examples we modelized, the study of these
answers has always permitted to conclude.

The modelization used (communicating automata) is dynamic and thus not far
from an implementation. This means that the method is fitted for test suite
generation. However, the relative poor computation time compared to proba-
bilistic techniques indicates mostly an interest in finding probalistically hard
test suites. The resolution time, though, is fast enough (both for path finding
and proof finding) to allow interactivity to the model designer.

The resolution times given here can be improved easily. Our linear programming
solver is not state-of-the-art and current solvers are now about 10 to 30 times
faster while using less memory. The computer we use has a Specfp95 equal to
10, which is quite poor. Furthermore, we didn’t work on optimizing the problem
formulation given to the solver. The work involved is surely important but could
decrease greatly the resolution time.

To finish, both test suites and (under some conditions) proofs can be found
on a small instance of a generic specification and directly checked on a bigger
instance. This is of great importance if the goal is to validate the specification
and not only an instance of it.

Software Verification Based on Linear Programming 1165

References

[Abr9s]
[CA95]

[cC77]

[CHP92]

[DDLYY]

[Del99a]

[Del99b)]
[Dev9s]
[Dev99]
[ES92]
(it
[Hol97]

[JPOY5]

[Kur92]
[LM89]
[McM93]

[ORR*96]

J-R. Abrial. The B-book. Cambridge University Press, 1995.

James C. Corbett and Georges S. Avrunin. Using integer programming to
verify general safety and liveness properties. Technical report, University
of Hawaii at Manoa, 1995.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction of approximation of fixed
points. In Proceedings of the 4th ACM Symposium on Principles of Pro-
gramming Languages, Los Angeles, pages 238-252, New York, NY, 1977.
ACM.

J.M. Couvreur, S. Haddad, and J.F. Peyre. parametrized resolution of
families of linear systems. RAIRO Recherche Operationnelle, 26:183-206,
1992.

S. Dellacherie, S. Devulder, and J-L. Lambert. (technical version) software
verification based on linear programming. Technical report, GREYC, uni-
versit de Caen, 1999.

S. Dellacherie. A case study: specification and verification of an access con-
trol system using the lpv technology. Technical report, GREYC, Universit
de Caen, 1999.

S. Dellacherie. Vrification logicielle base sur la programmation linaire.
PhD thesis, Universit de Caen, 1999. To appear.

S. Devulder. A comparison of lpv with other validation methods. Technical
report, GREYC, Universit de Caen, 1998.

S. Devulder. Un modle de preuve de logiciels fond sur la programmation
linaire. PhD thesis, Universit de Caen, 1999. To appear.

J. Esparza and M. Silva. A polynomial-time algorithm to decide liveness
of bounded free choice nets. Theoretical Computer Science, 102:185-205,
1992.
www-unix.mes.anl.gov/otc/Guide/faq/linear-programming-faq.html.

J.V. Guttag and J.J. Horning. Larch: languages and tools for formal spec-
ification. Springer-Verlag, 1993.

G.J. Holtzmann. The model checker spin. IEEE Transactions on Software
Engineering, 23(5), May 1997.

Laeta Jategaonkar Jagadeesan, Carlos Puchol, and James E. Von
Olnhausen. Safety porperty verification of esterel programs and ap-
plications to telecommunications software. In Seventh Conference on
Computer-aided verification, 1995.

R. P. Kurshan. Automata-theoretic verification of coordinating processes.
Technical report, ATT Bell Laboratories, 1992.

J.B. Lasserre and F. Mahey. Using linear programming in petri net anal-
ysis. RAIRO Recherche Operationnelle, 23:43-50, 1989.

K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M. Srivas. Pvs: Combin-
ing specification, proof checking, and model checking. In LNCS, volume
1102, pages 411-414. Springer Verlag, 1996.

	Introduction
	Theoretical Principles
	The Model
	The Use of Linear Programming

	Some Case Studies
	A Telephony System
	An Access Control System
	A Bus Arbiter

	Conclusion

