
Modelling Microsoft COM Using π-Calculus

Loe M.G. Feijs

Philips Research Laboratories and EESI TUE
feijs@natlab.research.philips.com and feijs@win.tue.nl

Abstract. We use the π-calculus to model aspects of Microsoft’s COM
architecture. The paper introduces certain aspects of COM, first using
IDL and C++, and then using a sugared version of the π-calculus (with
numbers and lists added). Most of the complexities arise in dynamic in-
terface management. We explore using the reduction rules of the calculus
to show that two components (a stack and stack-observer) do indeed con-
nect to each other in the required manner.

1 Introduction

There is considerable experience with using formal techniques for modelling and
analysis of classical communication protocols, by which we mean those proto-
cols which deal with such issues as splitting and assembling protocol data units,
error control and flow control. Languages like CCS [1], ACP [2], LOTOS [3],
PSF [4], SDL [5], MSC [6] etc. have proven to be useful for this. The compo-
nent technology [7, 8] which is emerging presently, brings with it protocols of a
slightly different type: they are concerned with dynamic binding and with ne-
gotiating about a component’s capabilities. Configurations change dynamically
and processes not only exchange data, but they also exchange link-names.

Therefore we consider it worthwhile to experiment with the π-calculus [9],
which provides precisely this extra expressive power. We apply the π-calculus
to key aspects of one of the most successful component technologies presently
available: Microsoft’s Component Object Model (COM) [10]. This is the basic
technology which makes it possible, among other things, to perform run-time ne-
gotiations and establish run-time bindings. COM is the basis of what Microsoft
calls Active-X, whose forerunner was called OLE (Object Linking and Embed-
ding) [11]. It is Active-X or OLE which allows to copy-paste a bitmap made by
MS-Paint into a MS-Word document, and then find that when the bitmap is
embedded in the Word document, it still can be edited in a wysiwyg style.

Survey of the paper : in Sect. 2 we present a brief discussion of the relevance of
component technology and introductory remarks on Microsoft COM. In Sect. 3
we present a summary of the π-calculus. In Sect. 4 we present the principles of
our approach to modelling COM using π-calculus. Sects. 5 and 6 together form
the first part of our case study: the former explaining concrete aspects of COM
for a component MyStack by using only IDL and C++ as notations, the latter
section describing precisely the same aspects but using π-calculus instead of
IDL and C++. Then in Sect. 7 we discuss the key aspect of COM (manipulating

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1343–1363, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

1344 Loe M.G. Feijs

interface pointers) and in Sect. 8 we extend the formal π-calculus model in order
to properly deal with these key aspects of COM as well. A sample calculation
using the rules of π-calculus is given in Sect. 9. Finally Sect. 10 contains some
concluding remarks. The paper demands no a-priori knowledge of COM or π-
calculus: Sects. 5 and 7 introduce COM and Sect. 3 summarises the π-calculus.

Acknowledgements: the author would like to thank Hans Jonkers for the help
and cooperation on the subject of this paper; the author also wants to thank the
anonymous referees for their helpful comments.

2 Component Technology

The idea of component technology is that custom programs are composed from
reusable parts that serve to perform certain sub-tasks. In the model proposed by
Microsoft, components are reused in binary executable form. It includes a binary
interfacing mechanism which lets components communicate with each other in
an open system. There is a need to add components to an open system and to
add new interfaces to a system. The connection and communication mechanisms
are standardised and do not depend on the specific interfaces themselves. The
set of components in a system can change over time. So there are situations
where a newer component that is capable of exploiting a certain new interface
encounters an old component that does not know about this new interface. For
this purpose there is a negotiation mechanism in COM by which one component
or application can find out if a desired interface is supported by another compo-
nent. It makes sense to think of interfaces as formal legal contracts. Implementers
must make sure their implementations meet the contracts. In COM, contracts
are identified by interface identifiers (IIDs). When components are enhanced,
they get new interfaces, while preserving possibly some of the older interfaces.
It is also possible to remove some of the older interfaces. The interfaces them-
selves are not changed. Each IID identifies a contract which may or may not be
supported by a given component (or better, by a given object; in this paper we
do not go into the distinction between components and objects). Once the IID
is fixed and released, no one is supposed to make even the smallest modifica-
tion to the signature or the semantics of the interface. The signature is fixed by
means of the language IDL. Although most of the COM literature insists that
the semantics of the interfaces for a given IID be fixed, there is no dedicated
specification language for COM and often the semantic aspects of the contracts
are not formally specified. Williams in [12] provides an exposé of the ideas of
system evolution underlying COM (this paragraph is based on Williams’ text).

The internal operation of a COM component is hidden because COM is a
binary standard. A COM component is obtained by compilation of for example,
a C++ program, or a Java program. The source code is not released for distri-
bution. Usually only the compiled version, i.e. the machine code is released. It is
not possible to read to or write from a component’s data structures directly. All
access must be done via procedure calls. This approach preserves the freedom for
choosing another data structure in a next version of the component. Secondly, it

Modelling Microsoft COM Using π-Calculus 1345

is relatively easy to replace a local function call by a call to a stub, which at its
turn executes an RPC (remote procedure call). This kind of replacement, which
is easy for procedure calls, would not be so easy to realise for direct access to
data structures.

All functions (procedures) are grouped into so-called interfaces. An interface
is a set of functions whose semantics is somehow related. This resembles the
well-known concept of ‘signature’ from the theory of algebraic datatypes. An
interface however only contains functions, no abstract types. There are auxiliary
types such as void, long, etc, and also “struct”s or other interface types; but the
main type, the component’s type itself remains implicit. Usually a component has
several interfaces (which is an important difference with algebraic data types).

3 The π-Calculus

The π-calculus was proposed by Milner, Parrow and Walker in 1992. It is also
called ‘a calculus of mobile processes’, but actually no processes are moved
around, only the identities of the ports of the processes can be communicated
from one process to another. The π-calculus has a certain simplicity which comes
from the fact that all distinction between variables and constants has been re-
moved. The main idea is that the calculus is like CCS, except for the fact that
not only values are communicated, but also port identifiers.

A very brief summary of the calculus is given here. If p is a port, then pv . P is
the process which sends value v along port p and then proceeds as P . Conversely,
p(x) . Q is the process which receives a value over port p, binds the value thus
received to x, and proceeds as Q. In the body Q, this x may be used. The special
thing about π-calculus is that port identifiers may be sent and received as well.
For example q(p) . pv . R is the process which receives port identifier p via port
q, and then uses this p for sending something else, viz. v (and proceeds as R).

Further operators of the π-calculus include + for alternative composition, |
for parallel composition, recursive definition, inaction 0, silent step τ , matching
prefix [x = y] and binding prefix (x). The main rule of computation is that
(... + yx.P + ...) | (... + y(z).Q + ...) τ−→ P |Q{x/z}.

4 Modelling Approach

The main modelling techniques that we propose and that we shall put into action
in Sects. 6 and 8 are the following:

– invocation of a procedure with n input and m output parameters is modelled
by n + 1 send actions followed by m receive actions. HRESULT (handle to a
result) and call-by-reference parameters are treated in the same way.

– interface pointers are modelled as π-calculus ports, for example if the one-
argument procedure p belongs to interface i, then invoking p is modeled as
ip . ia . i(h) . · · · . So p is the procedure’s name, a is its input argument and
h is the result (of type HRESULT).

1346 Loe M.G. Feijs

– the state-based behaviour of the component is modelled by recursive equa-
tions where the various parts of the state are parameters.

5 The ‘Interface’ Concept of COM

Our example is about a stack. We begin with its main interface (the push and
pop behaviour). Each interface has a name. In COM this name always starts
with a capital I. So we assume that the usual push and pop functions are inside
IManipulate. There is a language for describing interfaces called IDL (Interface
Definition Language). For the first interface, we assume a few auxiliary types:

– HRESULT, whose value set has 232 elements, among which are S_OK, S_FALSE,
E_NOINTERFACE, E_NOTIMPL and E_FAIL.

– The set ITEM (the values that will be pushed onto the stack), with a value
set which is considered not being interesting now (32 bits integers).

For the purpose of classifying the obtained HRESULT values there are two auxil-
iary functions, FAILED(...) and SUCCEEDED(...), which we fix for the time
being by means of equations: FAILED(S_OK) = FALSE, FAILED(S_FALSE) =
FALSE, FAILED(E_NOINTERFACE) = TRUE, etcetera. Generally FAILED(S_...)
= FALSE and SUCCEEDED(S_...) = TRUE. Conversely FAILED(E_...) = TRUE
and SUCCEEDED(E_ ...) = FALSE.

Now we are ready to present our first interface definition in IDL (we have
left out a few things, viz. [in], [out] which serve for classifying parameters,
and :IUnknown, which indicates inheritance on interfaces).

interface IManipulate

{

HRESULT clear();

HRESULT is_empty();

HRESULT push(ITEM i);

HRESULT pop(ITEM *retval);

}

First we discuss the syntax of this specification. The first word, “interface”
is a key-word. The second word, “IManipulate” is the name that is given to
the newly defined interface. Thereafter, between “{” and “}” there is a set of
four function headers. These function headers are denoted with a syntax which
resembles C or C++. Recall that in C and C++ declarations always mention the
type first, followed by the name of the variable or parameter of that type. So for
example HRESULT push(ITEM i); means that push is a function that takes an
ITEM value and that yields a HRESULT value. Please note that push is a function
in the sense of the programming languages C and C++, that is, a procedure
with side-effect. The IDL description only contains signature information; in
particular, it does not say which variables are assigned to. For is_empty we can
use the distinction between S_OK and S_FALSE to indicate whether the stack is
empty (S_OK) or not empty (S_FALSE). Usually this is not recommended, but it

Modelling Microsoft COM Using π-Calculus 1347

is possible. Also note the asterisk in (ITEM *retval): the C or C++ conventions
apply. So this function has to be called having as its argument a pointer to a
variable in which an ITEM will fit. This variable could be called retval. In that
case &retval is a pointer to this variable. Therefore the call pop(&retval) has
the effect that upon return we find that retval contains the ITEM value which
was first on top of the stack (assuming that HRESULT delivered the value S_OK).

If we have a stack object, we can perform push and pop operations, etc. But
we shall never have objects as such; we will only have direct access to pointers
which refer to interfaces. These interface pointers can be dereferenced (which
gives us interfaces), and by using an interface we can call clear, is_empty,
push and pop. Suppose for example that ps is a pointer to an IManipulate
interface of a component with stack behaviour, then we can run the following
fragment of C++ (if we prefer Java we have to write “.” instead of “->”). So
this is code of some component or application which has to use a stack.

HRESULT hr;

ITEM i,retval;

BOOL test = FALSE;

hr = ps->clear();

if (SUCCEEDED(hr))

{

hr = ps->push(i);

if (SUCCEEDED(hr))

{

hr = ps->pop(&retval);

if (SUCCEEDED(hr))

{

test = (retval == i);

} else // failed to pop

} else // failed to push

} else // failed to clear

6 Modelling Interface Behaviour in π-Calculus

We show a recursive definition of a process MyStack which models the interface
behaviour of the IManipulate interface. It is based on the principles of Sect. 4.

The state-based behaviour of the various components is modelled again by
recursive process equations where the various parts of the state are carried along
as parameters of the processes. Although the pure π-calculus does not provide
for built-in data types and process parameters, we assume that these can be
simulated thanks to the power of the π-calculus (which is known to simulate full
λ-calculus). We assume additional operators <>, <.> and ++ for lists of items.
Here <> denotes the empty stack, <.> is the operator which makes a one-element
list, and ++ denotes concatenation.

The process MyStack has two parameters. The first of these, pIman, models
the interface pointer along which all communication takes place. The second
parameter is the contents of the stack.

1348 Loe M.G. Feijs

MyStack(pIman,<>) =

(pIman (f) .

([f = clear] .

pIman S OK .

MyStack(pIman,<>)

+ [f = is empty] .

pIman S OK .

MyStack(pIman,<>)

+ [f = push] .

pIman (j) .

pIman S OK .

MyStack(pIman,<j>)

+ [f = pop] .

pIman E FAIL .

MyStack(pIman,<>)

))

MyStack(pIman,<i>++s) =

(pIman (f) .

([f = clear] .

pIman S OK .

MyStack(pIman,<>)

+ [f = is empty] .

pIman S FALSE .

MyStack(pIman,<i>++s)

+ [f = push] .

pIman (j) .

pIman S OK .

MyStack(pIman,<j>++<i>++s)

+ [f = pop] .

pIman S OK .

pIman i .

MyStack(pIman,s)

))

There is nothing special about this model yet. It could be written in CCS or any
process algebraic formalism. But in the next section we present other aspects
and other examples in COM, the modelling of which becomes more interesting.

7 Manipulating COM Interface Pointers

An important question to be addressed now is: “how do we get an interface
pointer of a stack”? There are two answers: (1) get it from somebody else, (2)
create it yourself.

For the first case (got it from somebody else) it is best to first perform
some querying in order to make sure that we have a valid interface pointer
of the desired interface identifier (IID); there is a general mechanism for that.
For a given interface pointer it is possible to ask in a dynamic way whether

Modelling Microsoft COM Using π-Calculus 1349

its component has an interface with IManipulate behaviour (that is, whether
the component implements stack behaviour). This asking in a dynamic way is
important because objects are created in a dynamic way, on different machines,
possibly from different or even incompatible component versions. So it is very
essential first to find out more about the component behind a given pointer. This
asking/testing mechanism makes it possible to obtain other interface pointers
once we have the first one that belongs to a certain component. The mechanism
is implemented as a procedure which is called QueryInterface.

For the second case it is possible to get hold of an interface pointer via a so-
called “factory”. Once we have the first, we can use QueryIterface to get the
others. First we discuss the QueryInterface mechanism. Each component sup-
ports one interface that is obligatory: IUnknown. Later we shall show more of our
component MyStack which happens to have three interfaces. These will be called
IUnknown, IManipulate and IOverflow (see figure). The interface IUnknown has
to be supported by every component. There is no language construct to express
that MyStack has these three interfaces.

,0DQLSXODWH

,8QNQRZQ

V�0\6WDFN
,2YHUIORZ

Fig. 1. MyStack object having three interfaces.

MyStack is a concrete component which contains a ‘class’, of which instances
can be created. In Figure 1 we show an instance (which is why we underlined
s:MyStack). The asking/testing mechanism is provided by IUnknown, which has
the following IDL:

interface IUnknown

{

HRESULT QueryInterface(REFIID iid, void** ppv);

HRESULT AddRef();

HRESULT Release();

}

REFIID is the type of pointers to IID, where IID is the type of interface iden-
tifiers. Interface identifiers are statically determined identifications. Note: this
iid must be viewed as an input parameter; the fact that REFIID is a pointer
itself is only an efficiency trick which amounts to a call-by-reference mechanism.
The second parameter yields an untyped pointer (an interface pointer). This
QueryInterface function embodies the mentioned asking/testing mechanism.

1350 Loe M.G. Feijs

What comes next is an intermezzo about interface identifiers and interface
pointers. Interface pointers indicate specific instances of interfaces, associated
with corresponding object instances, whereas interface identifiers effectively give
the “type” of the interface. An interface identifier is obtained statically using a
special number generator (uuidgen, to be run by the interface designer, no cen-
tral registering). This could yield 6A92D9A0-C04D-11D3-A11B-00A024674DFA for
IManipulate. In the same way IUnknown has its own interface identifier, but this
is always the same, on all machines, viz. 00000000-0000-0000-C000000000000046.
This takes care of all numbers being unique. Using the number generator at
another point in time or at another machine yields a different number. This
number 00000077-0000-0000-C000-000000000048 could be the IID that belongs to
all IManipulate interfaces. If we have ten stacks then we have 30 interfaces:
ten of the first IID (00000000-0000-0000-C000-000000000046), and ten of the IID
of IManipulate, and yet another 10 of that of IOverflow. But all 30 of them
have another interface, and hence another interface pointer.

Next we put the asking/testing mechanism into operation. Let us presuppose
constants for the interface identifiers, typically fixed by a #define IID_IUNKNOWN
00000000-0000- 0000-C000-000000000046, etc. Now assume that the factory
has given us a pointer, pStack say, as in the following program fragment:

void* pStack;

pStack = ... // from the factory

Then we can test pStack by asking if indeed the IID of IUnknown is known.

void* pStack_;

HRESULT hr;

hr = pStack->QueryInterface(IID_IUNKNOWN, &pStack_);

If hr equals S_OK, or if it is one of the other S_ values, then we know that
we have got an IUnknown interface pointer. Besides that, QueryInterface also
provides a result, in this case in pStack_, and if all is right, this is again a
pointer to the same interface as pStack. Although this was a nice test, it does
not seem to advance us much. So next we shall use QueryInterface to obtain a
pointer to another interface, IManipulate. This works the same as just before:
call QueryInterface, but now giving it the IID (obtained once from the special
number generator) of IManipulate

void* pIman;

HRESULT hr;

hr = pStack->QueryInterface(IID_IMANIPULATE, &pIman);

If hr equals S_OK, or one of the other S_ values, then we know that in pIman we
have got an IManipulate interface pointer. We may assume that a stack has been
created (or at least something else that implements IManipulate behaviour).
Now we are ready to use this object.

hr = pIman->clear();

hr = pIman->push(i);

hr = pIman->pop(&retval);

Modelling Microsoft COM Using π-Calculus 1351

This was quite involved, but the advantage is that, starting from a suspect
pointer, which may or may not come from the appropriate “factory”, we have
verified that it belongs to an object with stack behaviour. And in this way we
arrived at functions for which there is no more reason to doubt that they will
meet our expectations.

Now let us have a look at the third interface of MyStack, the IOverflow.
The idea is that it is employed for connecting “callbacks”. We imagine that
heavy usage of the push operation (much more push’es than pop’s) could lead to
an overflow of the stack. In fact, each stack has only a limited memory capacity
(1000 items say) and if this is exceeded, the normal stack behaviour can no longer
be guaranteed. It should be tried to prevent this, which is better than trying
to restore a stack where the damage has already occurred. Therefore we assume
that there is another component, for example called MyStackObserver, which
has to be warned whenever the threat for overflow occurs (MyStackObserver
is only a concrete example, in fact we are concerned with the general idea of a
component which observes a stack). Of course it would be possible to have the
calls of the observer’s procedures “hard-coded” in MyStack. But assume that we
refrain from doing so, and instead of that let us demand that objects with stack
behaviour work for arbitrary observers, not just this specific MyStackObserver.
So an arbitrary component must be able to subscribe to warnings concerning
stack overflow. Therefore such an object (e.g. MyStackObserver) must tell the
object with stack behaviour which procedure must be called if an overflow threat
occurs and which procedure must be called if an overflow happened nevertheless.
In this context we call these procedures of the observer “callback procedures”. In
general there may be several callbacks procedures; it is COM-style to group them
into an interface. In our running example we choose for naming this interface
IStackObserver; it has to be implemented by MyStackObserver.

In this example we want two call back procedures, onStackHalfFull() for
when the stack is about half full and onStackOverflow() for handling a real
overflow. We give the IDL description of this interface:

interface IObserver

{

HRESULT onStackHalfFull();

HRESULT onStackOverflow();

}

MyStackObserver has to “inform” the stack object of these two procedures,
but it will not do so for each procedure separately. It does so in a single step,
namely by sending its IStackObserver interface pointer to the object with stack
behaviour. Now the problem of “informing” has been reduced to transferring an
interface pointer. That is easy if we choose the IOverflow interface as follows:

interface IOverflow

{

HRESULT subscribe(int p, IStackObserver* obs);

HRESULT unsubscribe(IStackObserver* obs);

}

1352 Loe M.G. Feijs

The parameter p of subscribe indicates at which percentage of the stack space
the warning is generated. For example if p equals 50 then the warning will come
when precisely half of the available stack space has been used up. Now the
intention of all this is that two component instances will get connected as shown
in Figure 2 below.

,6WDFN2EVHUYHU

��R�0\6WDFN
����2EVHUYHU

,2YHUIORZ

,8QNQRZQ

���V�0\6WDFN

,8QNQRZQ

,0DQLSXODWH

Fig. 2. MyStackObserver and MyStack coupled.

The arrow from MyStack to the lollipop of IStackObserver indicates that
object s, being an instantiation of component MyStack can perform calls to
procedures of the object IStackObserver. Whereas IOverflow is an incoming
interface of the object with stack behaviour, we say that IStackObserver is
an outgoing interface of it. Somewhere in the initialisation of MyStackObserver
there is a call of subscribe(...) as we shall show in the corresponding program
fragment given below. Let us assume that pStack is pointing to the IUnknown
interface of an object with stack behaviour. Also assume that IID_IOVERFLOW is
defined by means of a #define.

IUnknown * pStack; // IUnknown pointer of e.g. MyStack (given)

IStackObserver* pIobs; // interface pointer of observator self (given)

IOverflow* pIovr; // interface pointer (to be filled in)

HRESULT hr;

hr = pStack->QueryInterface(IID_IOVERFLOW, &pIovr);

if SUCCEEDED(hr) {

hr = pIovr->subscribe(50, pIobs);

if SUCCEEDED(hr) {

// coupling made

} else ...

} else ...

We assume that somewhere inside the object with stack behaviour this value
50 is stored, for example in a variable called warninglevel. We also assume
that this object with stack behaviour can only deal with one subscriber, whose
IStackObserver interface pointer is kept in the variable pIobs (internally in

Modelling Microsoft COM Using π-Calculus 1353

the object with stack behaviour). So the implementation of subscribe, possibly
being a part of the implementation of MyStack, could look as follows:

int warninglevel; // (to be filled in)

IStackObserver* pIobs; // subscriber (to be filled in)

HRESULT subscribe(int p, IStackObserver* obs)

{ warninglevel = p

pIobs = obs;

return S_OK;

}

Figure 3 below illustrates the entire structure of pointers built-up in this way. In
this state we find that the system consisting of MyStackObserver and MyStack
is sufficiently coupled in order that the operational behaviour of the component
with stack behaviour can begin.

,6WDFN2EVHUYHU

R�0\6WDFN
2EVHUYHU

,2YHUIORZ

,8QNQRZQ

V�0\6WDFN

,8QNQRZQ

,0DQLSXODWH

S6WDFN

S,RYU
S,REV

��

...
VWDFN

VS

ZDUQLQJOHYHO

S,REV

Fig. 3. Implementation of MyStackObserver and MyStack coupling.

It can be seen how the outgoing arrows of Figure 2 are nothing but abstrac-
tions of the implementation-level arrows (that is, pointers). Of course Figure 3 is
not suited for specification purposes because it reveals too much implementation
detail. It is an illustration of one of the possible ways the implementation could
work; but variables such as pStack, pIovr, pIobs, stack, sp, warninglevel
and (the other) pIobs are not visible from the ouside of the component.

Once the coupling has been established, the object with stack behaviour can
perform calls of onStackHalfFull() and onStackOverflow(). Let us have a
look at a possible implementation of push(...) inside MyStack. We repeat the
declarations of warninglevel and pIobs.

#define MAX 1000

int warninglevel; // (given)

IStackObserver* pIobs; // subscriber (given)

1354 Loe M.G. Feijs

int sp; // stack pointer

ITEM stack[MAX]; // contents of the stack

HRESULT hr;

HRESULT push(Item i)

{ if (sp >= MAX) {

hr = pIobs->onStackOverflow();

return E_FAIL;

}

else {

if (sp >= warninglevel*(MAX / 100)) {

hr = pIobs->onStackHalfFull();

}

stack[sp++] = i;

return S_OK;

} }

By now it should be clear that Figure 1 (stack behaviour with three interfaces)
is somehow incomplete: the view of an object with stack behaviour is only com-
plete if we include its outgoing interface as well. Whenever we want to fix a con-
tract concerning stack behaviour we have to describe IUnknown, IManipulate,
IOverflow and IStackObserver. Then we have an interface suite of stack be-
haviour which is independent of the context. Only in this way it may become
possible to have a complete specification of the suite (and hence of a component
that supports that suite).

Although everybody is free to invent new interfaces and make agreements
on their usage, there are a number of standard interfaces which are themselves
part of the COM framework. Next to IUnknown which was discussed above,
the following four interfaces are frequently used; these belong together, pro-
viding a general mechanism for binding all kinds of subscribers to components
that will perform callbacks: IConnectionPoint, IConnectionPointContainer,
IEnumConnectionPoints and IEnumConnections. They resemble IOverflow,
but are much more general. The basic idea is that for each outgoing interface
(such as IStackObserver) there is an extra incoming interface that offers the
possibility of subscribing to certain events (coupling them to callback functions).
This extra incoming interface is called IConnectionPoint. It makes it possible
to have more than one subscriber. Moreover, IConnectionPoint is standard-
ised: there is no need to invent from scratch what the interface will look like.
The interface can always be the same, quite independently of the precise nature
of the outgoing interface itself.

8 Modelling COM Interface Manipulation in π-Calculus

In this section we present a formal model of MyStackwhich support the interfaces
IUnknown, IManipulate and IOverflow. We also show parts of MyStackObserver
which supports the interfaces IUnknown and IStackObserver. Finally we show
a part of StackUser, which supports no interfaces but which does have a certain

Modelling Microsoft COM Using π-Calculus 1355

active behaviour. As before, we assume operators <>, <.> and ++ for lists of items.
Moreover, if s is a list of items, we let |s| be the length of the list. We assume
0,1,... and + for natural numbers. We assume IID_IUNKNOWN, IID_IMANIPULATE,
IID_IOVERFLOW and IID_ISTACKOBSERVER for interface identifiers. And we as-
sume i0 to be some value of type ITEM. We adopted a simplification, viz. to have
only one reference counter keeping the total number of references to any of the
interfaces of the object (this is done often although conceptually there is one
counter per interface). The present model does not build further on the model
of Sect. 6, we just start from scratch again. There is one COM feature which
we have left out in order to simplify the presentation; this is the fact that all
interfaces ‘inherit’ from IUnknown.

MyStack(pIunk,pIman,pIovr,pIobs,refs,stack,wl) =

(IUnknown(pIunk,pIman,pIovr,pIobs,refs,stack,wl)

+ IManipulate(pIunk,pIman,pIovr,pIobs,refs,stack,wl)

+ IOverflow(pIunk,pIman,pIovr,pIobs,refs,stack,wl)

)

The state-based behaviour of the various components is modelled again by re-
cursive process equations where the various parts of the state are parameters of
the processes. The remarks of Sect. 6 apply here too.

IUnknown(pIunk,pIman,pIovr,pIobs,refs,stack,wl) =

(pIunk (f) .

([f = QueryInterface] .

pIunk (iid) .

([iid = IID IUNKNOWN]

pIunk S OK .

pIunk pIunk .

MyStack(pIunk,pIman,pIovr,pIobs,refs + 1,stack,wl)

+ [iid = IID IMANIPULATE]

pIunk S OK .

pIunk pIman .

MyStack(pIunk,pIman,pIovr,pIobs,refs + 1,stack,wl)

+ [iid = IID IOVERFLOW]

pIunk S OK .

pIunk pIovr .

MyStack(pIunk,pIman,pIovr,pIobs,refs + 1,stack,wl)

+ ["otherwise"]

pIunk E NOINTERFACE .

pIunk NULL .

MyStack(pIunk,pIman,pIovr,pIobs,refs,stack,wl)

)

+ [f = AddRef] .

pIunk S OK .

MyStack(pIunk,pIman,pIovr,pIobs,refs + 1,stack,wl)

+ [f = Release] .

([refs = 1]

pIunk S OK .

0

1356 Loe M.G. Feijs

+ [refs > 1]

pIunk S OK .

MyStack(pIunk,pIman,pIovr,pIobs,refs - 1,stack,wl)

)))

IManipulate(pIunk,pIman,pIovr,pIobs,refs,<>,wl) =

(pIman (f) .

([f = clear] .

pIman S OK .

MyStack(pIunk,pIman,pIovr,pIobs,refs,<>,wl)

+ [f = is empty] .

pIman S OK .

MyStack(pIunk,pIman,pIovr,pIobs,refs,<>,wl)

+ [f = push] .

pIman (j) .

pIman S OK .

MyStack(pIunk,pIman,pIovr,pIobs,refs,<j>,wl)

+ [f = pop] .

pIman E FAIL .

MyStack(pIunk,pIman,pIovr,pIobs,refs,<>,wl)

))

IManipulate(pIunk,pIman,pIovr,pIobs,refs,<i>++s,wl) =

(pIman (f) .

([f = clear] .

pIman S OK .

MyStack(pIunk,pIman,pIovr,pIobs,refs,<>,wl)

+ [f = is empty] .

pIman S FALSE .

MyStack(pIunk,pIman,pIovr,pIobs,refs,<i>++s,wl)

+ [f = push] .

pIman (j) .

([|<i>++s| ≥ MAX]

pIobs onStackOverflow .

pIobs (h) .

pIman E FAIL .

MyStack(pIunk,pIman,pIovr,pIobs,refs,<i>++s,wl)

+ [|<i>++s| < MAX]

([|<i>++s| ≥ wl*(MAX/100)]

pIobs onStackHalfFull .

pIobs (h) .

pIman S OK .

MyStack(pIunk,pIman,pIovr,pIobs,refs,<j>++<i>++s,wl)

+ [|<i>++s| < wl*(MAX/100)]

pIman S OK .

MyStack(pIunk,pIman,pIovr,pIobs,refs,<j>++<i>++s,wl)

)

)

+ [f = pop] .

pIman S OK .

Modelling Microsoft COM Using π-Calculus 1357

pIman i .

MyStack(pIunk,pIman,pIovr,pIobs,refs,s,wl)

))

For IOverflow we only show the subscribe procedure; because of space limita-
tions we leave out our earlier unsubscribe (which poses no special problems).

IOverflow(pStack,pIman,pIovr,pIobs,refs,stack,wl) =

(pIovr (f) .

[f = subscribe] .

pIovr (w) .

pIovr (b) .

pIovr S OK .

MyStack(pStack,pIman,pIovr,b,refs,stack,w)

)

Next we present MyStackObserver, which is described by a few initialisation
steps where the subscription takes place, followed by MyStackObserverCont (for
continuation) which is described by recursion. Note that MyStackObserver sup-
ports two interfaces.

MyStackObserver(pIunk,pIobs,pStack,refs) =

pStack QueryInterface .

pStack IID IOVERFLOW .

pStack (h) .

pStack (pIovr) .

pIovr subscribe .

pIovr 50 .

pIovr pIobs .

pIovr (h) .

MyStackObserverCont(pIunk,pIobs,pStack,pIovr,refs,0,0)

MyStackObserverCont(pIunk,pIobs,pStack,pIovr,refs,x,y) =

(IUnknown’(pIunk,pIobs,pStack,pIovr,refs,x,y)

+ IStackObserver(pIunk,pIobs,pStack,pIovr,refs,x,y)

)

Next we present IUnknown’, which is the implementation of COM’s IUnknown
interface for the stack observer. Note that although it is said that each component
has to implement COM’s IUnknown, we see that the implementation of this
IUnknown’ is slightly different from the IUnknown given before, just because
MyStackObserver has different interfaces than MyStack.

IUnknown’(pIunk,pIobs,pStack,pIovr,refs,x,y) =

(pIunk (f) .

([f = QueryInterface] .

pIunk (iid) .

([iid = IID IUNKNOWN]

pIunk S OK .

pIunk pIunk .

MyStackObserverCont(pIunk,pIobs,pStack,pIovr,refs + 1,x,y) =

1358 Loe M.G. Feijs

+ [iid = IID ISTACKOBSERVER]

pIunk S OK .

pIunk pIobs .

MyStackObserverCont(pIunk,pIobs,pStack,pIovr,refs + 1,x,y) =

+ ["otherwise"]

pIunk E FAIL .

MyStackObserverCont(pIunk,pIobs,pStack,pIovr,refs,x,y) =

)

+ [f = AddRef] .

pIunk S OK .

MyStackObserverCont(pIunk,pIobs,pStack,pIovr,refs + 1,x,y) =

+ [f = Release] .

([refs = 1]

pIunk S OK .

0

+ [refs > 1]

pIunk S OK .

MyStackObserverCont(pIunk,pIobs,pStack,pIovr,refs - 1,x,y) =

)))

IStackObserver(pIunk,pIobs,pStack,pIovr,refs,x,y) =

(pIobs (f) .

([f = onStackHalfFull] .

pIobs S OK .

IStackObserver(pIunk,pIobs,pStack,pIovr,refs,x + 1,y)

+ [f = onStackOverflow] .

pIobs S OK .

IStackObserver(pIunk,pIobs,pStack,pIovr,refs,x,y + 1)

))

Now we may compose a system out of various instances of these components. We
show the obvious combination having one instance of each. So we assume three
initial interface pointers to the three interfaces of MyStack. We also assume two
interface pointers to the two interfaces of MyStackObserver. Finally we assume
one interface pointer to the IUnknown interface of StackUser. Of course all these
six interface pointers are different. Let these initial interface pointers be called
PSTACK, PIMAN, PIOVR, PIUNK, PIOBS and PUSER, respectively. Upon initialisation,
the MyStack instance only knows its own interfaces, whereas MyStackObserver
and StackUser know, next to their own interfaces, also the IUnknown interface
pointer of the instance of MyStack.

System = (MyStack(PSTACK,PIMAN,PIOVR,NULL,1,<>,100)

| MyStackObserver(PIUNK,PIOBS,PSTACK,1)

| StackUser(PUSER,PSTACK)

)

9 Calculations

In this section we show an example of a calculation. This shows one way of
using the formal model. Let us consider only the first two parallel components

Modelling Microsoft COM Using π-Calculus 1359

of System, leaving out the stack user. Now we are ready to do some calculation
work.

(MyStack(PSTACK,PIMAN,PIOVR,NULL,1,<>,100)

| MyStackObserver(PIUNK,PIOBS,PSTACK,1)

)

=

((PSTACK (f) .

([f = QueryInterface]

PSTACK (iid) .

([iid = IID IOVERFLOW]

PSTACK S OK .

PSTACK PIOVR .

MyStack(PSTACK,PIMAN,PIOVR,NULL,2,<>,100)

+ [‘‘other iid values’’] ...

)

+ [‘‘other f values’’]

)

+ PIMAN (f)

+ PIOVR (f)

)

| (PSTACK QueryInterface .

PSTACK IID IOVERFLOW .

PSTACK (h) .

PSTACK (pIovr) .

pIovr subscribe .

pIovr 50 .

pIovr PIOBS .

pIovr (h) .

MyStackObserverCont(PIUNK,PIOBS,PSTACK,pIovr,1,0,0)

))

τ−→
(PSTACK (iid) .

([iid = IID IOVERFLOW]

PSTACK S OK .

PSTACK PIOVR .

MyStack(PSTACK,PIMAN,PIOVR,NULL,2,<>,100)

+ [‘‘other iid values’’] ...

)

| (PSTACK IID IOVERFLOW .

PSTACK (h) .

PSTACK (pIovr) .

pIovr subscribe .

pIovr 50 .

pIovr PIOBS .

pIovr (h) .

MyStackObserverCont(PIUNK,PIOBS,PSTACK,pIovr,1,0,0)

))

1360 Loe M.G. Feijs

τ−→
τ−→
((PSTACK PIOVR .

MyStack(PSTACK,PIMAN,PIOVR,NULL,2,<>,100)

)

| (PSTACK (pIovr) .

pIovr subscribe .

pIovr 50 .

pIovr PIOBS .

pIovr (h) .

MyStackObserverCont(PIUNK,PIOBS,PSTACK,pIovr,1,0,0)

))

τ−→
(MyStack(PSTACK,PIMAN,PIOVR,NULL,2,<>,100)

| (PIOVR subscribe .

PIOVR 50 .

PIOVR PIOBS .

pIovr (h) .

MyStackObserverCont(PIUNK,PIOBS,PSTACK,PIOVR,1,0,0)

))

This can be interpreted as: the composition of MyStack(PSTACK,PIMAN, PIOVR,
NULL, 1,<>,100) and MyStackObserver(PIUNK,PIOBS,PSTACK,1) can evolve
to the situation of Fig. 4. The calculation result represents the state where the
link indicated by the arrow from the pIovr variable of o:MyStackObserver to
the IOverflow lollipop of s:MyStack has been established. This means that we
have the situation of Figure 4.

,6WDFN2EVHUYHU

R�0\6WDFN
2EVHUYHU

,2YHUIORZ

,8QNQRZQ

V�0\6WDFN

,8QNQRZQ

,0DQLSXODWH

S6WDFN

S,RYU

S,REV

...
VWDFN

VS

ZDUQLQJOHYHO

S,REV

Fig. 4. MyStackObserver and MyStack partially coupled.

The link from the pIobs variable in s:MyStack to the lollipop of IStackObserver
has not been established yet (that is why the MyStack term still has one NULL

Modelling Microsoft COM Using π-Calculus 1361

argument), but of course this is what will happen next if we would continue our
calculation. The arrow from pStack, and pIobs of o:MyStackObserver were
assumed to be available from the very beginning; these are PSTACK and PIOBS.
continuing the calculation, the situation of Figure 3 will be reached in a finite
number of steps. It will be reached necessarily because there are no alternative
receive constructs that match the names sent.

So the above calculation shows one way of exploiting the model. In general,
the exploitation can be done in various ways analogous to the exploitation of
classical communication protocol models in CCS and other process algebraic
formalism such as ACP, µCRL, PSF, LOTOS:

– equational reasoning to show behavioural congruence of specifications and
implementations (there is a theory of bisimulation for the π-calculus),

– simulation to demonstrate, visualise or test the operational behaviour of a
given model in a given context (as demonstrated above).

10 Concluding Remarks

The modelling of COM mechanisms turned out easy and natural (interface
pointer manipulations and π-calculcus have good semantic match). The case
study was about modelling a component with stack-manipulation behaviour,
the obligatory QueryInterface behaviour, and an ‘observer’ which is more or
less similar to the well-known observer pattern [13].

Related work: Kramer and Magee defined the ADL called Darwin [14]. It is
a combination of a Module Interconnection Language (MIL) and a behavioural
specification language. A key ingredients of the MIL part of Darwin is the ‘bind’
construct: r -- p means that a required service r is bound to a provided service
p. It gets its semantics via π-calculus as follows: to the semantic models of r and
p a special agent is added (as a component in a parallel composition); the task of
the agent is to send the name of p to r. See [15]. A special elaboration algorithm
guarantees that all the bindings specified in Darwin lead to the desired exchange
of names. A difference with our work is that we use no intermediate ADL with
built-in solutions for the exchange of names.

Sullivan et al. [16] model aspects of COM using Z. Components are modelled
as consisting of a finite set of interfaces, a corresponding set of IIDs, and an
iunknown interface (which is an element of this former finite set). Every interface
supports the QueryInterface operation, which is modelled as a partial function
QI that maps the interface and a given IID to another type. They show how
formal specification techniques help in explaining and analysing the complexities
of COM. Neither COM interfaces nor COM function calls are mapped directly
to Z schemas (indirections are modelled as functions, e.g. QI).

Other interesting references include [17] (OO notation πoβλ based on π-
calculus), [18] (a research program for component frameworks, including a dis-
cussion on use of π-calculus for open systems components) and [19] (components
are interactive systems communicating asynchronously through channels).

1362 Loe M.G. Feijs

There are several issues not addressed but worth further investigation: adding
features to π-calculus, concurrency aspects (see the notes on molecular actions
and private names in [9]), and re-entrant procedures. The present paper is an
exercise in trying to understand component-technology. We do not yet advocate
the direct usage of π-calculus. Most of the semantic aspects of interfaces can be
described well by languages in the tradition of VDM [20], Z [21] and COLD [22],
but there may be a need for special syntactic sugar and special methodogical
and tool-based support.

References

[1] Milner, R.: Communication and concurrency, Prentice Hall (1989)
[2] Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Infor-

mation and Computation, 60(1/3):109-137 (1984)
[3] Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language LO-

TOS, Computer Networks and ISDN Systems, 14, (1987) 25–59
[4] Mauw, S., Veltink, G.J. (Eds.): Algebraic specification of communication protocols,

Cambridge Tracts in Theoretical Comp. Sc. 36, CUP (1993)
[5] CCITT. Specification and Description Language (SDL), Rec. Z.100
[6] CCITT. Message Sequence Chart (MSC), Rec. Z.120, Study Group X (1996)
[7] Szyperski, C.: Component Software, Beyond Object-oriented Programming, Addis-

son Wesley, ISBN 0-201-17888-5
[8] Orfali, R., Harkey, D., Edwards, J.: The essential distributed objects survival guide,

John Wiley & Sons, Inc. (1996)
[9] Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes Pt.1 Information

and Computation 100(1) (1992) 1–40
[10] Microsoft Corporation. The Component Object Model Specification, Version 0.9,

Microsoft (1995)
[11] Brockschmidt, K.: How OLE and COM solve the problems of component software

design, Microsoft Systems Journal, (1996) 63–80
[12] Williams, T.: Reusable Components for Evolving Systems, IEEE 1998 Software

Reuse Conference (pp. 12–16)
[13] Gamma, E.,, Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of

reusable object-oriented software, Addison-Wesley (1994)
[14] Magee, J., Kramer, J.: Dynamic Structure in Software Architectures, in: Proc. 4th

ACM SIGSOFT Symp. on the Foundations of Software Engineering
[15] Eisenbach, S., Paterson, R.: pi-Calculus semantics for the concurrent configuration

language Darwin, Hawaii Int. Conf. on System Sciences (1993)
[16] Sullivan, K.J., Socha, J., Marchukov, M.: Using formal methods to reason about

architectural standards, International conference on software engineering ICSE ’97,
(1997) 503–512

[17] Jones, C.B.: A π-calculus semantics for an object-based design notation, in: E.
Best (Ed.), Proceedings of CONCUR’93, Springer-Verlag LNCS 715, (1993) 158–
172

[18] Nierstrasz, O.: Infrastructure forsoftware component frameworks, Internet
http://www.iam.unibe.ch/~scg/Archive/NFS/iscf.html (1996)

[19] Broy, M.: Towards a mathematical concept of a component and its use, Software
– concepts and tools 18, (1997) 137–148

[20] Jones, C.B.: Systematic software development using VDM, Prentice Hall (1986)

Modelling Microsoft COM Using π-Calculus 1363

[21] Spivey, J.M.: Understanding Z: a specification language and its formal seman-
tics, Volume 3 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press (1988)

[22] Feijs, L.M.G., Jonkers, H.B.M., Middelburg, C.A.: Notations for Software Design,
FACIT Series, Springer-Verlag (1994)

	Introduction
	Component Technology
	The $pi $-Calculus
	Modelling Approach
	The `Interface' Concept of COM
	Modelling Interface Behaviour in $pi $-Calculus
	Manipulating COM Interface Pointers
	Modelling COM Interface Manipulation in $pi $-Calculus
	Calculations
	Concluding Remarks

