Formal Justification of the Rely-Guarantee
Paradigm for Shared-Variable Concurrency:
A Semantic Approach

F.S. de Boer!, U. Hannemann?, and W.-P. de Roever?

! Utrecht University, Department of Computer Science, Utrecht, The Netherlands,
frankb@cs.uu.nl
2 Christian-Albrechts-Universitat zu Kiel, Institut fiir Informatik und Praktische
Mathematik II, Kiel, Germany,
{uha,wpr}@informatik.uni-kiel.de

Abstract. This paper introduces a semantic analysis of the Rely-Guar-
antee (R-G) approach to the compositional verification of shared-variable
concurrency. The main contribution is a new completeness proof.

1 Introduction

In the Rely-Guarantee (R-G) approach to the compositional verification of shared-
variable concurrency [9][T0), T3] a property of a component process is, in essence,
stated as a pair (R, G) consisting of a guarantee property G that the compo-
nent will satisfy provided the environment of the component satisfies the rely
property R. The interpretation of (R, G) has to be carefully defined so as to be
non-circular. Informally, a component P satisfies (R, G) if the environment of
P violates R before component P fails to satisfy G. In this paper we develop
a semantic approach to the formal justification of the Rely-Guarantee proof
method.

There are two basically different compositional semantic models for shared
variable concurrency: reactive-sequence semantics [4], and Aczel-trace semantics
[B]. A reactive sequence of a process P is a sequence of computation steps (o, ")
which represent the execution of an atomic action of P in state o with resulting
state o’. The resulting state of a computation step does not necessarily coincide
with the initial state of the subsequent computation step in the sequence. These
‘gaps’ represent the state-changes induced by the (parallel) environment. Note
that thus a reactive sequence abstracts from the the number and granularity of
the environmental actions. In contrast, an Aczel-trace of a process records all
the state-changes (both of the process and its environment) at the level of the
atomic actions.

Which of these two semantics of shared-variable concurrency provides a suit-
able basis for a formal justification of the R-G proof method? A seemingly nat-
ural interpretation of R-G specifications in terms of reactive sequences consists
of the following.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 124541265}, 1999.
© Springer-Verlag Berlin Heidelberg 1999

1246 F.S. de Boer, U. Hannemann, and W.-P. de Roever

If the gaps of a reactive sequence satisfy the rely condition then the
computation steps of the sequence itself should satisfy the guarantee
condition.

However under this interpretation the R-G proof rule for parallel composition
will allow the derivation of incorrect R-G specifications. A proper semantic anal-
ysis based on reactive sequences can be obtained by the introduction of stutter
steps as studied in []. In fact the addition of arbitrary stutter steps allows one
to interpret the gaps of a reactive sequence as stemming from the execution of
a single atomic action by the environment. In that case the reactive sequences
semantics actually coincides with the Aczel semantics. In the Aczel semantics
then we have the following interpretation of R-G specifications.

If all the atomic environmental actions satisfy the rely condition then
the computation steps of the sequence itself should satisfy the guarantee
condition.

The main contribution of this paper consists of a new semantic completeness
proof of the R-G proof method. An essential aspect of the R-G paradigm is
that of finding a characterization of validity of a R-G specification which is non-
circular. Indeed, the explicit breaking of cycles in chains of implications between
R and G properties associated with the different processes which constitute
an (open) network occurs already in Misra and Chandy’s formulation of the
Assumption-Commitment method [12] . As our completeness proof for the R-G
paradigm demonstrates, preventing such circularities is straightforward once the
appropriate concepts have been defined, and certainly simpler than any method
proposed before. As worked out in [I], at an abstract level the breaking of such
cycles of dependencies is connected to the use of constructive logics for reasoning
about such dependencies, and is related to the use of such logics by Gerard
Berry in his work on the semantics of the synchronous language Esterel [2].
The completeness proof for our proposed formalization of the Rely-Guarantee
paradigm shows that there is a simple alternative to introducing such logics. The
practical relevance of the new formal justification of the R-G paradigm presented
in this paper lies in the fact that it determines the exact nature of the rely and
guarantee predicates and, consequently, it provides a clear view on the way the
R-G proof method is to be applied.

The approach which is followed in this paper is based on the inductive-
assertion method [7] which is a methodology for proving state-based transition
diagrams correct. It consists of the construction of an assertion network by as-
sociating with each location of a transition diagram a (state) predicate and with
each transition a verification condition on the predicates associated with the lo-
cations involved; semantically, these predicates are viewed as sets of states. Thus
it reduces a statement of correctness of a transition diagram, which consists of
a finite number of locations, to a correspondingly finite number of verification
conditions on predicates.

The inductive assertion method can be trivially generalized to concurrency
by viewing a concurrent transition diagram as the product of its components

Formal Justification of the Rely-Guarantee Paradigm 1247

and thus reducing it to a sequential system. However this global proof method
leads to a number of verification conditions which is exponential in the number
of components.

Compositional proof methods in general provide a reduction in the com-
plexity of the number of verification conditions. In this paper we investigate
the semantic foundations of the Rely-Guarantee proof method for concurrent
systems obtained by sequential and parallel composition from basic transition
diagrams. The components of such a concurrent system communicate via shared
variables.

Technically, we introduce the new concept of R-G-inductive assertion net-
works for reasoning about the sequential components, i.e., the transition di-
agrams, of a concurrent system. By means of compositional proof rules such
assertion networks can be used for deducing properties of the whole system.

The paper is organized as follows: we first introduce transition diagrams as
our basic control structure and define in section [the reactive-sequence seman-
tics. R-G correctness formulae are introduced in section 4 together with our proof
system for them. In section 5 we formally define validity of R-G specifications
w.r.t. the reactive sequence semantics and give an example why this choice of
semantics is not appropriate. On top of the reactive sequence semantics we in-
troduce the Aczel semantics, for which we prove in section 8 completeness of the
proof system given in section 4. In section 7 we continue the comparison between
Aczel semantics and reactive sequence semantics by extending the latter with
stutter steps and proving that this change suffices to get a notion of validity of
R-G formulae which is equivalent to the one based on Aczel semantics.

2 Syntax

The basic control construct of our semantical analysis of the Rely-Guarantee
(R-G) proof system is that of a transition diagram, i.e., a labeled directed graph
where each label denotes an instruction. Given a set of states X, an instruc-
tion has the following form: a boolean condition b € P(X) followed by a state
transformation f € XY — X notation: b — f. The set of states X, with typ-
ical element o, is given by VAR — VAL, where VAR , with typical elements
,Y, 2, ..., is an infinite set of variables and VAL denotes the underlying domain
of values. In the sequel sets of states often will be called predicates and (sets of)
pairs of states will be called action predicates, with typical element act, as they
reflect the effect of a state transformation (or action) upon the state. We have
the following semantic characterization of the variables involved in a (action)
predicate and a state transformation. This characterization is an approximation
of the corresponding syntactic notion of occurrence of a variable.

Definition 1. Let T denote a sequence 1, . .., Ty, of distinct variables. Byo(z)=
o’(z) we then abbreviate \|_, o(x;) = o'(x;). A predicate ¢ € P(X) involves the
variables x1, ..., T, if

- Vo,0' € X. 0(Z)

o (T)= (0 b €d).

1248 F.S. de Boer, U. Hannemann, and W.-P. de Roever

This condition expresses that the outcome of ¢ only depends on the variables
T1y.e-3Tp-
Similarly, an action predicate act € P(X x X) involves the variables x1, ..., %,

if

— Y(o1,0%1), (02,0%) € P(X x X).
(01(Z) = 02(Z) A 01 (Z) = 05(F)) = ((01,01) € act < (02,0%) € act).

Finally, a function f € X — X involves the variables T if

- Vo,0' € X¥. 0(%) =0'(Z) = f(o)(T) = f(o')(Z)
—VoeXygz flo)(y) =a(y)

The first condition expresses that if two states o and o’ agree with respect to the
variables T, then so do their images under f. The second condition erpresses
that any other variable is not changed by f.

We restrict ourselves to state-transformations and (action) predicates for
which there exists a finite set of variables which are involved. The set of vari-
ables involved in the state-transformation f, (action) predicates ¢ and act, we
denote by wvar(f), var(¢) and var(act), respectively. For predicate ¢ and action
predicate act let o |= ¢ denote o € ¢, and (0, 0’) = act denote (o,0’) € act. By
E ¢ (and = act) we denote the validity of ¢ (and act), i.e., for all o, o = ¢ (and
for all (o,0"), (0,0") E act).

Given a sequence of distinct variables = x1, ..., x, and a sequence of values
U =u1,...,Uy, the state-transformation (o : T — ¥) is defined by

(0:7—0)(y) ¥ {U(y) if y&{x,...,on}

vi fy=uwx
For a sequence of distinct variables £ = x1,...,%,, 3Z.¢p denotes the set of
states o such that (o : Z — 0) € ¢, for some sequence of values & = vy,...,vp.

Similarly, 3%.act, act an action predicate, denotes the set of pairs of states
(0,0") such that ((0 : T — 0), (0" : T = v')) € act, for some sequences of values

U =w1,...,0, and v/ = v},...,v,. Finally, given a state-transformation f, the

state-transformation 3z.f is defined by 3z.f(0) = (f(0) : Z — o(Z)), where
o(Z) denotes the sequence of values o(z1),...,0(x,).

We have the following formal definition of a transition diagram.

Definition 2. A basic transition diagram is a quadruple (L, T, s,t), where L is
a finite set of locations I, T is a finite set of transitions (I,b — f,1'), and s and
t are the entry and exit locations, respectively, which are different (s #t). There
are no outgoing transitions starting in t.

A program P is either a basic transition diagram or defined inductively as a
sequential composition Pj; Ps or parallel composition Py || P» of two programs
P1 and PQ.

Formal Justification of the Rely-Guarantee Paradigm 1249
3 Reactive Sequence Semantics

The Rely-Guarantee paradigm aims at specifying both terminating and nonter-
minating computations in a compositional style. We denote termination by the
symbol /.

For the formal definition of reactive sequence semantics as introduced in, e.g.,
[M], we use the following transition relation.

Definition 3. For a given basic transition diagram P = (L, T, s,t),

1 (‘7:_0;) l/
denotes a transition of P when for some (I,b — f,I') € T one has that o E b
and o’ = f(o).

The following axiom and rule allow to compute the reflerive transitive closure
of this transition relation:

l w l/,l/ w’ "
11 and -
l w-w l//
where € denotes the empty sequence, and “” the operation of concatenation.

Given a basic transition diagram P, | —— I’ thus indicates that starting
at [execution of P can generate the sequence of computation steps w arriving
at I’. Such a sequence w is called a reactive sequence. For a non-empty reactive
sequence w = w'- (o, 0’} we define laststep(w) = (o, 0"). A reactive sequence w =
(01,01){(02,0%) - {op, 0)) is called a connected sequence if foralli =1,...,n—1
we have that o} = 0,11. A ‘gap’ (0}, 0,11) between two consecutive computation
steps (oy,07) and (oi11,0},) represents the state-transformation induced by
the (parallel) environment. Note that such a gap, therefore, abstracts from the
granularity of the environment, i.e., the actual number of atomic computation
steps performed by the environment.

Definition 4. For a basic transition diagram P = (L, T,s,t), | € L we define
R [P] & {w| s 1}

We distinguish sequences which are terminated w.r.t. the executing process
by ending them with the / symbol. Computations are either reactive sequences
or reactive sequences followed by a / symbol. Therefore, if a computation w
contains a 4/, it is of the form w’/ with w’ a reactive sequence containing no /
symbol.

Definition 5. The reactive-sequence semantics R [P] of a program P is defined
as follows: For P = (L,T,s,t) we define

RIP] = [JRi[P] U{wy|weR[P]}.

leL

1250 F.S. de Boer, U. Hannemann, and W.-P. de Roever

For P = Py; P, we define
RIP] & {w|we R [P]}U{w- v |wy € R[P] Aw' € R[P:] },

where R' [P1] denotes the set of non-terminated sequences of Py, that is, those
sequences not ending with /. Finally, for P = Py || Py we define

RI[P] & {w|w € wi[wy, w1 € R[P],ws € R[]},

where wlﬂwg denotes the set of all interleavings of w1 and wa, ending in +/ if
and only if both wy and we end in /.

The semantics R [P] contains all the finite prefixes of all the computations
of P, including the non-terminating computations. Recall from the introduction
that a process P satisfies (R, G) provided P’s environment violates R before P
violates G, i.e., at any stage of an on-going computation P’s actions should satisfy
G as long as R remains satisfied by P’s environment. This is mathematically
expressed by requiring (R, G) to be satisfied by all prefixes of a computation of
P.

So how does one characterize the semantics of programs in which the this
process of parallel composition with new environments has come to an end,
i.e., the semantics of a closed system? This is done by considering only reac-
tive sequences in which the gaps are “closed”, i.e., by considering the subset of
connected sequences.

4 The Rely-Guarantee Proof Method

In this section we first give an intuitive definition of Rely-Guarantee correctness
formulae and their interpretation and then present a proof system for this type
of correctness formula that is fairly standard as far as the composition rules are
concerned [I5]. For correctness formulae that reason about basic transition dia-
grams we adapt Floyd’s inductive assertion network method [7] to the additional
requirements of the R-G method.

Definition 6. Let pre and post be predicates denoting sets of states, rely and
guar be action predicates, and P be a program, then (rely, guar) : {pre} P {post}
is called an R-G correctness formula.

Traditionally, pre and post impose conditions upon the initial, respectively,
final state of a computation, whereas rely and guar impose conditions upon
environmental transitions, respectively, transitions of the process itself. This is
captured by the following intuitive characterization of validity of an R-G formula:

Whenever

1) P is invoked in an initial state which satisfies pre, and
2) the environment satisfies rely,

Formal Justification of the Rely-Guarantee Paradigm 1251

then

3) any transition of P satisfies guar, and
4) if a computation terminates, its final state satisfies post.

We generalize Floyd’s method to the additional requirements of R-G formulae
and define for P = (L, T, s,t) an R-G-inductive assertion network Q(rely, guar) :
L — P(X), i.e., we associate with each location [a predicate Q; as follows:

Definition 7 (R-G-inductive assertion networks). An assertion network
Q is R-G-inductive w.r.t. rely and guar for P = (L, T, s,t) if:

— For every (I,b— f,I') € T and state o: if o |= Q; Ab then (o, f(0)) = guar

and f(o) E Qu.
— For every | € L and states o and o': if o = Q; and (0,0’) = rely then

o’): Ql.

We abbreviate that Q is an R-G-inductive assertion network w.r.t. rely and
guar for P by Q(rely, guar) - P. We have the following rule for deriving R-G
specifications about basic transition diagrams.

Rule 8 (Basic diagram rule) For P = (L, T,s,t):

Q(rely, guar) - P
<rely,guar> : {Q.s} P {Qt}

The following rules are standard.

Rule 9 (Sequential composition rule)

(rely, guar) : {¢} P1 {x}, (rely, guar) : {x} P {¢}
(rely, guar) : {¢} Pr; Py {¢}

Rule 10 (Parallel composition rule)

E rely V guary — relys

E rely V guars — rely;

E guary V guars — guar
(rely;, guar;) : {pre} P; {post;}, i=1,2
(rely, guar) : {pre} Pyi||P> {posti A posta}

Rule 11 (Consequence rule)

(rely, guar) : {¢} P {4}
):¢1_)¢>):w_)wla
E relyy — rely, = guar — guary

(relyy, guary) : {¢1} P {1}

1252 F.S. de Boer, U. Hannemann, and W.-P. de Roever

Definition 12. A set of program variables Z = z1, ...,z is called a set of auz-
iliary variables of a program P if:

— For any boolean condition b of P we have zZ N var(b) =0, and

— any state transformation of P can be written as f o g, i.e., a composition
of state-transformations f and g, such that z Nwvar(f) = 0, and the write
variables of g, i.e, those variables x such that g(o)(x) # o(x), for some state
o, are among z.

We have the following rule for deleting auxiliary variables:

Rule 13 (Auxiliary variables rule)

(rely, guar) : {¢} P’ {4}
(Fz.rely, guar) : {3z.9} P {v}’

where Z is a set of auziliary variables of P', guar and 1) do not involve Z, and
P is obtained from P’ by replacing every state transformation f in P’ by 3z.f.

Finally, how does one reason about closed programs? This is done by requir-
ing rely to be id, the identity on states.

Derivability of an R-G formula (rely, guar) : {¢} P {4} in this proof system
is expressed by

E (rely, guary : {¢} P {v}.

5 R-G Validity w.r.t. Reactive Sequences Semantics

In order to define the validity of a R-G specification (rely, guar) : {¢}P{u}
we have first to determine the exact meaning of the precondition ¢ and the
postcondition 1: Are these predicates referring to the initial and final state of P
itself or of the complete system (which includes the environment of P)? Following
the literature we choose the latter option. Therefore we define the validity of a
R-G specification for P in terms of a triple consisting of an initial (i.e., w.r.t.
the complete system) state o, a reactive sequence w of P, which records the
sequence of computation steps of P, and a final state ¢’, which is final under the
assumption that the environment has terminated as well. Whereas for terminated
computations ¢’ is the final state of the complete system, we can interpret it as
the “current” state for non-terminating computations, i.e., the last observation
point at hand.

We define for a reactive sequence w and states o, o’ the complement of w
with respect to initial state o and final state o, denoted by (o, w, o’), as follows:

Definition 14. We define

(0,¢,0) = {0,0"),

<Uv <01702> ~’LU,O'/> = <Ja 01> : <027 w,0'/>.

Formal Justification of the Rely-Guarantee Paradigm 1253

The complement of a reactive sequence w with respect to a given initial state
o and final state ¢’ thus specifies the behavior of the environment.

Definition 15. For a reactive sequence w = (o1,07) - (op,00), w = act indi-
cates that (0;,0}) E act, i =1,...,n, (and wy/ |= act indicates that w |= act).

Now we are sufficiently equipped to introduce the following notion of validity
of R-G specifications.

Definition 16 (R-Validity of R-G specifications). We define

Er (rely, guar) : {¢} P {¢}
by

for all w € R[P], states o and o', if o = ¢ and (o, w,0’) |= rely then
w | guar and w = w'\/, for some w', implies o’ = 1.

Intuitively, a R-G specification (rely, guar) : {¢} P {¢} is R-valid if for
every reactive sequence w of P, initial state o and final state ¢’ (of the parallel
composition of P with its environment) the following holds: if the initial state ¢
satisfies ¢ and all the steps of the environment as specified by (o, w, o’) satisfy
rely then all the steps of w satisfy guar and upon termination the final state o’
satisfies 1.

Ezxample 1. We have the following counter-example to the soundness of the
parallel composition rule with respect to the notion of R-validity above: It is not
difficult to check that

Er{r=z+1,2 =2+1): {z =0}z :=z+ 1{z =3}

By an application of the parallel composition rule to z := z + 1|z := = + 1,
where both assignments x := z + 1 are specified as above, we then would derive

(true, =x+1): {z=0lz:=xz+ 1| z:=2+ 1{x =3}

which is clearly not R-valid.

(Here © := x + 1 abbreviates the transition diagram ({s,t},{(s,true —
fit)}, s, t), where f increments z by 1.)

In the full paper we show that soundness of the parallel composition rule
with respect to this notion of validity requires all rely-predicate to be transitive,
i.e., that (0,0’ | rely and {¢’,0"”) = rely imply (o,0"”) | rely.

This observation motivates our next section where we give a different inter-
pretation of R-G specifications in terms of Aczel-traces. These Aczel-traces will
provide more detailed information about environmental steps.

1254 F.S. de Boer, U. Hannemann, and W.-P. de Roever

6 Aczel Semantics

An Aczel-trace is a connected sequence of process-indexed state pairs. It can
thus be seen as the extension of connected reactive sequence in which every
atomic action contains as additional information an identifier which represents
the executing process.

We assume to have a set Id of process identifiers with typical element I, Io,
The complement of a set of identifiers V' C Id is denoted by V& I1d \ V.

Definition 17. A process-indexed state pair is a triple {o,I,0') € X x Id x 3.
An Aczel-trace m is a mon-empty connected sequence of process-indexed state
pairs, that might end with a /-symbol.

For an Aczel-trace ™ we define first(mw) and last(w) by the first and last state of
the sequence, respectively: first({o,I,o’) - n') = o and last(x’ - (0,1,0")) = o’.

(last(my/) = last(w)).

In order to define the set of Aczel-traces of a program in terms of its reactive-
sequence semantics we introduce the following projection operation on Aczel-
traces.

Definition 18. Let V C Id be a set of identifiers.

e[V] = e,
((o,1,0") - m)[V] = @[V], if I £V,
({0, 1,0y -m)[V] & (0,0") -w[V], if I €V,

We define the Aczel semantics of a program P parametric with respect to a set
of identifiers V. The elements of V' are used to identify the transitions of P. Thus
we can extract a reactive sequence of P out of an Aczel-trace by projecting onto
this set of identifiers. Within Aczel-traces, the purpose of these identifiers is to
distinguish between steps of the process and steps of the environment.

Definition 19. For P = (L, T, s,t) a basic transition diagram, l € L, and V C
1d, we define

Aczl, [P] = {x|=[V] € R/ [P] }.
By Aczy [P] then we denote Aczl, [P]. For composed systems P we define

Aczy [P] = {x|7[V] € R[P]}.

The proof of the following proposition is straightforward and therefore omit-
ted.

Proposition 20. Let Vi and Va be disjoint sets of identifiers. We have for every
P=P|| P
ACZ\/l [[Pl]] N .ACZV2 [[PQ]] C Aczy [[P]] ,

with V= V1 U Vs, Note that in general the converse does not hold.

Formal Justification of the Rely-Guarantee Paradigm 1255

We have the following interpretation of R-G specifications.
Definition 21 (Aczel-Validity of R-G specifications). We define
=a (rely, guar) : {¢} P {4}

by

For all sets of identifiers V and m € Aczy [P] if first(m) = ¢ and
7[V] &= rely then 7[V] | guar and m = 7’/ implies last(w) = 1.

The R-G method as presented above is sound with respect to the Aczel-trace
semantics, for the soundness proof of the basic diagram rule we refer to the full
paper. For the other rules detailed proofs in the Aczel-trace set-up are given in
[15].

The main difference between this notion of validity and the one based on
reactive sequences is that now every atomic computation step of the environment
has to satisfy the rely condition. Consequently, for Example 1 we have

a (@ =z+ 1,2 =2+1): {z =0} =2+ 1{z =3},

since there is an arbitrary number of environmental steps possible.

7 Reactive Sequences Reconsidered

As observed above the reactive sequences semantics R does not provide a correct
interpretation of R-G specifications. More precisely, it requires the predicates
rely; and relys in the parallel composition rule to be transitive. However, we
can obtain such a correct interpretation of R-G specifications by the introduction
of arbitrary stutter steps of the form (o, o).

Definition 22. Let R, [P] be the smallest set containing R [P] which satisfies
the following:

wy - wy € R, [P] implies wy - (0,0) - wa € R, [P].

This abstraction operation is required in order to obtain a fully abstract
semantics (see [[3] [TT]). We observe that the corresponding notion of validity,
which we denote by =g, requires the guar predicate to be reflexive, i.e. (o,0) |
guar, for every state o. However, given this restriction we do have that the two
different notions of validity =4 and g, coincide.

Theorem 23. Let (rely, guar) : {¢}P{u} be such that guar is reflexive. Then

Fa (rely, guar) : {o}P{¢} if and only if =R, (rely, guar) : {¢}P{s}.

1256 F.S. de Boer, U. Hannemann, and W.-P. de Roever

Proof. Let =4 (rely, guar) : {¢} P{¢} and w € R, [P]. Furthermore let o and
o’ be such that o = ¢, {(o,w,0’) = rely. Then the requirements of =g, are
satisfied because of the existence of a corresponding m € Aczy [P], for any
(non-empty) V. Formally, we obtain such a corresponding 7 by defining the
Aczel-trace A(o,w,c’) by induction on the length of w. Let E ¢ V and I € V.

Then
dif

A(o,e,0") (0, E,c"),
Ao, (01,09) -w,0") = (0, E,01) - (01,1,09) - A(og, w, 0").

Conversely, let =g (rely,guary : {¢p}P{¢} and ©m = (o1,I1,092) - {(on, I,
On+t1) € Aczy [P] such that o1 |= ¢ and (og, 0k11) = rely, for I, ¢ V. Then
the requirements of =4 are satisfied because of the existence of a corresponding
w € R, [P]. Formally, we define R(w) by induction on the length of

R() ooy mm v
der] (01,02) - Lu(TM) L1 €
Rllor.hnon)-m) & { (7022 M DS Y

and use R(m) € R, [P] as reactive sequence corresponding to 7 to prove that
guar and) hold in their respective (pairs of) states. Note that thus the insertion
of stutter steps is used to obtain the ‘gaps’ corresponding to the environmental
steps in 7, providing extra observation points.

8 Completeness

This section presents the completeness proof for our proof system and constitutes
the very justification of the paper. We have the following main theorem (the
remainder of this section is devoted to its proof).

Theorem 24. The proof system presented in section [] is (relative) complete
w.r.t. the Aczel-trace semantics, i.e.,

Ea (rely, guar) : {¢} P {¢} implies b (rely, guar) : {¢} P {v}.

We prove the derivability of an Aczel-valid R-G specification by induction
on the structure of the program P.
Basic case
Given a valid R-G specification =4 (rely, guar) : {¢} P {¢}, with P = (L, T, s,t)
a basic transition diagram, we associate with every location [of P the strongest
postcondition SP(¢,rely, P). The resulting network we denote by SP. Intu-
itively, a state o belongs to SP,(¢, rely, P) if there is a computation of P together
with its environment that reaches location [of P, starting in a state satisfying
¢, such that all environment steps satisfy rely.

Definition 25. For P = (L, T,s,t) we define

o | SP(é,rely, P)

Formal Justification of the Rely-Guarantee Paradigm 1257

by
o = ¢ (in case | equals s) or first(n) = ¢ and n[V] |= rely, for some
set V' of process identifiers and some m € Aczi, [P], with last(r) = o.

Note that any state ¢’ which can be reached from a state o which satisfies
SP(¢,rely, P) by a sequence of rely-steps also satisfies SP;(¢, rely, P), because
any computation sequence of P together with its environment that reaches loca-
tion [of P in state o can be extended to a similar sequence reaching ¢’. Hence
SP,(¢,rely, P) is invariant under rely.

We also need a characterization of the computation steps of a program P.
This is given by the strongest guarantee SG(¢,rely, P), an action predicate de-
scribing those transitions of P which are actually executed by P in some compu-
tation, provided ¢ is satisfied initially, and every environment transition satisfies
rely.

Definition 26. Let P be an arbitrary program. We define
(0.0") = SG(6,rely, P)
by

first(n) = ¢ and w[V] |= rely, for some set V' of process identifiers and
7w € Aczy [P], with (0,0") = laststep(n[V]).

The following basic properties of SP, and SG follow immediately from their
definitions.

Lemma 27. For P a basic transition diagram we have

i) Ea (rely, SG(¢,rely, P)) : {6} P {SPi(¢,rely, P)}.
it) Ea (rely, guar) : {¢} P {¢} implies
a) = SPy(p,rely, P) — 1.
b) E SG(¢,rely, P) — guar.
i) E ¢ — SPs(p,rely, P).

Moreover, we have the following lemma.

Lemma 28. Given a basic transition diagram P, SP is an R-G-inductive as-
sertion network w.r.t. rely and SG(,rely, P).

Proof. Let | € L and o = SP/(¢,rely, P). So, for some set V' of process iden-
tifiers, there exists 7 such that = € Aczl, [P], first(r) E ¢, n[V] | rely and
last(m) = 0.

— Let 0 E b and (I,b — f,I') € T. By executing (I,b — f,I’) we reach I’
with ¢/ = f(0). We first prove that o' = SPy (¢, rely, P). Without loss
of generality we may assume that V' is non-empty. Let I € V. Since 7w €
Aczl, [P] we get that 7' = 7-(0, I,0") € Aczl, [P] . We have that first(r) =
first(n') = ¢ (note that 7 is non-empty). Moreover, 7[V] |= rely and n[V] =
7'[V]. Thus, 7'[V] |= rely. Obviously we have last(n’) = ¢’ and therefore
o' = SPy(¢,rely, P). Additionally, since (o, 0’} = laststep(n’'[V]) we derive
that (o,0’) = SG(¢,rely, P).

1258 F.S. de Boer, U. Hannemann, and W.-P. de Roever

— Next let (0, 0”) |= rely. We have for I ¢ V that n’ = 7-(0,I,0") € Acz{, [P].
Again we have that first(r) = first(n’) = ¢. Since 7[V] = rely, {(0,0") E
}

rely and 7'[V] = w[V] - (0,0’) we conclude that «'[V] |= rely. Finally,
last(n') = o’. Thus, o’ | SP(é,rely, P).

By our basic rule Bl we thus derive that
F <7’61y, SG(¢,T€Zy,P)> : {SPS(¢,T€Zy,P)} P {SPt(¢a Telya P)}
Since by Lemma

— E ¢ — SPs(¢,rely, P),
-): SPt(¢,T61y,P) - IZ” and
— E SG(¢,rely, P') — guar

hold, we derive by the consequence rule

F (rely, guar) : {¢} P {¢}.

Composed programs
Next we consider the remaining cases P = Py; P, and P = Py || P». First we
generalize definition

Definition 29. We define for every system P,

o b= SP(g,rely, P)

first(m) = ¢ and ©[V] | rely, for some set V' of process identifiers and
some my/ € Aczy [P], with last(r) = 0.

Note that for P = (L,T,s,t) a basic transition diagram SP(¢,rely, P) =
SP;(¢p,rely, P). The basic properties of Lemma [27] carry over to the general
case.

Lemma 30. For every system P we have

i) Ea (rely, SG(¢,rely, P)) : {¢} P {SP(¢,rely, P)}.
it) Ea (rely, guar) : {¢} P {¢} implies

a) = SP(¢,rely, P) — 1.

b) E SG(¢,rely, P) — guar.

Sequential composition
Now consider the case of sequential composition. Let

=4 (rely, guar) : {¢}Pr; Pa{1)}.

By the induction hypothesis we thus obtain

F <T€ly7 SG(¢a Telya P1)> : {¢}P1{SP(¢a Telya Pl)}

Formal Justification of the Rely-Guarantee Paradigm 1259

and
F (rely, SG(¢',rely, Po)) : {¢'} Po{SP(¢,rely, P2)},

where ¢/ = SP(¢,rely, Py). Furthermore,

=4 (rely, guar) - {¢}Pr; Po{}

implies

):A <Tely,guar> : {¢}P1{SP(¢,T€Zy,P1)}
and

Fa (rely, guar) : {SP(¢,rely, P1)}Pa{¢}.

Using the above lemma we thus obtain by the consequence rule

F (rely, guar) : {¢}Pi{SP(¢,rely, P1)}

and
E (rely, guar) : {SP(¢,rely, P1)}Pa{1}.

An application of the rule for sequential composition concludes the proof.
Parallel composition
We have now arrived at the most interesting case P = P; || P,. Let

Fa (rely, guar) : {¢}P1[|Po{¢}.

Our task is to construct predicates that fit the parallel composition rule[I0. In
particular we have to define predicates rely;, guar;, pre, post;, i = 1,2, such that
for some augmentation P; of P; with auxiliary variables the R-G specifications

Ea (rely;, guar;) : {pre} P} {post;},i=1,2,

and the corresponding side conditions hold.
In order to define such predicates we introduce histories.

Definition 31. A history 0 is a sequence of indexed states (I,0), with I € Id.

An indexed state (I,) indicates that the process I is active in state o.

We assume given a set of history variables HVAR C VAR with typical
element h. For h a history variable, o(h) is a history.

Our next step is to augment every transition of P || P, with a corresponding
update to the fresh history variable h (i.e., h does not occur in P nor in the given
predicates rely, guar, ¢, and t). This history variable h records the history of P,
i.e., the sequence of state changes of process P together with its environment, plus
the active components responsible for these changes. Without loss of generality
we may assume that P, and P, are two distinct process identifiers. We then
transform each transition (I,b — f,1') of a constituent of P; to (I,b — fog,l’),
where g = (0 : h — h-(Pi,0)), i.e., g(o) is like o, except for the value of h
which is extended by (P;, o). This augmented version of P; will be denoted by
P!.

1260 F.S. de Boer, U. Hannemann, and W.-P. de Roever

Note that in the augmented process P’ = P/||P; boolean conditions do not
involve the history variable &, and that h does not occur in assignments to non-
history variables. I.e., the history variable h is an auxiliary variable which does
not influence the flow-of-control of a process.

We have to ensure, in order to have the complete computation history recorded
in h, that every possible environmental action should update the history variable
correctly. L.e., we should prevent that some process is setting, e.g., h := ¢, by
formulating additional requirements upon rely; also we change the given pre-
condition ¢ to ensure that initially h denotes the empty sequence.

Definition 32. We define

— {o,0") Erely’ if and only if (o,0") = rely and o'(h) = o(h) - (E,0)
—oE¢ if and only if o = ¢ and a(h) =€,

where E € 1d is a process identifier distinct from Py and Ps, representing “the
environment”.

It is straightforward to prove that

Fa (rely, guar) : {¢}P1|| P{9)}

implies
Fa (rely’, guar) - {¢'}P{|| Py{}.

Moreover, we introduce the following rely condition e; which ensures a correct
update of the history variable h by the environment of P/ when executed in the
context P| || Pj. Note that the environment of P/ in the context of P || P,
consists of the common environment of P| and Pj and the other component P]f ,

i # .
Definition 33. Let fori=1,2,
(0,0") Eei
be defined by
o'(h) =o(h)-(E,o) oro’'(h) =0(h) - (P;,0),
where 1 # j(€ {1,2}).

We are now in a position to define the predicates that will satisfy the re-
quirements of the parallel composition rule.

Definition 34. We define for i = 1,2 the following predicates

- Telyi d:ef ’I"@ly/ \ SG(¢/a €j5 P)j/) (7’ 7& j);
— post; e SP(¢',rely;, P);
— guar; = SG(¢/,rely;, P}).

Formal Justification of the Rely-Guarantee Paradigm 1261

The predicate rely; is intended to specify the steps of the environment of P/ in
the context of P || P;. The computation steps of the common environment of
P/ and Py are specified by the action predicate rely’ whereas the computation
steps of the other component are specified by the action predicate SG(¢/, e;, P]f)
which states the existence of a corresponding computation of ij in which the
environment correctly updates the history variable h.

By Lemma B0l we have for i = 1,2

Ea (rely;, guar;) : {¢'} P} {post;}.
By the induction hypothesis we thus have
F (rely;, guar;) : {¢'} P/{post;}.

We therefore now prove the corresponding requirements of the parallel compo-
sition rule.

Lemma 35. We have fori,7=1,2 and i # j
= rely’ V guar; — rely;,

and
E guary V guare — guar.

Proof. The validity of the implication
rely’ V guar; — rely;
follows from the validity of the implication
SG(¢/,7‘61%,P¢/) - SG(¢/,61‘,P¢/)-

Validity of this latter implication in turn follows from the validity of the implica-

tion rely; — e;. Let (0,0") | rely;. In case (0,0”) | rely’, by definition of rely’,

we have that o'(h) = o(h) - (E, o), otherwise (0,0") | SG(¢', ¢j, P}), and so we

have by definition of SG and the construction of P}, that ¢’(h) = o(h) - (P;,0).
In order to prove the validity of the implication

guary V guarg — guar
let (o,0') € guar;. By definition of guar; there exists
™= <017 11702> e <0na In>an+1> € ACZV [[Pi/]])

for some set of process identifiers V' such that o4 = ¢/, 0, = 0, opy1 = o',
and (ok,0x+1) | rely;, whenever I;, ¢ V. Note that by definition of rely; and
construction of P, (i # j), I ¢ V implies either o41(h) = ox(h) - (E,01) or
ok+1(h) = ok (h) - (Pj, o). Moreover, for I, € V' we have by construction of P/
that ogy1(h) = or(h) - (P;, 0k). Thus we may assume without loss of generality

1262 F.S. de Boer, U. Hannemann, and W.-P. de Roever

that ogt1(h) = ok(h) - (Ix,0%), k = 1,...,n (simply rename the identifiers I
accordingly). Since, o1(h) = €, we derive by a straightforward induction that
op+1(h) = (I1,01) - (Ig,0k), k=1,...,n

Either there is a last P; step in the Aczel trace 7 or there isn’t one. If there
is no such step in 7 then also m € Aczyuw [P]|Ps] , for any set W of identifiers,
because there are no P; steps in m. Otherwise, let (o7, P, 0141) be the last P;
(i # j) step of the Aczel trace m. We have that <al,al+1> = SG(¢', e, Pj). By
definition of SG(¢', e;, Pj) there exists

/

™ = <O—£’ 1170/2> T <O—;n’ I, O—;n+1> € Aczw [[Pﬁ])

for some set of process identifiers W such that oy = ¢/, 07, = 01, 07,41 = 0141,
and (0}, 05,1) = €;, whenever I; ¢ W. By definition of e; and the construction
of P]{ , in a similar manner as argued above, we may assume without loss of
generality that o; (k) = oy (h) - (I},07), k = 1,...,m. Since, o1(h) = ¢, we
thus derive by a straightforward induction that o, (k) = (I},01) - (I}, 0}),
kE=1,...,m. But o,,,,(h) = o141(h), and consequently we derive that 7’ is
a prefix of w. Since 7 is an extension of 7’ consisting of non-P; steps only,
by definition of Aczw [Pj] we subsequently derive that = € Aczw [Pj]. By
proposition20, Aczy [P{] NAczw [P3] C Aczyuw [Pi]|Ps] - From this we derive
that 7 € Aczyuw [Pi]|Ps] - Since n[V U W] |= rely’ and o1 = ¢’ we thus infer
from the validity of

—a (rely’, guar) : {¢'}P]| P}
that (o, 0’) E guar.
By an application of the parallel composition rule we thus obtain
F (rely’, guar) : {¢'} Py || Py{post1 A posta}.

In order to proceed we first show that |= posti Aposta — 1. Let o |= post1 Aposta.
By definition of post; and posts there exist computations

7= (0o1,11,02) - (On, In, ony1)y/ € Aczy, [P/]

and
/

™ = <J/17]{70/2>" < m71m70m+1>\/€ACZV2 [[Pﬂ
such that 0 = 0,41 = 07,1, 01 = ¢, 01 E &, (Ok,0k41) | relys, I & V1,

and (o},,0,,1) F relyz, I;, € V2. By definition of rely; and construction of P/
(i =1,2), we may assume w1thout loss of generality that V; = {P,}, Vo = {Pg}
orr1(h) = ox(h) - (Ix,01), k = 1,...,n, and o}, (h) = op(h) - (I},0}), k =
1,...,m (simply rename the identifiers I}, k = 1,...,n, and I}, l = 1,...,m,
accordingly). Since o1(h) = o (h) = €, we derive by a straightforward induction
that op,11(h) = (I1,01) -+ (In,0n0) and o,,, 4 (h) = (I1,01) - -~ (I,,,0,,). Thus we
derive from 0y,41(h) = 0,, 4 (h) that 7 = 7’. Since Aczy, [P[] N Aczy, [P3] C

Formal Justification of the Rely-Guarantee Paradigm 1263

Aczy [P{||Ps] , we derive that m € Aczy [P]||Ps] . By the given validity of the
R-G-specification
Fa (rely, guar) : {¢}P1|Po{1}

(note that ¢’ implies ¢ and rely’ implies rely) we thus derive that o = .
By an application of the consequence rule we thus obtain

= (rely’, guar) - {¢'} P || Py{v}.
Next we apply the auxiliary variables rule:
F Shorely’, guar) : {3h.¢'} Py || Pa{v}.

Finally, by an application of the consequence rule (using = rely — Jh.rely’ and
E ¢ — Jh.¢’), we conclude

= (rely, guar) : {¢}P1 || Po{9)}.

9 Conclusion, Future, and Related Work

This paper advocates the usefulness of a semantic analysis of proof methods for
concurrency. Such an analysis abstracts away from any expressibility issues and
is especially effective in case of giving soundness and completeness proofs. By
focussing on the semantic issues we discovered facts which were not known before
about the R-G paradigm: that reactive-sequence semantics are inappropriate
for modeling this paradigm, that Aczel-trace semantics does provide a correct
interpretation for R-G validity, and that by adding finite stutter steps to reactive
sequences a model is obtained which does model R-G validity adequately.

Furthermore, in such a semantic analysis one separates reasoning about se-
quential components from reasoning about parallel composition, by defining for
the former an appropriate concept of inductive assertion networks (here: R-G-
inductive assertion networks), and reasoning about the latter by Hoare-like proof
rules. This considerably simplifies the reasoning process (just compare [15]), and
focusses attention on the one central issue, namely, how to formulate a minimal
number of rules for reasoning compositionally about shared-variable concurrency
for open systems in a sound and semantically complete way. Such rules provide
the basis for machine-supported compositional reasoning about concurrency in
PVS, as used in, e.g., Hooman’s work [g].

Finally, by focussing on the essential elements underlying completeness of
the proposed proof method we discovered a proof which is much simpler than
any previous “proof” appearing in the literature (of the correctness of none of
which we are convinced anymore), and which extends the usual patterns of com-
pleteness proofs for Hoare-like reasoning about concurrency in a straightforward
way.

This work arose out of a careful analysis of of the completeness proof pre-
sented in [I4] [T5], which is based on reduction to the completeness proof of
the method of Owicki & Gries. We believe that our direct completeness proof

1264 F.S. de Boer, U. Hannemann, and W.-P. de Roever

provides more insight in the R-G proof method. Also it is much simpler and
therefore easier to check its correctness.

An interesting avenue of research opens up by applying the various methods
which Gérard Berry employed, in his characterizations of the semantics of Es-
terel, to the Assume-Guarantee paradigm (the name of which was invented by
Natarajan Shankar).

The present paper is the third one in a series of papers on the semantical
analysis of compositional proof methods for concurrency, and will eventually
appear as part of a chapter on compositional proof methods for concurrency in
[6].

References

[1] M. Abadi and G. D. Plotkin. A logical view of composition. Theoretical Computer
Science, 114(1):3-30, 1993.

[2] G. Berry. The Constructive Semantics of Esterel. Book in preparation,
http://www-sop.inria.fr/meije/esterel/doc/main-papers.html, 1999.

[3] S. Brookes. A fully abstract semantics of a shared variable parallel language. In
Proceedings 8th Annual IEEE Symposium on Logic in Computer Science, IEEE
Computer Society Press, pages 98-109, 1993.

[4] F.S. de Boer, J.N. Kok, C. Palamedessi, and J.J.M.M. Rutten. The failure of fail-
ures: towards a paradigm for asynchronous communication. In Baeten and Groote,
editors, CONCUR’91, LNCS 527. Springer-Verlag, 1991.

[5] W.-P. de Roever. The quest for compositionality - a survey of assertion-based proof
systems for concurrent programs, part 1: Concurrency based on shared variables. In
Proc. of IFIP Working Conf, The Role of Abstract Models in Computer Science,
North-Holland, 1985.

[6] W.-P. de Roever, F.S. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel,
and J. Zwiers. Concurrency Verification: An Introduction to State-based Methods.
To appear.

[7] R.W. Floyd. Assigning meanings to programs. In Proceedings AMS Symp. Applied
Mathematics, volume 19, pages 19-31, Providence, R.I., 1967. American Mathemat-
ical Society.

[8] J.Hooman. Compositional Verification of Real-Time Applications. In W.-
P. de Roever, H. Langmaack, and A. Pnueli (eds.) Compositionality: The Signifi-
cant Difference. International Symposium, COMPOS’97, Bad Malente, Germany,
September 8 —12, 1997. pp. 130-149, Springer-Verlag, LNCS 1536, 1998.

[9] C.B. Jones. Development methods for computer programs including a notion of
interference. PhD thesis, Oxford University Computing Laboratory, 1981.

[10] C.B. Jones. Tentative steps towards a development method for interfering pro-
grams. ACM Transactions on Programming Languages and Systems, 5(4):596-619,
1983.

[11] L. Lamport. The Temporal Logic of Actions. ACM Transactions on Programming
Languages and Systems, 16(3), pp. 872-923, 1994.

[12] J. Misra and K.M. Chandy. Proofs of networks of processes. IEEE Transactions
on Software Engeneering, 7(7):417-426, 1981.

[13] E. Stark. A proof technique for rely/guarantee properties. In Proceedings of
5th Conference on Foundations of Software Technology and Theoretical Computer
Science, LNCS 206, pages 369-391. Springer-Verlag, 1985.

Formal Justification of the Rely-Guarantee Paradigm 1265

[14] Q. Xu. A theory of state-based parallel programming. DPhil. Thesis, Oxford
University computing Laboratory, 1992.

[15] Q. Xu, W.-P. de Roever, and J. He. The rely-guarantee method for verifying
shared-variable concurrent programs. Formal Aspects of Computing, 9(2):149-174,
1997.

	Introduction
	Syntax
	 Reactive Sequence Semantics
	The Rely-Guarantee Proof Method
	R-G Validity w.r.t. Reactive Sequences Semantics
	Aczel Semantics
	Reactive Sequences Reconsidered
	Completeness
	Conclusion, Future, and Related Work

