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Abstract Despite being widely regarded as a gloss on first-order logic
and set theory, Z has not been found to be very supportive of proof. This
paper attempts to distinguish between the different philosophies of proof
in Z. It discusses some of the issues which must be addressed in creating
a proof technology for Z, namely schemas, undefinedness, and what kind
of logic to use.

1 Introduction

The Z notation [26] is gaining widespread acceptance as a useful means of speci-
fying software systems. Tool support for Z, though given impetus by the Z stan-
dardization activity [20], is quite varied, especially in the area of proof. There
appears to be little consensus about what proving properties of Z specifications
actually means. Different people seem to understand Z and proof differently.

Z has been widely regarded as a sylized form of classical first-order logic
and set theory, with a simple type system (but this is not a universal view; see
below). The schema language complicates this relationship considerably. As the
semantics of schemas has become more complex, it has been increasingly unclear
whether Z needs its own logic, or whether it can be manipulated using a familiar
system. In creating proof tools, some authors do not appear to have even asked
this question, but have assumed a Z semantics which corresponds exactly with
the computational logic of some host system.

Therefore, the language of discourse has become surprisingly clouded. The
aim of this paper is to relate the different understandings of the nature of proof in
Z, and to explain the issues involved. Automatic translations from one notational
system to another—or one logic to another—are of course part of any total
logical system for Z. Since Z is a large and rich notation, the verification of those
translations becomes an issue itself.

Outline of the paper The following section sets the scene, discussing the notion
and purpose of proof in Z. Section 3 defines many terms, according to long-
standing logical terminology. Somehow these have not always been followed in
the Z community, or have come to mean different things to different people. The
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next section surveys some of the leading approaches to this topic—and points to a
more detailed survey elsewhere. Sections 5 and 6 detail the two most basic issues
which affect reasoning in Z: schemas, and the issue of undefinedness. Section 7
considers related and future work. Alternative approaches are not based on first-
order logic at all. For the future, the key challenge seems to be in finding ways
to manage the complexity of Z proofs. The paper finishes with some conclusions.

2 Z, Logical Calculi, and Semantics

Z is quite clearly a logical notation. The central task of writing a Z specification
is writing schemas. The main content of a schema is found in its predicate part.
This is a collection of sentences of first-order logic. The syntax which Z has
settled upon is slightly different from that found in most logical texts, but this
is not significant.

Whilst in some philosophical disciplines logical notation may be introduced
largely as a means to add precision to statements, in mathematical work, and
in particular, in software engineering, it is more usual to add a calculus to the
presentation of a logical notation. Logic is not used as a language in its own
right, but as a means to facilitate proof activity.

In this regard, Z is unusual, since whilst it is not ‘semantics free’ it has
arisen with a rich language, but little in the way of logic. Spivey [25] presents
a denotational semantics, and also elements of a logical calculus for the schema
notation. More mundane logical proof rules are assumed and not stated.

This reminds us that there are at least two possible approaches to giving
meaning to a piece of formal text: we can give a denotational semantics; a model
in some system which is already understood—this is Spivey’s main approach
(despite the use of Z as the metalanguage). Alternatively, we can give a logical
calculus, a system of reasoning which relates terms of the language without
interpreting them. Such a logic is a higher-level description, and is, in general
more practical.

Of course, many writers of specifications will be concerned neither with the
model nor with the logic. They are interested in writing specifications and com-
municating ideas unambiguously, but not in proving that their specifications are
complete, say. Nevertheless, a logical system—however expressed—is an impor-
tant mental tool in writing specifications. The specifier needs to know whether,
for example, writing

x 6∈ dom f ∧ f ′ = f ∪ {x 7→ y}

is equivalent to writing

f ′ = f ⊕ {x 7→ y} .

The application of the definitions of the various operators is a logical process.
Some such questions are easily answered, others will require careful detailed
reasoning. The answer depends upon the choice of logical system, and will not
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usually be answered with reference to the model. Most logics will agree on most
answers, but in some cases—particularly where application of partial functions
is involved—the answers will vary.

If the Z user does wish to undertake more formal reasoning (in calculation of
preconditions, for example) then the detailed choice of logical system (whether to
support a proof by hand, or by machine) will have a significant effect, potentially
on both the ease or difficulty of the proof, and perhaps the outcome.

A number of approaches to proof in Z have been taken as a result of the
lack of a ‘standard’ answer. Some of these are explored below; a comprehensive
survey is presented in [18], covering both traditional logical presentations, and
computational logics/proof tools for Z.

3 Languages and Logic

For some reason, the language used to discuss Z semantics and logic is frequently
at odds with the usual terminology of mathematical logic [19, 8]. This section
seeks to establish some definitions.

3.1 Terminology

In this paper, we see the Z notation as a language in the logical sense. The study
of how Z is to be expressed is a matter of syntax. The study of meaning, and
the relationship of one Z specification (or predicate) with another—whether via
models or logics—is the concern of semantics.

We may construct a semantics for Z by associating with each term in the
language some object in an underlying structure (typically, a set). A particular
semantic construction is a model of a particular Z specification (or predicate) if
the relationships between terms in the specification also hold in the model (if it
makes the predicate true). A predicate is logically valid if it holds in all models.
It is logically valid relative to a specification if it holds in all the models of that
specification.

A logic for Z is a collection of axioms and rules of inference written using
the Z notation. These rules and axioms may be used inductively to define which
predicates are logical consequences of others. Those which are the logical conse-
quence of the empty set of predicates (or, equivalently, the logical consequence
of only the axioms of the logic) are known as theorems. Usually, such a logic will
allow the use of the definitions in a specification (schemas, generic definitions,
etc.), so that a predicate may be a theorem of a specification, if it is a logical
consequence of the definitions in that specification.

A logic for Z may be proven sound in some model by showing that each of its
theorems is logically valid. It is traditional to ask whether a logic is also complete
— i.e. whether every logically valid predicate is also a theorem. A consequence
of Gödel’s incompleteness theorem is that it is not possible to find a complete
logic for Z with respect to any conventional underlying theory of sets.
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A different question is to ask whether a logic for Z is complete with respect
to the mapping into the underlying set theory: this relies on treating the under-
lying theory as itself a formal system, rather than a model as above. Such an
alternative understanding will be discussed below.

Alternative Views Z has often been seen not as a language, but as a sugared
syntax for ZF set theory. In this view, most of the foregoing terminology is not
used. Instead, one seeks to exhibit a mapping from Z to an underlying language of
sets, and to conduct all one’s reasoning in the corresponding theory of sets. Since
the core parts of Z are simple set theory, the mapping is sometimes invisible, and
one is able to use the normal rules of set theory on Z terms. If a partial inverse
for the mapping can be found (it will not be bijective, since the richness of Z
syntax is not typically present in the underlying system) then the underlying
theory might be said to induce a logic for Z, though this construction has not
been explored.

Noteworthy is that this process of translation is largely indistinguishable from
the process of providing a model for Z, as described above. This may help to
explain why the process of Z standardization which began by seeking to provide
a logic for Z has lately focussed most of its semantic efforts on the model theory
of Z.

In many of the proof tools described in the literature, there is no attempt to
describe a logic for Z. Instead, the tool is constructed by ‘embedding’ Z in some
computational logic system. The most successful embeddings use higher-order
logic (as described in the HOL tool, or in Isabelle’s HOL theory) as the ‘host’.
The embeddings are on a spectrum from ‘shallow’ to ‘deep’, depending on how
much of Z’s semantic structure is retained in the translation. To produce a deep
embedding (i.e. one which retains much of Z’s structure) is a non-trivial task.
As a result, the question arises of how to validate this translation.

A proof in the underlying theory may be demonstrably sound for models of
that theory, but the embedding approach is unable to ask whether this represents
a sound proof for Z, since there is nothing against which to judge the translation.
The difference between truth and provability clearly borders at some point on
the philosophical, and is outside the scope of this paper.

3.2 Theorems

It has long been customary to write conjectures (or theorems) in Z specifications
as

` pred

the intention being to speculate (or indicate) that pred is a logical consequence
of the foregoing specification. Various Z paragraphs have been written to the
left of the turnstile (`)—schemas, declarations and predicates, etc.—the in-
tended meaning being that the foregoing specification, augmented with those
paragraphs, has pred as a logical consequence,
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Thus, for example, in Spivey’s [26] BirthdayBook specification, he demon-
strates (without writing `) that

AddBirthday ` known ′ = known ∪ {name?}
meaning that in the context of this specification, and further, within the scope
of AddBirthday as a definition, known has the property shown.

Spivey avoids use of ` in this way, but other authors do not. Since the
system of logic to be used in such a proof is usually ill-defined, this is a most
remarkable abuse of notation, or else a philosophical oddity even for the most
ardent Platonist. In the mentioned texts on logic, and others, the turnstile is
used as a metalogical symbol to indicate (conjectured) theoremhood with respect
to some particular logical calculus. The calculus is either understood from the
context, or its name is supplied as an explicit decoration. For a Z specification,
where there is no calculus to be understood from the context, it is far from clear
what such a conjecture (or theorem) is to mean.

On the ‘alternative view’ given above, the calculus is presumably understood
to be classical first-order logic and set theory. The variety of available presenta-
tions (and as a result, of sets of theorems), especially for the latter, would seem
to leave the statement of a theorem in this way dangerously close to meaningless.

The Draft Z Standard [20] has given a meaning for statements of Z conjectural
theorems which is entirely independent of any logical calculus. This is of course
quite a feat. In fact, the Standard’s definition does not touch theoremhood at
all, but instead deals with model-theoretic truth. That is, the Standard says that

` pred

holds in a specification Spec exactly when all the models of the specification
satisfy the predicate. That is, in the notation of the Standard,

{| Spec |}M ⊆ {| pred |}M .

This form of proposition is more traditionally written

Spec |= pred .

As we have observed, one might expect a logic for Z to be sound—that is,
that every theorem of a specification is true in every model of that specification
(or, ‘`’ V ‘|=’). In pure first-order logic, the converse property (completeness)
also holds, so every logically valid predicate is a theorem. This property does not
extend to axiomatic set theory (if it is consistent), so it is not the case that the
notions of theoremhood and logical validity can be used interchangeably in Z.

As a result, we must conclude that the unqualified use of statements such as
the one which began this subsection is unfortunate, if not misleading.

4 Approaches to Logic and Semantics

A logical presentation is able to give meaning to a metalogical statement like
` pred . A denotational semantics—giving models for the language—is able to
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give meaning to statements like |= pred . The most tractable way to demonstrate
inductively that a logical calculus is consistent is to exhibit a semantic structure
and demonstrate that the logic is sound with respect to the semantics. This has
been the intention of the Z Standards activity [20], though lately most effort has
been spent on the model.

Many texts have given elements of a logical calculus for Z, [25] and [30] being
the among the first. Later, Spivey [26] remarks that his Z Reference Manual has
not included a full set of inference rules, not least because there is insufficient
experience of how to present such rules so that they interact helpfully. Potter et
al. [22] devote a chapter to formal reasoning in Z, but for pedagogical reasons,
rather than to present a systematic reasoning system for Z. Perhaps Woodcock
and Davies [29] give the fullest textbook treatment of reasoning in Z, but again,
this is presented as a good means of understanding the complexities and nuances
of the notation.

Separate accounts have described logics for Z in a more systematic manner.
W [28] was perhaps the first; it has been followed by V [7], which corrects a
number of shortcomings in the account of W . These logics have been developed
to be part of the Z Standardization activity. Henson and Reeves [11] have also
produced a logic for Z, which they have named ZC . Their logic and conclusions
mirror the W family in some respects, but achieve a higher level of rigour and a
greater separation of concerns. They argue that some of the innovations of W ,
such as a novel treatment of substitution, are unnecessary—see below.

Fig.1. Some approaches to reasoning

Figure 1 illustrates some of the approaches to giving meaning to, and/or
reasoning about, Z specifications. Logics for Z transform one conjecture into
another—or discharge the proof obligation to show that the conjecture is a
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theorem—without leaving the Z notation. In each case, the turnstile symbol
` is understood relative to the logic in use, be it W , V , ZC , etc.

The figure also illustrates the possibility of transforming a Z specification
into a model, in, say the language of first-order logic and set theory. It is then
possible to re-cast the conjecture in two different ways—as a possible theorem of
the formal system of first-order logic and set theory, or as a property of the model.
These two activities appear very similar indeed, but are in fact quite different
endeavours. Working in the former system will be a formal logical activity; work
in the latter is more akin to mainstream mathematics. One is in the domain of
proof theory, the other, model theory.

Most proof tools take the first of these approaches. Z/EVES [23] does pre-
cisely this; ProofPower [13] and Z-in-Isabelle/HOL [14] use higher-order, rather
than first-order, logic. Bowen and Gorden [5] explain that these embeddings of
one logic in another may take place at a number of different depths, depending
upon the extent to which the artefacts of the high-level language (Z) are mod-
elled directly in the host logic. In Z, the principal interest is with the modelling
of schemas—see below. A comparison of tools on this basis is included in [18].

It is worthwhile noting that the soundness of these formal logical manipula-
tions is itself guaranteed by an embedding in some model. The soundness (where
proven) of each logical approach means that the sets of transformations increase
when passing down the page—that is, the available logical steps in a logic for Z is
a subset of those available by reasoning about a representation of Z in FOL/ZF,
etc. As we have observed, properties true in the model may not be provable in
the logic, so the inclusion is typically as a proper subset.

Having performed logical reasoning in FOL or HOL, it is not always an easy
task to transform the resulting terms back into Z. The deeper embeddings ac-
complish this quite successfully. Z/EVES, in particular, is able to recast virtually
every predicate back into a Z form. Z/EVES is one system which might, then, be
said to induce a logic for Z, though the complexity of the transformation means
that the details of this logic have not been elucidated.

An alternative to embedding the Z notation in another logic is to encode a
logical calculus for Z in a logical framework [17, 15], or in a custom implemen-
tation such as CADiZ [27]. The soundness of these encodings is usually called
faithfulness. An encoding is called adequate if it allows precisely the same set
of manipulations as the logic it encodes. In practice this is rarely the case, so
encodings are shown in the diagram with a transformation arrow the highest on
the page; it may be imagined to admit the smallest set of transformations.

The diagram is of course only indicative. Particular logics, encodings, em-
beddings, and models will not necessarily form a neat hierarchy, because there
is no general agreement on the class of Z theorems and derivations.

5 Schemas

Schemas are without doubt the most important and distinctive feature of the Z
notation. Semantically, they represent a challenge, and framing suitable inference
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rules for dealing with them has been a significant research activity, which is
reported elsewhere [9, 6]. The difficulty with schemas has been in finding a
uniform representation which can represent a schema abstractly, and used to
give its properties in each situation in which it may appear.

Consider the following schema, which describes a size-limited phone directory,
assuming that MAX has been given some natural number value.

S == [n : NAME 7 7→ PHONE | #n < MAX ]

S might be used as a declaration, as in the following predicate which says that
only international numbers are stored:

∀S • (∀ p : domn • p ∈ INTERNATIONAL)

S might be used as an expression, as in the following predicate which says the
same thing:

∀ s : S • (∀ p : dom s .n • p ∈ INTERNATIONAL)

S might be used as a predicate, as in

∀n : NAME 7 7→ PHONE • S

which we might interpret as saying that all phone directories are limited in size.
The difficulty arises because when S is used as a predicate, the component

labelled n behaves like a free variable—it can be captured by a quantifier. Inci-
dentally, MAX cannot be captured by a quantifier; in all instances of S it takes
the value it did at the point where S is defined. When S is used as an expression,
n is more like a bound variable—though not entirely, as alpha-conversion would
affect the type of the expression. Moreover, in Draft Standard Z, a schema-type
object can be created at any level of scope, not just at the top level, so the
boundness/freeness of variables depends critically on the context of the term.

Dealing with these issues led the designers of W/V etc. to create an elaborate
calculus of bound and free variables, and eventually an object-level notion of
substitution. When a schema is used as an expression, it denotes a set of bindings,
which are associations of labels with values. For example, the schema

T
x , y : N

x < y

has as members bindings such as

〈| x == 3, y == 4 |〉, 〈| x == 2, y == 6 |〉
etc. A binding such as 〈| x == e |〉 carries the same semantic content as a
traditional substitution [x/e]. Instead of writing P [x/e], we might write

P � 〈| x == e |〉
the latter being a wholly Z predicate.
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Henson and Reeves [11] have since suggested that this innovation was unnec-
essary and over-complicates the logic. Their logic avoids needing schema com-
ponents to be sometimes bound and sometimes free, and consequentially is able
to use a more usual notion of substitution.

The V logic presents a complete calculus for schemas based on this approach
to bindings and substitution. Henson and Reeves [9] present a similar calculus,
based upon their logic ZC , retaining a more traditional notion of substitution,
and basing their rules on a notion of schema membership which is more liberal.
Both pieces of work demonstrate sufficient inference rules to allow schema objects
to be eliminated entirely—demonstrating that a logic for the whole of Z can be
constructed using ordinary ZF and adding one new construction (the labelled
product/schema type/binding).

These calculi also make formal many of the results that have been used by Z
practitioners (and schema expansion tools) over many years for the analysis of
operators in the schema calculus. For example, if D1 and D2 represent schema
declaration parts in ‘normalized’ form (itself typically described informally) then

[D1 | P1] ∧ [D2 | P2] = [D1 tD2 | P1 ∧ P2]

where t is some signature-compatible union. A proof of this property is presented
by Henson and Reeves [9], though it was also possible using W [28].

6 Undefinedness

Whilst most well-formed expressions in Z can be given a meaning quite readily,
there are two places where a problem arises with potentially undefined terms.
One is in the area of function application; the other with improper µ-terms. The
latter may be seen as a special case of the former (and vice versa), and so we
restrict our attention to function application. (The µ operator is used to select
from a set the unique member having a given property. Where no such unique
member exists—either through there being no member with the property, or
several members with the property—the µ-term is called improper. It is a simple
matter to reconstruct this as a discussion of functions and relations.)

Z allows functions to be total or partial. In Z, both functions and relations
are sets of pairs. There is no uniform procedure to check whether a given relation
is in fact a function, so the language allows relations to be applied to arguments
as if they were functions. Problems may arise if a partial function is applied to
an argument not in its domain, or if a relation is applied at a point where it is
not functional (i.e. it maps its argument to more than one value): what is the
function application to denote, and how does this value affect the surrounding
terms, or the predicate in which it occurs?

This is not merely an academic enquiry, since it may materially alter the
meaning of a specification. Moreover the use of partial functions is very common
Z style, so the question potentially affects very many Z specifications. Z has been
criticised on these grounds, particularly by the creators of PVS [21]. In PVS all



Relating Z and First-Order Logic 1275

functions are total—the burden is thereby shifted into the type system, which
unlike Z’s is therefore undecidable.

The tool Z/EVES [23] incorporates a similar check that each function applica-
tion is well-formed. Its authors report that the majority of ‘real’ Z specifications
examined have failed this test. Many have argued (notably, the late Peter Lup-
ton [16] ) that a specification which exploits any interpretation of undefinedness
is a bad specification.

6.1 Approaches to Undefinedness

A comprehensive treatment of the possible approaches to undefined terms is
given by Arthan [1]. These include the possibility of allowing undefined terms to
be reflected in making the predicates in which they arise also undefined. That
approach gives rise to a three-valued logic, as used in VDM [12], but it is not
generally embraced by Z users (the Cogito project [3] is an exception).

The two most popular approaches are characterised by Arthan as ‘UPF’
(undefined propositions are false) and ‘UED’ (undefined expressions denote). In
the latter case, all expressions are assumed to denote a value, but it may not be
possible to determine which one.

The Draft Z Standard has accommodated the variety of approaches by loosely
defining the semantics of function application. Whereas most expressions are de-
fined by an equation, so that the meaning of a particular expression is a particular
set or relation in the underlying set theory, function application is defined by
a set inclusion. Thus, the value of an expression involving a relation applied
outside is domain, or where it is not functional, is not prescribed.

Different logical systems may resolve this in different ways, and nevertheless
be considered compliant (arguably, sound). For example, each type could be
given a non-Z error value, and this could be taken as the value of the undefined
term. Or, possibly, there could be a different error value for each term, to ensure
that undefined terms are not inadvertently made equal. The resolution chosen by
the W/V family of logics is to determine that undefined expressions denote a Z
value of the appropriate type, but not to allow sufficient apparatus to determine
which value that is.

6.2 Baumann’s Question

The W/V resolution described above gives rise to a question posed by Baumann
[2].

If every expression denotes a Z value of the appropriate type, then surely

` ∀ f : X 7→ Y • (∀ x : X • (∃ y : Y • f x = y)
)

therefore

` ∀ f : X 7→ Y • (∀ x : X • (∃ y : Y • x 7→ y ∈ f ))
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therefore

` ∀ f : X 7→ Y • (∀ x : X • x ∈ dom f )

therefore

` ∀ f : X 7→ Y • f ∈ X → Y

That is to say, all partial functions in Z are also total functions. This is clearly
undesirable; indeed, it is at odds with most users’ understanding of Z.

The resolution of this apparent paradox lies in the difference between truth
(in the model) and provability (in the logic). Writing |=D pred to mean that pred
holds in the model extended so that it has the property ‘every term denotes’,
the following may be true

|=D ∀ f : X 7→ Y • (∀ x : X • (∃ y : Y • f x = y)
)

,

but it does not follow (indeed, it is not the case) that this predicate is a theorem
of W etc. (Its truth is not certain, because the extension of the model may
be made in a number of different ways: the model might determine that any
application of a function outside its domain results in a ‘bottom’ value which is
outside the type system, or a distinguished value of the appropriate type, or an
entirely unspecified member of the type. The predicate above would be true in
the latter two cases—provided Y is a basic type, and not some subset—but not
in the first.)

6.3 Issues of Methodology

We have already argued that matters of logic are important not only to those who
wish to prove properties of their specifications, but to all who try to understand
Z specifications. In particular, a working knowledge of logic will enable the reader
to ask questions about what would have happened if something had been written
differently.

The treatment of undefinedness has an impact on how one writes specifi-
cations as well as how one reasons about them. An oft-cited example is the
specification which declares a (possibly infinite) set and then asserts that its
cardinality is fixed.

s : PN

#s = 4

The cardinality function # is partial; its value is defined only on finite sets.
The question of whether or not the definition of s is a useful one depends upon
one’s treatment of undefined terms. If every expression denotes (‘UED’), then
#s and 4 can be used interchangeably in the sequel, which is probably almost
what the specifier intended—but not quite. On the other hand one interpretation
of the position ‘UPF’ would mean that the very possibility that #s may be
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undefined would be enough to make the predicate false, and therefore the whole
specification inconsistent (and useless). Another interpretation of ‘UPF’ would
be to rule out those models in which #s = 4 is false (for whatever reason,
including undefinedness), leaving a specification which performs as ‘intended’.
The apparatus for achieving the latter is non-trivial.

Conversely, we can easily exhibit specifications—such as set comprehensions
or schemas—where we would like undefined terms to give rise to false predicates,
so that the rogue terms are excluded from the set/schema. For example, writing

S4 == { s : PN | #s = 4 }

we would hope that S4 would be the set of all sets of natural numbers having
cardinality 4—and no others. On the ‘UED’ interpretation, we can be sure that
the sets of four natural numbers are members of S4, but we cannot prove that,
say, N is not. In ‘UPF’, however, S4 would contain exactly the sets of natural
numbers having four elements, and nothing else.

The study of undefinedness has a long history in classical mathematics, with
no universal answer, and often no need for one because the ‘intuitive’ answer is
usually the right one (normal mathematical practice not being overly formal).
That there should be no ready answer in Z is therefore not surprising.

7 Future and Related Work

7.1 Managing Complexity

Just as undefinedness is a widespread problem, so too is the issue of managing
complexity. Z’s schema notation provides the specifier with the opportunity to
write very deeply-nested specifications in a very compact way. Anyone who has
used a schema expansion tool will know how readily an innocuous-looking five-
line schema can when fully expanded occupy several printed pages.

A challenge in supporting proof is to find ways to manage this complexity.
This issue is almost orthogonal to the logical concerns already raised, but has a
profound impact on the tractability of formal proof for anything but the smallest
specification.

Moreover, the language is quite rich, and uses a variety of specialised symbols.
Again, these are a means to the management of complexity, since they allow
complex ideas to be expressed succinctly. They are, however, outside the general
abilities of most proof tools today, though they need not be, since on-screen
display of symbol fonts is now quite commonplace.

Support for practical reasoning will require solving these two difficulties in
tool implementations. The first is ideally a methodological issue as well as an
interface one. Despite discovering logics for schemas, no practical method for
using schemas to structure proofs as well as specifications has been discovered.
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7.2 Other Logics

Whilst this paper has largely described Z in relation to first-order logic, higher-
order logic has been found to be a good basis for Z semantics. In particular,
it offers a very appropriate type model (provided schema types/bindings are
incorporated). [24] has described an isomorphism between Z and HOL (disre-
garding names in schema types). This provides the theory underlying the Z in
Isabelle/HOL work described above.

Others have considered using constructive logics [10]. In this approach, proof
becomes a means of program development. In other contexts, second-order logic
has been found to be a useful tool; perhaps it could also add expressiveness to Z.

8 Conclusions

Z now has quite a lengthy history, and sometimes the original motivations and
assumed theory have become obscured. This paper’s purpose is to make some
observations about the purpose and role of proof in Z, and its relationship to
first-order logic. General understanding of these topics has been divergent, and
the hope is to promote some common acceptance and understanding; in essence
to provide a framework for a philosophy of proof in Z. Much of the paper has
been devoted to documenting issues that are ‘part of the folklore’ of Z proof but
do not seem to have been recorded anywhere—to the annoyance of newcomers
to the field.

The original connection between Z and first-order logic was very close. Vari-
ous developments have served to obscure this relationship. Two pieces of recent
work [11, 6] show that the relationship persists, and indeed a first-order logic
can be described which, with the single addition of schema types can be used
to reason about the whole language. Insofar as demonstrating this relationship
is non-trivial it also suggests that Z adds some significant structure to the lan-
guage of first-order logic and set theory. Experience suggests that this structure
is useful for specification. It appears that it may also be useful for proof.
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