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Abstract. This paper describes a system (ParTS) for automatic hard-
ware/software partitioning of applications described in the concurrent
programming language occam. Based on algebraic transformations of
occam programs, the strategy guarantees, by construction, that the parti-
tioning process preserves the semantics of the original description. ParTS
has been developed as an extension of OTS — a tool implemented at
Oxford University which allows one to apply basic algebraic laws to an
occam program in an interactive way. ParTS extends OTS with elaborate
transformation rules which are necessary for carrying out partitioning au-
tomatically. To illustrate the partitioning methodology and our system,
a convolution program is used as a case study.

1 The Hardware/Software Partitioning Problem

The specification of a computer system is usually fully implemented as a software
solution (executed in a general hardware like a microprocessor). On the other
hand, some strong requirements (like performance or size) demand an implemen-
tation completely in hardware. Nevertheless, in between these two extremes,
there are applications that favour a combined implementation with software
and hardware components. This has become a recent trend in Computing called
Hardware/Software Codesign, which has been widely adopted in the design of
embedded systems.

The problem of how to divide a specification into hardware and software
components, the hardware/software partitioning problem, raises at least two
major and orthogonal problems: 1) How can the partitioning be done so that
the result satisfies the efficiency requirements? 2) Does the final system execute
its tasks according to the original specification?

The first question can be solved by heuristic algorithms and the second by
formal verification that the partitioned system preserves the semantics of the
original description.

Several approaches to hardware/software partitioning have been developed,
as described, for example, in [2, 8, 12, 13]. All the approaches above emphasise
the algorithmic aspects of hardware/software partitioning. More recently, some
works have suggested the use of formal methods in the partitioning process, as
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reported, for example, in [1, 6, 7]. Although these approaches use formal methods
to hardware/software partitioning, neither of them includes a formal verification
that the partitioning preserves the semantics of the original description.

In [3] Barros and Sampaio presented some initial ideas towards a partitioning
approach whose emphasis is correctness. This work was the seed of the PISH
project, a co-design environment which is being developed by four Brazilian
universities [4]. The project comprises all the steps from the partitioning of (an
initial description of) the system into hardware and software components to the
layout generation of the hardware.

Silva et al. [18, 19] further develop the ideas presented in [3] by giving a
precise characterisation of the partitioning process as a program transformation
task. These works apply algebraic rules to guarantee that the partitioned system
has the same functionality of the original description.

The main purpose of this paper is to present an environment which imple-
ments the strategy described in [3, 18, 19] to provide automatic hardware/soft-
ware partitioning. This environment, the Partitioning Transformation System —
ParTS, is an extension of the Oxford occam Transformation System (OTS) [10]
— a tool developed at Oxford University constructed to perform transformations
of occam programs [16]. While the basic algebraic laws implemented in OTS are
useful for program transformation in general, they express only simple trans-
formations, and are not suitable to capture the partitioning problem. ParTS
extends OTS with new transformation rules specific for the partitioning strat-
egy adopted. Also, ParTS deals with new language constructs not addressed by
OTS (see Section 3) and provides a new graphical user interface. The transfor-
mation rules are coded as functions in the SML [15] functional language and the
strategy is also a function that applies the rules in an appropriate order. Then
the final system generated by ParTS is derived from the application of several
semantic-preserving rules which guarantees the correctness of the solution by
construction.

The next sections are organised as follows. Section 2 presents a brief descrip-
tion of the occam language and some of its laws. Section 3 explains the strategy
adopted to carry out the partitioning. The implementation issues of ParTS are
described in Section 4 and a case study of a hardware/software partitioning (of
a convolution program) is shown in Section 5. Finally, Section 6 summarises the
contribution of this paper and discusses topics for further research.

2 A Language of Communicating Processes

The goal of this section is to present the language which is used both to de-
scribe the applications and to reason about the partitioning process itself. This
language is a representative subset of occam. For convenience, we sometimes
linearise occam syntax in this paper. For example, we may write SEQ(P1, P2,...,
Pn) instead of the standard vertical style. The subset of occam adopted here
is defined by the following BNF-style syntax definition, where [clause] has the
usual meaning that clause is an optional item.
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P ::= SKIP | STOP | x := e

| ch ? x | ch ! e

| IF [ rep](c1 P1, c2 P2,..., cn Pn)

| ALT [ rep] (c1&g1 P1, c2&g2 P2,..., cn&gn Pn)

| SEQ [ rep] (P1, P2,..., Pn)

| PAR [ rep] (P1, P2..., Pn)

| WHILE c P

| VAR x: P

| CHAN ch: P

Informally, these processes behave as explained in what follows. The SKIP
construct has no effect and always terminates successfully. STOP is the canonical
deadlock process which can make no further progress. The commands x := e,
ch ? x and ch ! e, are assignment, input and output commands, respectively;
the communication in occam is synchronous. The commands IF and ALT select
a process to execute, based on a condition (IF) or on a guard (ALT). While IF’s
conditions are always boolean expressions, ALT’s guards involve input commands.
IF’s selection is deterministic; the lowest index boolean condition to be true ac-
tivates the corresponding process. If none of the conditions is TRUE it behaves
like STOP. On the other hand, ALT’s selection is non-deterministic and randomly
activates the process corresponding to the first guard to be satisfied. If more
than one guard is satisfied at the same time, ALT activates non-deterministically
one of the corresponding processes. If none of the guards is no satisfied ALT be-
haves like STOP. The commands SEQ and PAR denote the sequential and parallel
composition of processes, respectively. Processes within a PAR constructor run
concurrently, with the possibility of communication between them. Communi-
cation is the only way two parallel processes can affect one another, so (when
combined in parallel) one process cannot access a variable that another one can
modify. The command WHILE denotes a loop which executes a process until the
WHILE’s condition becomes false. The constructs VAR and CHAN declare local vari-
ables and channels, respectively. Here we avoid mentioning a particular type for
the declared variables or channels. The optional argument rep which appears
in the IF, ALT, SEQ and PAR constructors stands for a replicator of the form
i = m FOR n where m and n are integer expressions. A more detailed description
of these commands can be found in [16].

As shown in [17], there are many algebraic laws which hold of the occam
constructs. Such laws change the syntax of a program but preserve its semantics.
A set of algebraic laws which completely characterises the semantics of WHILE-
free occam programs is given in [17]. In this section we present only a few of
these laws for the purpose of illustration.

The SEQ operator runs a number of processes in sequence. If it has no argu-
ments it simply terminates.

Law 2.1 (SEQ-SKIP unit) SEQ() = SKIP

Otherwise it runs the first argument until it terminates and then runs the rest
in sequence. Therefore it obeys the following associative law.
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Law 2.2 (SEQ-assoc) SEQ(P1, P2,..., Pn) = SEQ(P1, SEQ(P2, P3,..., Pn))

It is possible to use the above laws to transform all occurrences of SEQ within a
program to binary form.

PAR is an associative operator.

Law 2.3 (PAR-assoc) PAR(P1, P2,..., Pn) = PAR(P1, PAR(P2, P3,..., Pn))

As with SEQ, we can reduce all occurrences of PAR to a binary form. The next
law shows that the order in which the processes are combined in parallel is not
important (PAR is symmetric).

Law 2.4 (PAR-sym) PAR(P1, P2) = PAR(P2, P1)

3 The Partitioning Approach

The hardware/software partitioning approach considered in this work performs
the partitioning by applying a set of algebraic rules to the original system de-
scription. This is carried out in four major phases, as captured by Figure 1 and
explained below.

Splitting The initial description of the system (written in occam) is trans-
formed into the parallel composition of a number of simple processes. The
formal definition of a simple process is given in [18], but it is enough to
think of it as a process with granularity of a primitive command, possibly
as a branch of a conditional (IF) or choice (ALT) statement.

Classification A set of implementation alternatives for each simple process is
established by considering some features such as concurrent behaviour, data
dependency, multiplicity, non-determinism and mutual exclusion.

Clustering Among the implementation alternatives of each process, one is cho-
sen based on the minimisation of an area-delay cost function. The simple
processes are grouped in clusters according to the similarity of functionality
and the degree of parallelism. Each cluster groups simple processes that will
be implemented in hardware or in software (this is determined by annota-
tions). The fact that the simple processes generated by the splitting are in
parallel gives full flexibility for this phase: as PAR is symmetric (Law 2.4) all
possible permutations can be analysed.

Joining The processes in each cluster are effectively combined (either in se-
quence or in parallel), as determined by the result of the clustering process.

It is worthwhile mentioning that the phases that use algebraic transforma-
tions are splitting and joining. It has been proved that the use of algebraic
rules in these phases preserves the semantics of the system while the program is
being transformed [18, 19]. The classification and clustering phases implement
heuristics to produce an efficient final system and the produced output is a mere
permutation of the simple processes inside the PAR construction. Note that this
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Fig. 1. The partitioning approach

procedure also does not affect the system behaviour once the PAR is associative
and symmetric, as captured by laws 2.3 and 2.4.

ParTS is concerned only with splitting and joining since these are imple-
mented by program transformation. In the rest of this section we describe these
two phases in more detail. More information about the other two phases and
about the tool which implements them can be found in [4]. In any case we will
make clear how ParTS interacts with this tool to generate the partitioned sys-
tem.

3.1 The Splitting Strategy

To improve flexibility concerning user interaction, the subset of occam presented
in Section 2 was extended to consider new constructors: BOX, HBOX, SBOX and
CON.

The syntax of these constructors is BOX P, HBOX P, and so on, where P is a
process. The introduction of these constructors in occam has no semantic effect;
they can be regarded just as annotations, useful not only for the splitting, but
also for the other phases.

A process included into a constructor BOX is not split and its cost is analysed
as a whole at the clustering phase. The HBOX and SBOX constructors denote a
BOX which must be implemented in hardware and in software, respectively. They
are used to raise the granularity level of the splitting phase when this happens
to be convenient for a given application.

The constructor CON is an annotation for a controlling process; this is further
explained in this section.

The goal of the splitting phase is to transform any initial description into a
set of simple parallel processes by the application of a reduction strategy. This
strategy applies algebraic rules and has two main steps. The first step transforms
all IF’s and ALT’s commands into simple processes. As a simple process has at
most one statement in its internal level, IF’s and ALT’s commands with multiple
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branches must be broken. Moreover, if a branch of a conditional command is a
SEQ, PAR or WHILE process, it is necessary to distribute the conditional over these
processes. Rule 1 and Rule 2 are examples of the rules employed in this step.

Rule 1:

IF(b1 P1, ..., bn Pn)

= VAR c1, ..., cn: SEQ(c1, ..., cn:= FALSE, ..., FALSE,

IF(b1 c1 := TRUE, ..., bn cn := TRUE),

IF(c1 P1, TRUE SKIP), ..., IF(cn Pn, TRUE SKIP))

provided each ck is a fresh variable (occurring only where explicitly shown).

This rule transforms any conditional process into a sequence of IF’s to allow
the analysis of each subprocess of the original conditional.

Note that the first IF of the right-hand side makes the choice (and saves the
result in one of the fresh variables) allowing the subsequent conditionals to be
carried out in sequence.

Rule 2:

IF(b VAR x : SEQ(P1, ..., Pn), TRUE SKIP)

= VAR c : SEQ(c := b,

VAR x : SEQ(IF(c P1, TRUE SKIP), ..., IF(c Pn, TRUE SKIP)))

provided that c is a fresh variable.

This rule distributes IF over SEQ. Note that after exhaustive application of
this rule, no IFwill include any SEQ in its internal process. Similar rules distribute
IF over ALT and over WHILE.

The second step of the splitting strategy transforms the intermediary descrip-
tion generated by the first step in the normal form of the splitting phase, which
is a set of parallel (simple) processes. Two crucial transformations of this step
are: 1) To turn simple processes closed in the sense that all variable used and
assigned in the process are local. 2) To introduce a controlling process between
every two simple processes. The controlling process acts as the interface between
the processes under its control and the environment.

To understand the usefulness of a controlling process, consider two processes
P1 and P2 with data-dependency and originally in sequence. To put P1 and P2
in parallel, as required by the normal form, communication must be introduced
between them, as occam does not allow parallel processes to share variables. The
purpose of the controlling process is to manage this communication. Except for
communication commands of the original description, each Pi interacts with the
environment through the controlling process.

Rule 3 shows how sequential processes can be combined in parallel.
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Rule 3:

VAR z : SEQ(P1, P2)

= CHAN ch1, ch2, ch3, ch4: PAR(VAR x1: SEQ(ch1 ? x1, P1, ch2 ! x1
′),

VAR x2: SEQ(ch3 ? x2, P2, ch4 ! x2
′),

VAR z : CON(SEQ(ch1 ! x1, ch2 ? x1
′, ch3 ! x2, ch4 ? x2

′)))

provided xi= USED(Pi) ∪ ASS(Pi) and xi’= ASS(Pi) and ch1, ch2, ch3 and ch4 are

not free in P1 or P2.

It is denoted by ASS(P) the list of free1 variables that are assigned in process
P and by USED(P) the list of free variables used in expressions of P (either on
the right-hand side of an assignment or in a boolean expression or in an output
command).

Observe that although P1 and P2 are in parallel on the right-hand side of the
rule above, in fact their behaviour are sequential. Process P2 can executes only
after the controlling process synchronises with P1 through channel ch2.

3.2 The Joining Strategy

To indicate the result of the clustering phase, other new constructors are in-
troduced: PARhw, PARsw, PARser and PARpar. These constructors have the same
semantics of the standard PAR. The constructors PARhw and PARsw serve as an-
notations to denote the hardware and the software cluster, respectively. The
constructors PARser and PARpar denote that the sub-processes included in each
of them must be serialised and parallelised, respectively.

The goal of the joining strategy is to combine the processes that belong to
the same cluster with the aim to implement the decisions taken by the cluster-
ing phase. Basically the joining phase applies algebraic rules to parallelise and
serialise arbitrary simple processes. The parallelisation and serialisation must
eliminate the communication introduced during the splitting phase, as well as
the introduced variables on the case of IF’s and ALT’s recomposition.

As an example of the rules employed in this phase, consider Rule 4 below:

Rule 4:

CHAN ch,ch1,ch2,ch3,ch4,ch5,ch6:

PAR

Q1

F(PARpar

VAR x1: SEQ(ch1? x1, P1, ch2! x1’)

VAR x2: SEQ(ch3? x2, P2, ch4! x2’)

Q2)

VAR x:CON(SEQ(ch5? x,VAR z:SEQ(ch1!x1,ch2?x1’,ch3!x2,ch4?x2’),

ch6! x’))

1 If P is some occam term and x is a variable, we say that an occurrence of x in P is
free if it is not in the scope of any declaration of x in P, and bound otherwise.
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=

CHAN ch,ch5,ch6:

PAR

Q1

F(PARpar VAR x:SEQ(ch5?x, PAR(VAR z1:P1,VAR z2:P2), ch6!x’)

Q2)

provided that x1’∩ x2= ∅ and x2’∩ x1= ∅
where x = x1∪ x2, x’= x1’∪ x2’, xi = USED(Pi) ∪ ASS(Pi),
xi’= ASS(Pi) and zi = z ∩ xi, for i = 1,2.

To understand this rule, observe that the process P1 and P2 on the left-hand
side of the rule are executed in sequence and their execution is controlled by
the controlling process annotated with the construct CON. Note also that P1
and P2 are included in a PARpar constructor which means that they should be
parallelised. The side conditions of the rule requires that P1 and P2 do not have
data-dependency. The effect of the rule is to combine P1 and P2 in parallel, with
the elimination of the controlling process, as can be noticed from the right-hand
side of the rule.

4 ParTS Implementation

This section describes some implementation issues of ParTS such as its archi-
tecture, the programming languages used and the system it extends, OTS.

ParTS comprises two software layers: the transformation system in SML [15]
and a graphical user interface in Java [5]. The core of ParTS is the SML module
which implements the strategy to perform the hardware/software partitioning.
This module extends the OTS environment including the specific rules of the
splitting and the joining phases.

Fig. 2. The ParTS architecture

As shown in Figure 2 the Java module comprises three sub-modules which
are concerned with communication with the SML module via a pipe (Commu-
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nication module), concealment of the SML functions (ParTS Services module)
and interface presentation (GUI module).

This architecture properly separates the system functionality from its graph-
ical interface.

4.1 The Transformation Layer in SML

The OTS is implemented using the Edinburgh SML which is an interactive
programming environment for a strongly-typed strict functional language. A
functional program is defined as a set of values and functions. The SML also
includes some imperative programming features which enables the construction
of input/output commands and side-effect operations (assignment).

Collections of items are processed in SML using lists, a pre-defined type of
the language. The lists are denoted by [] (the empty list) or by enumeration
of its elements (such as [1,2,3]). The infix operator :: (pronounced ’cons’)
constructs a new list by adding an element in front of an existing list (if l is
the list [x1,...,xn] and x is a value of the correct type then x::l is the list
[x,x1,...,xn]).

New types are defined by the datatype declaration which allows the creation
of heterogeneous classes (a class constructed from several distinct subclasses). A
simple example of datatype declaration is shown below:

datatype process = SKIP

| STOP

| seq of process list;

This example defines a very small subset of the occam language. The new
type process and the constructors SKIP, STOP and seq are created. Constructors
are regarded as functions which create values of a datatype. The constructors
SKIP and STOP receive no arguments and returns a process and the constructor
seq receives a process list and returns a process.

A function is defined as a set of equations containing a pattern as parameter
and an expression as result. The argument passed is compared with the patterns
and if some pattern matches then the corresponding expression is evaluated.

fun binary_seq (seq (p1::p2::p)) = seq (p1::[seq (p2::p)])

| binary_seq p = p;

The first equation uses on its left-hand side the pattern (seq (p1::p2::p))
— a sequence with at least two processes — and, on its right-hand side, the ex-
pression seq (p1::[seq (p2::p)]) which constructs a binary sequential pro-
cess. The second equation performs no transformation on the argument. When-
ever the argument does not match the pattern stated in the first equation, it will
always match the second equation which uses a variable p to stand for a general
pattern. For example, the evaluation of binary seq(SKIP) reduces to SKIP.

The last version of OTS (released in 1988) was implemented by Goldsmith
[10] in the SML functional language. An abstract syntax for occam was defined
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in SML as a set of recursive datatypes. The basic algebraic laws of occam are
implemented as functions. A parse function is used to input a text file containing
an occam process and translates it to the abstract syntax.

A sample of how an abstract syntax can be implemented using SML datatypes
is shown below.

An identifier is represented as a string.

datatype identifier = ident of string;

Variables and channels are identifiers.

datatype variable = var of identifier;

datatype channel = chan of identifier;

Each operator of the language is a constructor of the type process with
the relevant arguments. For example, an assignment statement is represented
by the assign constructor and has as arguments a list of variables and a list of
expressions.

datatype process = assign of (variable list) * expression list

| input_proc of channel * (variable list)

| output_proc of channel * (expression list)

| SKIP

| STOP

| dec of declaration * process

| seq_con of process list

| par_con of process list

| if_con of conditional list

| ...

and declaration = var_dec of variable list

| chan_dec of channel list

and conditional = sim_cond of expression * process

| if_cond of conditional list

and expression = TRUE

| FALSE

| num of int

| varexp of variable

| ...

As an example, the parser of OTS reads a file containing the following process

SEQ

x := y

ch ? y

and translates it to

seq_con [ assign( [var(ident ‘‘x’’)],[varexp(var(ident ‘‘y’’))] ),

input_proc( chan(ident ‘‘ch’’),[var(ident ‘‘y’’)] ) ]
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ParTS implements the transformation rules for the partitioning as functions.
Nevertheless, these rules usually express much more complex transformations
than the basic algebraics laws implemented in OTS.

As an example, we discuss the implementation of Rule 2 which will be called
distIF(). The implementation of this rule has some auxiliary definitions. The
function freshVar() receives a process P and returns a fresh variable (a variable
that does not occur free in P). The function map() receives a function f and a
list l and applies f to each element of l.

We also need to construct a function that builds each IF of the right-hand
side of Rule 2. The oneIF() function receives as parameters a boolean expression
and a process and returns a conditional process.

We also use the let expressions facility of SML. A let expression has the
general form let D in E end. D is a declaration of values that is evaluated first.
Then the expression E is evaluated inside the context of names declared in D.

Now we can define the distIF() function that implements Rule 2.

fun distIF (proc as

if_con [

sim_cond(b,

dec(var_dec x,

seq_con Pn)),

sim_cond(TRUE,

SKIP) ]) =

let val c = freshVar(proc)

val c_exp = varexp c

in dec(var_dec [c],

seq_con [

assign([c],[b]),

dec(var_dec x,

seq_con (map (oneIF c_exp) Pn)) ])

end;

The proc as clause before the pattern creates the name proc that is bound
to the conditional process received as argument. Then, proc is used as the argu-
ment of freshVar() function to generate a fresh variable (c); c exp is just the
fresh variable transformed into an expression type. The expression (map (oneIF
c exp) Pn) applies the (oneIF c exp) function to each element of the process
list Pn.

Clearly, the abstract syntax of occam (and the auxiliary functions) makes the
implementation less readable. Even so, each rule is implemented in an elegant
and abstract way as an SML function.

In a similar way, ParTS implements all the rules of the splitting and the join-
ing phases. These new functions form the main code of ParTS. The splitting and
the joining strategies are also implemented as functions. Each one is defined as
the composition of the transformation rules (coded as functions) for the relevant
phase. These rules are applied in an appropriate order to produce the desired
result. The application of a rule is achieved through a higher-order function that
takes the rule as argument and applies it to the current process.
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4.2 The Graphical User Interface

A great improvement with respect to OTS is that the interface of OTS was
specific for the Sun View environment and requires the user to interact at the
level of SML functions. We have also implemented some facilities not available
in OTS; this is further discussed below.

The GUI of ParTS implemented in Java allows users to manipulate several
occam processes in different windows. The portability of Java makes possible
the implementation of different versions of ParTS, for Unix SunOS and Win-
dows95. The Windows95 version uses the Moscow SML instead of Edinburgh
SML without any loss of functionality.

Figure 3 shows the interface of ParTS. A brief description of some elements
of the screen is given below.

Fig. 3. The ParTS interface

File Menu The file menu provides commands to load occam files and save them
(in general after performing transformations). It is possible to open various
different files at the same time.

Zoom in Using this facility one can focus on any internal subprocess of the
process, allowing the user to apply laws whose effect is restricted to internal
parts of the process.
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Zoom out This button has the opposite effect of the Zoom in button. For
example:

SEQ SEQ
SEQ P1

P1
Zoom in=⇒ P2

P2
Zoom out⇐=

Q

Max depth / More depth ParTS allows the user to visualise a process par-
tially. The Max depth button shows the process completely, without hiding
any subprocess. The effect of the More depth button is to show the hidden
subprocesses incrementally.

Less depth / Min depth The opposite effect of More depth is achieved with
Less depth button. There is also the equivalent Min depth button that hides
all subprocesses. For example,

SEQ SEQ
... SEQ [2 clauses] SEQ

P3
More depth

=⇒ P1
Less depth⇐= P2

P3

Laws and rules This combo box is used to select the name of law/rule that
will be applied to the current process (it contains rules named as split and
join which perform the transformations to carry out the hardware/software
partitioning). Also there exist all the laws that construct the split and the
join strategies, allowing the user to do the partitioning step by step, if de-
sired.

Apply The apply button must be used after choosing a law. It will apply that
law and transform the current process accordingly.

New page If it is set before the application of a law, the effect produced by ap-
plying the law is shown in a separate window (without changing the current
process). This is useful when one is not sure whether the law will provide
the desired transformation.

OTS already included facilities related to zoom, depth and application of
laws. Nevertheless, the interaction with the user is at the level of SML syntax.
In ParTS all the interaction is directly in the occam notation. Furthermore, all
the facilities concerning file manipulation and multiple windows are entirely new.

5 A Small Case Study

This section illustrates the hardware/software partitioning process of a vector
convolution program used as a case study. For conciseness reasons, the expla-
nation will emphasise particular aspects of the partitioning process, instead of
trying to address all the details of the transformations involved.
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Figure 4a shows the original description of the convolution program, and
Figure 4b the partial result of the splitting phase generated by ParTS. The
system exhaustively applies the rules of the splitting phase coded as functions in
SML, as explained in the previous section. Using an Intel Pentium II 300 MHz
and 64 MB of RAM as the hardware platform, ParTS takes about 15 seconds
to perform the splitting of this program, and transforms the original description
into 37 simple processes, combined in parallel.

Observe from Figure 4b that each of these processes has at most one as-
signment in its most internal level. The only exception is Process 1, where all
subprocesses included into a BOX constructor are considered as an atomic process
and therefore it has not been split.

Another point to notice is that all simple processes have been turned closed
(their variables are local). Moreover, each original process is encapsulated (pre-
ceded and followed by communication commands).

The application of Rule 1 to Process 2 of Figure 4a transforms it into four
simple processes (see Process 2.1, 2.2, 2.3 and 2.4 of Figure 4b) and the appli-
cation of Rule 3 introduces communication between each pair of these simple
processes. Process 3 in Figure 4b is the controlling process of Process 2.3 and
2.4.

After the splitting phase, the classification and the clustering phases take
place. As we have mentioned before, these phases are related to the efficiency
issue of partitioning process. The classification and clustering phases are being
implemented as a separate tool which is under development and communicates
with ParTS via shared files.

The classification phase defines for each simple process a set of implementa-
tions alternatives such as parallel, sequential, independent, etc. (see Figure 5a).
The clustering phase builds a clustering tree which defines the clusters and how
their processes must be combined (Figure 5b). Observe that the processes 2.1
– 2.4 of Figure 4b are grouped in the same cluster and must be combined in
sequence. The cut line shown in Figure 5b separates the hardware and software
clusters based on the heuristics defined in [2]. The clustering phase is responsible
only for determining which processes should be combined to form the clusters,
but do not carry out the transformations to effectively combine them.

Figure 6a shows the program after the classification and the clustering phases.
This program reflects the design decision of the clustering phase. Note that the
only changes concerning the occam program of Figure 4b are the annotations to
identify the software (PARsw) and the hardware (PARhw) clusters, and whether
each group of processes must be combined in sequence (PARser) or in parallel
(PARpar).

Regarding the preservation of semantics, the transformation of the program
in Figure 4b into the one in Figure 6a is immediately justified by the associativity
and symmetry of parallel composition (see laws 2.3 and 2.4 of Section 2). This
emphasises the fact that classification and clustering are concerned with the
efficiency of the partitioning process, and have very little to do with program
transformation.
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Fig. 4. The splitting phase
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Fig. 5. The classification and the clustering phases

The final partitioned system is shown in Figure 6b. Observe that the BOX
annotation has been eliminated. Since all subprocesses 2.1 – 2.4 belongs to the
same cluster, the IF process is re-arranged and Process 3 is eliminated. ParTS
combines the processes in the joining phase by applying the join strategy to
the file generated by the clustering phase. This process takes about 2 seconds to
complete (using the same hardware previously mentioned).

In fact, all controlling processes are eliminated and the only remaining com-
munication is the one necessary for the synchronisation between the hardware
and the software components (Observe channels ch67 and ch68 in Figure 6b).

6 Conclusions

We have used an intentionally small case study to illustrate an innovative ap-
proach to the implementation of hardware/software partitioning. The Parti-
tioning Transformation System (ParTS) realises the partitioning process as a
program transformation task, based on algebraic rules which ensure that the
resulting program is correct (with respect to the original input) by construction.

The approach to partitioning is structured into four major phases, as sum-
marised by Figure 7.

The first task performed by ParTS (Figure 7a-b) is to split a process in
several simple processes operating in parallel. The phases of classification and
clustering are concerned with the efficiency of the partitioned program. From the
result of the splitting, a graph is constructed to allow a cost analysis to be carried
out. However, this tree is suitable only as an intermediate representation, and,
as already said, the implementation of classification and clustering are separate
from ParTS which is exclusively concerned with program transformation.
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Fig. 6. The joining phase
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The following step is to represent the clustering tree as a program with
the form shown in Figure 7c, where annotations are used to determine which
clusters are to be implemented in hardware and in software. Also note that we
use an annotation for each cluster. This contains useful information (generated
during the clustering) to guide the combination of the processes in each cluster;
basically, this indicates whether process must be combined in sequence (PARser)
or in parallel (PARpar).

Fig. 7. The partitioning approach

Finally, the joining phases takes a program as in Figure 7c, carries out the
necessary transformations to combine the processes in each cluster, and generates
the final result, which is a precise abstract representation of our intended target
architecture: with one software process and an arbitrary number of hardware
processes (Figure 7d).

In terms of implementation, ParTS was built as an extension of the Oxford
occam Transformation System (OTS), keeping all the original functionality of
OTS, but adding specific notation and rules to allow a precise capture of the
partitioning process, apart from a new user interface.

While the splitting has been completely formalised and implemented, the
joining is still our major current focus of attention. A strategy for the joining
phase is proposed in [19] based on transformation and reduction of configurations
in a binary tree which represents the result of the clustering phase. While we
have already implemented some general rules of the joining phase (which allows
us to automatically partition some small examples like the one presented here)
the full implementation of the joining strategy is still under development.

The integration between ParTS and the tool which implements the classifi-
cation and clustering phases is also a topic for further research.

There are several systems which perform automatic hardware/software par-
titioning based on different approaches. The COSYMA system [8] assumes an
all-software implementation as initial solution. A simulated annealing algorithm
moves software code to hardware until the time constraints are met. The VUL-
CAN system [11] starts by an all-hardware solution and uses an iterative ap-
proach to move operations from hardware to software. The SpecSyn [9] supports
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several partitioning algorithms and presents an approach combining clustering
and greedy algorithms. The Lycos [14] achieves the partitioning by a dynamic-
programming algorithm that uses the information of the profiling and the time
and area estimation steps.

None of these systems is concerned with the formal correctness of the parti-
tioning process. To our knowledge, ParTS is the only existing tool which imple-
ments hardware/software partitioning based on algebraic transformations which
ensures the preservation of semantics.
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