
Non-atomic Refinement in Z

John Derrick and Eerke Boiten

Computing Laboratory, University of Kent, Canterbury, CT2 7NF, UK.
J.Derrick@ukc.ac.uk

Abstract. This paper discusses the refinement of systems specified in
Z when we relax the assumption that the refinement will preserve the
atomicity of operations. Data refinement is a well established technique
for transforming specifications of abstract data types into ones which are
closer to an eventual implementation. To verify a refinement a retrieve
relation is used which relates the concrete to abstract states and allow
the comparison between the data types to be made on a step by step
basis by comparing an abstract operation with its concrete counterpart.

A step by step comparison is possible because the two abstract data
types are assumed to be conformal, i.e. there is a one-one correspondence
between abstract and concrete operations, so each abstract operation
has a concrete counterpart. In this paper we relax that assumption to
discuss refinements where an abstract operation is refined by, not one,
but a sequence of concrete operations. Such non-conformal or non-atomic
refinements arise naturally in a number of settings and we illustrate our
derivations with a simple example of a bank accounting system.

Keywords: Specification; Refinement; Z; Non-atomic refinement; Non-atomic
operations.

1 Introduction

This paper discusses the refinement of systems specified in state-based specifi-
cation languages such as Z [8] when we relax the assumption that refinements
preserve the atomicity of operations.

State-based languages have gained a certain amount of acceptance in the
software community as an industrial strength formal method. As a canonical
example, we will concentrate on Z in this paper, although the methods we derive
could be applied to other state-based languages. Z is a state-based language
whose specifications are written using set theory and first order logic. Abstract
data types are specified in Z using the so called “state plus operations” style,
where a collection of operations describe changes to the state space. The state
space, initialisation and operations are described as schemas, and the schema
calculus has proved to be an enduring structuring mechanism for specifying
complex systems. These schemas, and the operations that they represent, can
be understood as (total or partial) relations on the underlying state space.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1477–1496, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

1478 John Derrick and Eerke Boiten

In addition to specifying a system, we might also wish to develop, or re-
fine, it further. This idea of data refinement is a well established technique for
transforming specifications of abstract data types into ones which are closer
to an eventual implementation. Such a refinement might typically weaken the
precondition of an operation, remove some non-determinism or even alter the
state space of the specification. The conditions under which a development is
a correct refinement are encapsulated into two refinement (or simulation) rules:
downward and upward simulations [10]. To verify a refinement the simulations
use a retrieve relation which relates the concrete to abstract states and allow
the comparison between the data types to be made on a step by step basis by
comparing an abstract operation with its concrete counterpart. Versions of the
simulation rules for Z are given in [10].

The step by step comparison that a simulation makes is possible because the
two abstract data types are assumed to be conformal [6], i.e. there is a one-one
correspondence between abstract and concrete operations, so each abstract op-
eration has a concrete counterpart. In this paper we relax that assumption to
discuss refinements where an abstract operation is refined by, not one, but a se-
quence of concrete operations. The motivation for such a refinement is twofold:
we might wish to reflect the structure of the eventual implementation in a spec-
ification without having to make that choice at an initial abstract level, and
going further, we might wish to allow interleavings of concrete operations for
the sake of efficiency. For example, we might want to describe an abstract oper-
ation AOp in the first instance, but in a subsequent development describe how
AOp is implemented as a sequence of concrete operations: COp1 followed by
COp2.

Such non-conformal or non-atomic refinements arise naturally in a number of
settings. For example, a protocol might be specified abstractly as a single opera-
tion, but in a later development refined into a sequence of operations describing
the structure of how the protocol works in more detail. Another example might
be a (coffee!) machine which has an operation that requires a sequence of inputs
(or generates a sequence of outputs). At the abstract level this is described as a
single atomic operation, but at the concrete level we may wish to dispense with
this assumption and specify the process of entering the inputs (generating the
outputs) one by one.

Such non-atomic refinements have been extensively studied in the context
of process algebras, usually under the name of action refinement [2]. Examples
of simple non-atomic refinements are beginning to emerge for state-based spec-
ifications, however, we are not aware of any systematic study of state-based
non-atomic refinement. (Although there has been some study of hiding sets of
actions in action systems [7].) The purpose of this paper is to contribute to such
a discussion.

The simplest approach to non-atomic refinement is to introduce a skip op-
eration in the abstract specification, such an operation produces no change in
the abstract state. One of the concrete operations, say COp1, can refine AOp
whilst the other refines skip. Examples of applications of such an approach in-

Non-atomic Refinement in Z 1479

clude protocol refinements in B [1], in Z [10] and buffers in B [4]. In Section 3 of
this paper we derive the relational basis for refinements of this kind and give a
Z formulation for the appropriate simulation conditions.

However, not all non-atomic refinements can be verified in such a manner.
Consider a refinement where we would like to split a collection of inputs or
outputs across several concrete operations. Because we are transforming the
inputs/outputs in this fashion, such a refinement cannot in general be verified
using abstract steps of skips. A more complex example which illustrates some of
the problems will be given in Section 4.

In Section 5 we consider how such refinements can be verified in general. The
initial condition we consider decomposes an abstract operation into a sequence
of concrete operations COp1

o
9COp2, where no requirement is made that either of

the concrete operations refines skip. In order to distribute an abstract operation’s
inputs and outputs across a sequence of concrete operations we apply current
work on I/O refinement described in [3, 9], extending it where necessary to
provide the required generalisation. This generalisation is derived in Section
6. The resulting refinement rules are given in Z and we show how they can
be applied to the example in Section 4. In Section 7 we summarise the rules
and in Section 8 we make some concluding remarks. We begin by describing the
traditional view of refinement in Z based upon the standard relational semantics,
throughout the paper we will work at the relational level only using the Z schema
calculus to give the final refinement conditions.

2 A Relational View of Refinement in Z

In this section we discuss the relational view of refinement and describe how it
treats partiality, leading to the standard presentation of refinement in a language
such as Z [8, 10]. In doing so we present a summary of results in [6, 10] to which
the reader is directed for more detailed explanation if necessary.

The underlying model of a state based system is a relational model, where the
components of an abstract data type (ADT) are relations (assumed total for the
moment). An ADT is a quadruple A = (Astate, ai , {aopi}i∈I , af) which acts on
a global state space G such that: Astate is the space of values; ai ∈ G ↔ Astate
is an initialisation; af ∈ Astate ↔ G is a finalisation; aopi are operations in
Astate ↔ Astate.

A program P is a sequence of operations upon a data type beginning with
an initialisation and ending with a finalisation, e.g.

P(A) = ai o
9 aop1

o
9 aop2

o
9 af

The standard derivation of refinement assumes that the abstract and concrete
data types are conformal, i.e. they have the same global state space G and that
the indexing sets for the operations coincide (so every abstract operation has a
concrete counterpart and vice versa).

Definition 1. A data type C refines a data type A if, for every program P,
P(C) ⊆ P(A).

1480 John Derrick and Eerke Boiten

This has the effect (for total relations) of refinement being the reduction of
non-determinism. This definition of refinement involves quantification over all
programs, and in order to verify such refinements, simulations are used which
consider values produced at each step of a program’s execution. Simulations are
thus the means to make the verification of a refinement feasible. In order to con-
sider values produced at each step we need a relation r between the two state
spaces Astate and Cstate, this relation is known as the retrieve relation.

Partiality
In the relational framework we have described so far the relations were assumed
to be total relations. However, not all operations are total, and the traditional
meaning of an operation ρ specified as a partial relation is that ρ behaves as spec-
ified when used within its precondition (domain), and outside its precondition,
anything may happen.

In order to deal with this partial relations are totalised, i.e. we add a dis-
tinguished element ⊥ to the state space, denoting undefinedness, and we denote
such an augmented version of X by X⊥. Thus if ρ is a partial relation between
X and Y , we add the following sets of pairs to ρ: {x : X⊥, y : Y ⊥ | x 6∈ domρ •
x 7→ y}, and call this new (total) relation

•
ρ.

We also require that the retrieve relation be strict, i.e., that r propagates
undefinedness and we ensure this by considering the lifted form of r ∈ X ↔ Y :

◦
r= r ∪ ({⊥} ×Y ⊥)

The retrieve relation gives rise to two types of step by step comparisons: down-
wards simulation and upwards simulation [10]. These simulation relations are
the basis for refinement methods in Z and other state based languages. Their
usefulness lies in the fact that they are sound and jointly complete [6].

In this paper we restrict our attention to the more commonly occurring down-
ward simulations. A downward simulation is a relation r from Astate to Cstate
such that

•
ci⊆

•
ai o

9

◦
r

◦
r o

9

•
cf⊆

•
af

◦
r o

9

•
copi⊆ •

aopi
o
9

◦
r for each index i ∈ I

The simulation rules are defined in terms of augmented relations. We can
extract the underlying rules for the original partial relations as follows. For
example, for a downwards simulation these rules are equivalent to the following:

ci ⊆ ai o
9 r

r o
9 cf ⊆ af

(dom aopi C r o
9 copi) ⊆ aopi

o
9 r

ran((dom aopi)C r) ⊆ dom copi

Non-atomic Refinement in Z 1481

The last two conditions (where C is domain restriction [8]) mean that: the
effect of copi must be consistent with that of aopi ; and, the operation copi is
defined for every value that can be reached from the domain of aopi using r .

Inputs and Outputs
We can use this relational semantics to model systems in which operations have
input and output (IO) by providing all inputs at initialisation and delaying out-
puts until finalisation. To do so we augment the state by adding two sequences,
an input sequence and an output sequence. Initially, the output sequence is
empty; in the final state, the input sequence is empty. Every time an operation
is executed, (if the operation has an input) the first value is removed from the
input sequence, and (if the operation has an output) a value is added to the
end of the output sequence. The outcome of the operation does not (directly)
depend on any other value in the input or output sequence.

Above conditions for a downward simulation were derived for use between
operations that have no inputs or outputs. We can now derive similar downward
simulation conditions for operations that do have inputs and outputs, by aug-
menting the state with extra components representing the sequence of inputs
still to be dealt with and the sequence of outputs already computed.

Let operations aop and cop consume input and produce output. Let us denote
the equivalent operations that expect input and output sequences by aops and
cops . It is now possible to translate the conditions for a downwards simulation
between aops and cops into conditions between aop and cop. Given a relation
r between states without input and output sequences, we must construct an
equivalent relation that acts on the enhanced form of the state. We use the
following retrieve relation on the extended state

rs = r‖id [Inp]‖id [Outp]

where ‖ is a relational parallel composition (see [10]) and Inp and Outp are the
types of the input and output sequences of aop. id [Inp] maps an abstract input
sequence to an identical concrete input sequence, and similarly for the output
(see figure 1).

Using such a retrieve relation, [10] derive equivalent simulation rules for aop
and cop which are as follows (because any operation can produce output the
finalisation condition is no longer required):

ci ⊆ ai o
9 r

(dom aop C (r‖id) o
9 cop) ⊆ aop o

9 (r‖id)
ran((dom aop) C (r‖id)) ⊆ dom cop

These rules can now be transformed from their relational setting to simula-
tion rules for Z specifications by writing them in the Z schema calculus. This
formalisation is the same as the rules given in standard presentations of refine-
ment in Z, e.g. [8].

1482 John Derrick and Eerke Boiten

Astate

seqAInput

seqAOutput

seqCInput

seqCOutput

cop

aops

scop

Cstate

aop
Astate

input output

input output

Cstate

id[Outp]
id[Inp] r

id id

Fig. 1. Refinement of operations with input and output

Definition 1 Let R be the retrieve relation between data types (Astate,Ainit ,
{AOp}) and (Cstate,Cinit , {COp}). Suppose that the operations have an input
x? : X and output y! : Y . R is a downwards simulation if the following hold.

∀Cstate • CInit ⇒ (∃Astate • AInit ∧R)
∀Astate; Cstate; x? : X • preAOp ∧ R ⇒ preCOp
∀Astate; Cstate; Cstate ′; x? : X ; y! : Y •

preAOp ∧ COp ∧ R ⇒ ∃Astate′ • R′ ∧AOp

In the subsequent sections of this paper we will relax two assumptions made
above. The starting point will be to consider the consequences of refining an
abstract operation into more than one concrete operation. In doing so we will
need the generality of IO refinement which assumes a general mapping between
the pairs of input and output streams as opposed to the identities id [Inp] and
id [Outp] used above.

3 Simple Non-atomic Refinement

We begin our derivation with the same definition of refinement, namely that for
every program P , P(C) ⊆ P(A). Let us now suppose that in the two data types
the indexes coincide except that abstract operation aop is refined by the sequence
cop1; cop2. We now have two sets of potential programs, those drawn from the
abstract indexes and those from the concrete indexes. Let us denote these PA

and PC respectively. So ai o
9aop o

9af and ci o
9cop1

o
9cop2

o
9cf are programs in PA(A)

and PA(C) respectively, whereas ci o
9 cop2

o
9 cf , ci o

9 cop1
o
9 cf and ci o

9 cop2
o
9 cop1

o
9 cf

are programs in PC (C). Thus for non-atomic refinement there are two conditions
which can perhaps be considered as liveness and safety conditions respectively:

PA(C) ⊆ PA(A) and PC (C) ⊆ PC (A)

Non-atomic Refinement in Z 1483

The first requires that if we take abstract indexes then the equivalent concrete
program reduces non-determinism, e.g. ci o

9 cop1
o
9 cop2

o
9 cf ⊆ ai o

9 aop o
9 af .

The second implies that to every concrete program there must be some abstract
equivalent that it refines, e.g. there will be an abstract equivalent to ci o

9cop2
o
9cf .

To begin we consider the case when both these conditions are required. Sim-
ulations can be used to make step-by-step comparisons as before. Quantification
over all abstract programs leads to the requirement that

◦
r o

9

•
cop1

o
9

•
cop2 ⊆ •

aop o
9

◦
r (1)

whilst quantification over all concrete programs requires that we find abstract
counterparts to cop1 and cop2 which we denote p1

A and p2
A such that

◦
r o

9

•
cop1 ⊆ p1

A
o
9

◦
r and

◦
r o

9

•
cop2 ⊆ p2

A
o
9

◦
r

The obvious choice for p1
A and p2

A are for one to be the original abstract op-

eration
•

aop and for the other to be
•

skipR (the subscript R will be explained
in a moment). Clearly these choices are sufficient, but not necessary, however
whilst it is possible to construct examples where the concrete operations are re-
fining different abstract operations it is difficult to construct realistic examples.
Thus, without loss of generality taking cop1 to refine aop, let us consider the
requirement that

◦
r o

9

•
cop1 ⊆ •

aop o
9

◦
r and

◦
r o

9

•
cop2 ⊆

•
skipR

o
9

◦
r (2)

The abstract operation
•

skipR can be chosen to be any operation satisfying

(1) with the property that
•

aop o
9

•
skipR=

•
aop. For then if (2) holds we have

◦
r o

9

•
cop1

o
9

•
cop2 ⊆ •

aop o
9

◦
r o

9

•
cop2 ⊆ •

aop o
9

•
skipR

o
9

◦
r =

•
aop o

9

◦
r

Thus (2) represents sufficient conditions for the action refinement of aop
into cop1; cop2. We can now extract the underlying conditions on the partial
relations in the usual manner. The first is the standard condition for refining
aop by cop1, namely that (we elide the identities over input and output streams
for the moment)

(dom aop C r o
9 cop1) ⊆ aop o

9 r
ran((dom aop) C r) ⊆ dom cop1

The requirement that
•

aop o
9

•
skipR=

•
aop could be satisfied by skipR = skip,

however, this is unnecessarily restrictive and in fact we can take skipR = A C
skip for any A with ran aop ⊆ A. Possible choices for skipR then range from
ran aop C skip to skip itself. The second requirement in (2) is equivalent to

(dom skipR C r o
9 cop2) ⊆ skipR

o
9 r

ran((dom skipR)C r) ⊆ dom cop2

1484 John Derrick and Eerke Boiten

Taking skipR = ran aop C skip these become

(ran aop C r o
9 cop2) ⊆ ran aop C r

ran(ran aop C r) ⊆ dom cop2

and when skipR = skip they are: r o
9 cop2 ⊆ r and ran r ⊆ dom cop2.

These can be translated into Z in the usual manner. It is in this context that
the non-atomic refinements given in [10, 4] are verified.

For example, in [4] a specification is given of an unordered buffer together
with a refinement of it. The refinement introduces an additional operation, mid,
which is a refinement of skip at the abstract level.

However, some desirable non-atomic refinements are more complex than this,
and we illustrate the problem with an example which will motivate our need for
more general refinement conditions.

4 Example - A Bank Account

We specify a bank consisting of a number of electronic booths where users may
deposit money and check their balances. At an abstract level we are given a
mapping from names to Money (= IN), and operations allowing money to be
deposited and balances checked. The example illustrates nicely many of the issues
involved in non-atomic refinement?.

ABank =̂ [act : Name 7→ Money]
ABankInit =̂ [ABank ′ | act ′ = ?]
AOpenAcct =̂ [∆ABank ; n? : Name | act ′ = act ⊕ {n? 7→ 0}]

Deposit
∆ABank
n? : Name
p? : Money

n? ∈ dom act
act ′ = act ⊕ {n? 7→ act(n?) + p?}

Balance
ΞABank
n? : Name
b! : Money

n? ∈ dom act
b! = act n?

At the concrete level an atomic Deposit operation is unrealistic and we
would like the amounts to be transferred coin by coin at every booth thus
allowing interleaving of these operations with actions at other booths, where
Coin = {1, 2, 5, 10} say. To specify this we use a collection of temporary ac-
counts tct and split the Deposit operation into a transaction consisting of a
Start , a succession of Next operations transferring the amount coin by coin with
a Stop operation ending the process. A temporary account is now represented
by sequences of coins. The Stop operation takes this sequence and sums the
coins entered, updating the concrete account with the result of this calculation
? and is adapted from an example in [10] which specifies a distributed file store.

Non-atomic Refinement in Z 1485

(remember that +/. represents distributed summation over a sequence). The
concrete specification is as follows, where −C is domain subtraction.

CBank
cct : Name 7→ Money
tct : Name 7→ seqCoin

dom tct ⊆ dom cct

CBankInit =̂ [CBank ′ | cct ′ = tct ′ = ?]

Start
∆CBank
n? : Name

n? ∈ dom cct
tct ′ = tct ⊕ {n? 7→ 〈 〉}
cct ′ = cct

Next
∆CBank
n? : Name
c? : Coin

n? ∈ dom tct
tct ′ = tct ⊕ {n? 7→ (tct n?)a 〈c?〉}
cct ′ = cct

Stop
∆CBank
n? : Name

n? ∈ dom tct
tct ′ = {n?} −C tct
cct ′ = cct⊕
{n? 7→ cct(n?) + (+/.(tct n?))}

Balance
ΞCBank
n? : Name
b! : Money

n? ∈ dom cct
b! = cct n?

The link between the abstract and concrete state spaces will be via the rela-
tion R

R
ABank
CBank

act = cct

Clearly at some level the abstract Deposit operation is being refined by the
sequence Start o

9 Next . . .Next o
9 Stop. However, the refinement isn’t simply a

matter of one of the concrete operations corresponding to Deposit whilst the
others correspond to skip.

At issue is the following. The retrieve relation links act and cct , therefore
abstract skip operations can be refined by concrete operations which only change
the temporary account tct . Therefore Start and Next look suitable candidates to

1486 John Derrick and Eerke Boiten

refine skip. There are however two problems. The first is that although Start and
Next do not alter cct they do consume input, conceptually taking values off the
input stream. Therefore at the level of an augmented state complete with input
stream they do not simply correspond to skip. The second, and related, problem
is that if Stop corresponds to Deposit then preDeposit ∧ R needs to imply the
precondition of Stop. However, the precondition of Stop is that n? ∈ dom tct ,
which isn’t a consequence of preDeposit ∧ R. The issue is that n? ∈ dom tct
is assuming that at least a Start operation has already happened, and that the
system is now ready to Stop. Stop can in fact be amended to overcome this
problem. However to do this you need to put sufficient functionality into it that
the other concrete operations are then unnecessary.

As we can see there are many issues involved in such a refinement, not least is
the problem that the inputs of Deposit are distributed throughout the concrete
operations, this means that we must develop machinery in addition to that
discussed in the last section. This is what we seek to do next.

5 General Non-atomic Refinement

In this section we will consider more general refinements than considered in
Section 3, in particular we drop the requirement that PC (C) ⊆ PC (A). This
means that we can consider decomposing an abstract operation into a sequence
of concrete operations without requiring that any of these concrete operations
refine an abstract operation of skip. This opens the way to providing methods of
refinement that can tackle some of the issues highlighted in the previous section.
In this section we also consider various properties of non-atomic refinement. In
particular, we show that non-atomic refinement is transitive and we consider con-
ditions on the concrete operations that will allow interleaving of the components
of a non-atomic decomposition.

To verify a general non-atomic refinement we must also address in some detail
how we treat inputs and outputs. The bank account example is particularly
interesting in this respect because it has taken an input amount p? : Money
and broken it down into a single input c? : Coin provided a number of times
via the Next operation. To verify such refinements we will use the technique of
IO-refinement and to apply it we extend current work in this area [3, 9]. These
points are discussed in Section 6, we begin now with the general conditions for
a non-atomic refinement.

5.1 Conditions for a Non-atomic Refinement

We begin by dropping the safety requirement that PC (C) ⊆ PC (A), so in par-
ticular the requirements of (2) disappear and the single requirement is that:

◦
r o

9

•
cop1

o
9

•
cop2 ⊆ •

aop o
9

◦
r (3)

With this single requirement we can extract the underlying conditions on
the partial relations as before to find that this is equivalent to three conditions,
namely that

Non-atomic Refinement in Z 1487

(dom aop C r o
9 cop1

o
9 cop2) ⊆ aop o

9 r (4)
ran((dom aop) C r) ⊆ dom cop1 (5)

ran((dom aop) C r o
9 cop1) ⊆ dom cop2 (6)

If cop1 is deterministic we can replace the last two (applicability) conditions by
a single condition.

Proposition 1 If cop1 is deterministic then

ran((dom aop) C r) ⊆ dom cop1 ∧
ran((dom aop) C r o

9 cop1) ⊆ dom cop2

is equivalent to the condition ran((dom aop) C r) ⊆ dom(cop1
o
9 cop2).

The requirement of cop1 being deterministic is necessary to ensure that the
resultant condition implies ran((dom aop) C r o

9 cop1) ⊆ dom cop2, the other
implications always hold.

Before we proceed any further it is important to check whether non-atomic
refinement is transitive, that is further non-atomic or atomic refinements should
give rise to an overall refinement. This is indeed the case.

Theorem 1. Non-atomic refinement is transitive.

Proof. There are four cases to consider which are illustrated in the following
diagram.

aop

cop cop

ccop ccop1 2

1 2

aop

cop cop

ccop ccop2

1 2

aop

cop cop

ccop ccop1

1 2

aop

cop cop1 2

ccop
11 12

ccop21 22

r

s

In each case it is easy to see that we have transitivity. 2

Without considering any input and output transformations at this stage we
can express the relational conditions given in (4-6) in the Z schema calculus.
The formulation is as follows.

Definition 2 R is a non-atomic downwards simulation if the following hold.

∀Astate; Cstate; Cstate ′ •
preAOp ∧ (COp1

o
9 COp2) ∧ R ⇒ ∃Astate′ • R′ ∧ AOp

∀Astate; Cstate • preAOp ∧ R ⇒ preCOp1

∀Astate; Cstate • preAOp ∧ R ∧ COp1 ⇒ preCOp2

1488 John Derrick and Eerke Boiten

These conditions generalise to a non-atomic refinement with an arbitrary
number of abstract and concrete operations in the obvious manner.

Let us consider the bank account example when the deposit p? consists of
a single coin. We then have three operations Start o

9 Next o
9 Stop in our concrete

refinement (we will consider an arbitrary amount deposited later when we have
a way to transform inputs). To verify such a refinement we have to demonstrate
four conditions:

∀Astate; Cstate; Cstate ′ •
preDeposit ∧ (Start o

9 Next o
9 Stop) ∧ R ⇒ ∃Astate′ • R′ ∧Deposit

∀Astate; Cstate • preDeposit ∧ R ⇒ preStart
∀Astate; Cstate • preDeposit ∧ R ∧ Start ⇒ preNext
∀Astate; Cstate • preDeposit ∧ R ∧ (Start o

9 Next)⇒ preStop

We will consider the three applicability conditions first. The predicate of
preDeposit∧R will be the condition that n? ∈ dom cct , which is the precondition
of Start . Similarly preDeposit ∧ R ∧ Start implies n? ∈ dom tct which is the
precondition of Next . The precondition of Stop works in a similar way. Thus
even without IO transformations the applicability conditions can be verified.

The correctness condition requires that we calculate the schema composition
(Start o

9 Next o
9 Stop) which results in

∆CBank
n? : Name
c? : Coin

n? ∈ dom cct
tct ′ = {n?} −C tct
cct ′ = cct ⊕ {n? 7→ cct(n?) + c?}

Given a very simple input transformation of a deposit p? into a single coin this
can be seen to satisfy (at an intuitive level) the criteria for decomposing Deposit
into these three operations as long as we assume inputs correspond to a single
coin. In the next section we will see how this intuition can be formalised and
how we can verify the general case of an arbitrarily large deposit.

6 Input and Output Transformations

In this section we consider the input and output transformations that are needed
to support non-atomic refinements. We begin with a discussion of IO refinement
which generalises the standard refinement conditions by allowing inputs and
outputs to alter under refinement. We apply this work to non-atomic refinement
in Section 6.2 resulting in a set of conditions that allow inputs and outputs to
be distributed throughout a concrete decomposition.

Non-atomic Refinement in Z 1489

To understand the issues let us consider our running example again. In order
to verify a refinement we have to prove a correctness condition between Deposit
and the concrete decomposition. At the end of the previous section we considered
the case when the input deposit was composed of a single coin, and we calculated
the schema composition (Start o

9 Next o
9 Stop) to verify the correctness criteria.

Even at this point there is an issue to consider, for this composition has
an input c? : Coin whereas Deposit has an input p? : Money. Although at an
intuitive level we can see the correspondence between these schemas, a strict
interpretation of standard refinement does not allow the inputs and outputs
or their types to be changed??. This is a direct consequence of the use of the
identities id [Inp] and id [Outp] in the retrieve relation

rs = r‖id [Inp]‖id [Outp]

discussed in section 2. These identities map abstract input and output sequences
to identical concrete input and output sequences, because they are identical, the
types of the input and output cannot change.

6.1 IO Refinement

Recent work on IO refinement [3, 9] has tackled this issue, and provides a solu-
tion to this problem by generalising the retrieve relation rs . Here we follow the
formalisation of [3] although [9] provides an alternative characterisation.

IO refinement is a generalisation of standard (atomic) refinement. Let us
consider the refinement of an abstract operation aop into a concrete one cop.
Suppose further that r is the retrieve relation which links the abstract and
concrete state spaces. In order to allow the types of inputs and outputs to change
IO refinement replaces the identities with arbitrary relations it and ot between
the input and output elements respectively. Thus it and ot are essentially retrieve
relations between the inputs and outputs, hence allowing these to change under a
refinement in a similar way to changing the state space. The full retrieve relation
rs between the enhanced state is then

rs = r‖it∗‖ot∗

where it∗ applies it along each element in the input sequence.
It is necessary to impose some conditions on it and ot . The first is that for

rs not to exclude combinations of states in r , we need to require that it and ot
are total on the abstract input and output types. Secondly, ot must be injective.
This condition guarantees that different abstract (“original”) outputs can be
distinguished in the concrete case because their concrete representations will be
different as well.

?? The file store example given in [10] contains another example of such a transformation
where an input file is decomposed into a sequence of bytes.

1490 John Derrick and Eerke Boiten

The conditions for an IO refinement between aops and cops can be given an
equivalent formulation in terms of aop and cop (see figure 2):

dom aop C ((r‖it) o
9 cop) ⊆ aop o

9 (r‖ot)
ran(dom aop C (r‖it)) ⊆ dom cop

Astate

seqAInput

seqAOutput

seqCInput

seqCOutput

cop

aops

scop

Cstate

it*
ot*

aop
Astate

input output

input output

Cstate

it ot

Fig. 2. IO refinement of operations

These conditions can be expressed as conditions on Z schemas as follows. The
relations it and ot between the inputs and outputs become schemas called input
and output transformers. An input transformer for a schema is an operation
whose outputs exactly match the schema’s inputs, and whose signature is made
up of input- and output components only; similarly for output transformers.
These are applied to the abstract and concrete operations using piping (�).

With these notions in place we can re-phrase the conditions of IO refine-
ment in the Z schema calculus. We use an overlining operator, which extends
componentwise to signatures and schemas: x? = x !, x ! = x?. Thus IT denotes
the schema where all inputs become outputs with the same basename, and all
outputs inputs.

Definition 3 Let IT be an input transformer for COp which is total on the
abstract inputs. Let OT be a total injective output transformer for AOp. The
retrieve relation R defines an IO refinement if:

applicability ∀Astate; Cstate • pre(IT � AOp) ∧ R ⇒ preCOp
correctness wherever AOp is defined, COp with the input transformation should

produce a result related by R and the output transformation to one that AOp
could have produced:

∀Astate; Cstate; Cstate ′ •
preAOp ∧ R ∧ (IT � COp)⇒ ∃Astate′ • R′ ∧ (AOp � OT)

Non-atomic Refinement in Z 1491

IO refinement allows inputs and outputs to be refined in a controlled manner.
Controlled because since inputs and outputs are observable we must be able to
reconstruct the original behaviour from a concrete refinement. This reconstruc-
tion is achieved by using the input and output transformers which essentially
act as wrappers to a concrete operation, converting abstract inputs to concrete
ones and similarly for the output. Hayes and Sanders [5] use piping in much the
same way: to represent the equivalent of relational composition for inputs and
outputs in Z schemas. They use the term “representation schema” for what we
call “transformers”.

We can apply these ideas to our example. The input transformer schema that
we need to use is thus given by

IT
p? : Money
c! : Coin
n?,n! : Name

c! = p? ∧ n! = n?

Here c! is an output so that it matches the input c? of the composition (Start o
9

Next o
9 Stop), and no changes are made to the name so that is passed through

unchanged. There are no outputs so the output transformer is the identity. With
this in place it is easy to see that we have the correct transformations in place
to deal with the change of input when each input p? is entered as a sequence
consisting of one single coin, and we can verify the condition

preDeposit ∧ (IT � Start o
9 Next o

9 Stop) ∧ R ⇒ ∃Astate′ • R′ ∧Deposit

However, in reality deposits can be arbitrarily large (i.e. not provided by
a single coin), and to deal with this we need further generalisations. The next
subsection considers how to do this by integrating IO refinement into the non-
atomic refinement conditions we have already derived.

6.2 General IO Transformations

Consider the case when the input deposit is given as two coins. We will now
have to verify a correctness condition between Deposit and the composition
(Start o

9Next o
9Next o

9Stop) to show that the non-atomic refinement holds. However,
if we calculate this composition we result in

∆CBank
n? : Name
c? : Coin

n? ∈ dom cct
tct ′ = {n?} −C tct
cct ′ = cct ⊕ {n? 7→ cct(n?) + c? + c?}

1492 John Derrick and Eerke Boiten

We have lost the differentiation needed between the inputs of distinct applica-
tions of the Next operation. Furthermore, our input transformation is now not
just between two operations, but a whole sequence of concrete operations, the
length of which is only determined by the input p? (the number of Next opera-
tions needed is in fact determined by the coins used as long as they sum to the
correct amount p?), and this can continually vary.

To deal with this we will generalise IO refinement in the following way. IO
refinement was derived as a condition between one abstract and one concrete
operation, because of that a simple element by element mapping it sufficed. In
our world of non-atomic refinement we wish to decompose one abstract operation
into a sequence of concrete operations. Therefore we need a mapping between an
abstract input and a sequence of concrete inputs representing the inputs needed
in the decomposition. We thus replace the maps it and ot by rin and rout where

rin : Ainput ←→ seqCinput
rout : Aoutput ←→ seqCoutput

and rin is total on Ainput , and rout is total on seqCoutput . For example, sup-
pose that an amount p? is entered as the sequence of coins 〈c1?, . . . , cm?〉,
then an abstract input (n?, p?) for the Deposit operation will be mapped to
the input sequence 〈n?, (n?, c1?), . . . , (n?, cm?),n?〉 to be consumed by (Start o

9

Next , . . . ,Next o
9 Stop).

Given a decomposition of aop into cop1
o
9 cop2 let us denote operations acting

on the augmented state space be denoted by, as before, aops , cop1s and cop2s .
With mappings rin and rout describing how the inputs and outputs of aop are
turned into those for cop1 and cop2, and a retrieve relation r between the state
spaces, the retrieve relation rs on the augmented state will be given by

rs = r‖ /̂.r∗in‖ /̂.r∗out

Here /̂.r∗in takes an input sequence seqAinput and creates a concrete input
sequence by concatenating together the effect of rin for each item in seqAinput . If
there are two concrete operations in the refinement, then rin maps each abstract
input into a pair of concrete inputs, the first for consumption by cop1 the second
for cop2 (see figure 3).

seqAInput

seqCInput

aops

cop
1s

; cop2s

r in

< . . . , c22, c21, c12, c11 >

< . . . , a2, a1 >

Fig. 3. Splitting the abstract input

Non-atomic Refinement in Z 1493

We can now take the three non-atomic refinement conditions described in
terms of an augmented state:

(dom aops C rs o
9 cop1s

o
9 cop2s) ⊆ aops

o
9 rs (7)

ran((dom aops)C rs) ⊆ dom cop1s (8)
ran((dom aops)C rs o

9 cop1s) ⊆ dom cop2s (9)

and turn these into equivalent conditions on the operations with input and out-
put at each step: aop, cop1 and cop2 in the usual way. It is easy to see that they
become:

dom aop C (r‖rin) o
9 (id‖cop1) o

9 (cop2‖id) ⊆ aop o
9 (r‖rout) (10)

ran(dom aop C (r‖rin)) ⊆ dom cop1 (11)
ran(dom aop C (r‖rin) o

9 (id‖cop1)) ⊆ dom cop2 (12)

where again we require that rout , like ot , is injective.

In the formalisation of these conditions we need to write (id‖cop1) and
(cop2‖id) because a single abstract input has become a pair of concrete inputs,
one for cop1 and one for cop2. In order to correctly select its input we need to
write (id‖cop1) and (cop2‖id) in the relational formalisation. These manipula-
tions will appear in a different form when we express these conditions in the Z
schema calculus.

To illustrate how this is done let us return for the moment to our example.
For an arbitrary large deposit the input transformer IT is something like

IT
p? : Money
c! : seqCoin
n?,n! : Name

+/.(c!) = p? ∧ n! = n?

where now we will output the deposit as a sequence of coins c!. However, we need
to represent one more bit of information, namely that expressed in (id‖cop1)
which says the concrete operations take the transformed input one at a time.
Let us suppose a deposit comprises m coins. Then the cleanest way to express
this is to observe that c! = 〈c1, . . . , cm〉, and describe the process explicitly as
substitutions in the operations, i.e. as (Start o

9Next [c1/c?]o9. . .o9Next [cm/c?]o9Stop).
With this in place we can express the refinement conditions that have to be
verified, e.g. we require

preDeposit ∧ (IT � Start o
9 Next [c1/c?] o

9 . . . o
9 Next [cm/c?] o

9 Stop) ∧ R ⇒
∃Astate ′ • R′ ∧Deposit

1494 John Derrick and Eerke Boiten

The general formalisation in Z effectively combines our three conditions
needed for a non-atomic refinement of AOp into COp1

o
9 COp2 with the use

of input and output transformers from IO refinement. Explicit substitutions (as
in the Next operation) are only necessary when the decomposition of AOp in-
volves more than one occurrence of the same concrete operation. If COp1 and
COp2 are distinct operations then the formalisation is the following:

Definition 4 Non-atomic refinement with IO transformations
Let IT be an input transformer for COp1

o
9 COp2 which is total on the abstract

inputs. Let OT be a total injective output transformer for AOp. The retrieve
relation R defines a non-atomic IO refinement if:

∀Astate; Cstate; Cstate ′ •
preAOp ∧ (IT � COp1

o
9 COp2) ∧ R ⇒ ∃Astate′ • R′ ∧ (AOp � OT)

∀Astate; Cstate • pre(IT � AOp) ∧ R ⇒ pre COp1

∀Astate; Cstate • pre(IT � AOp) ∧ R ∧ (IT � COp1)⇒ preCOp2

If COp1 and COp2 are not distinct (e.g. two Next operations) then explicit
substitutions are needed to control the inputs and outputs together with a pred-
icate in the input transformer describing which operation receives which input.

Finally consider the situation where deposits can be arbitrary large. Now we
do not know the number of operations in the concrete decomposition at the out-
set, and we have to describe it as follows. Given the abstract Deposit operation
we use the same input transformer IT as before and decompose Deposit into the
sequence

Start o
9 (o

9/{(i ,Next [c!.i/c?]) | i ∈ dom c!}) o
9 Stop

Here o
9/ denotes distributed schema composition along the sequence

〈Next [c!.1/c?], . . . ,Next [c!.m/c?]〉 where m = #c!. This expression produces a
schema composition of the correct number of Next operations according to the
size of c! as required (c! can be any sequence that adds up to the correct amount).
We can calculate such a schema composition, and it is easy to see that all the
conditions for a non-atomic refinement are met.

7 Summary

It is worth summarising the criteria for non-atomic refinement as we have derived
them gradually throughout the paper. In this summary we do not mention the
initialisation condition which is identical to that of standard refinement. Let
AOp be decomposed into the sequence COp1

o
9 COp2.

Simple non-atomic refinement requires that one of the concrete operations
(COp1 say) refines AOp and the other refines a restricted skip. The requirements
on COp1 refining AOp are the standard ones whilst those on COp2 are that for
some abstract state A with ranAOp ⇒ A we have

∀Astate; Cstate; A • A ∧R ⇒ preCOp2

∀Astate; Cstate; Cstate ′; A • A ∧ R ∧ COp2 ⇒ ∃A′ • ΞA ∧R′

Non-atomic Refinement in Z 1495

For a general non-atomic refinement where we drop the requirement that
concrete operations directly refine abstract counterparts we have three basic
conditions. They are:

∀Astate; Cstate; Cstate ′ •
preAOp ∧ (COp1

o
9 COp2) ∧R ⇒ ∃Astate′ • R′ ∧ AOp

∀Astate; Cstate • preAOp ∧R ⇒ preCOp1

∀Astate; Cstate • preAOp ∧R ∧COp1 ⇒ preCOp2

These conditions do not allow any input or output transformations. If we re-
quire abstract inputs and outputs to be distributed over the concrete operations
it is necessary to use input and output transformers IT and OT such that:

∀Astate; Cstate; Cstate ′ •
preAOp ∧ (IT � COp1

o
9 COp2) ∧ R ⇒ ∃Astate′ • R′ ∧ (AOp � OT)

∀Astate; Cstate • pre(IT � AOp) ∧ R ⇒ preCOp1

∀Astate; Cstate • pre(IT � AOp) ∧ R ∧ (IT � COp1)⇒ preCOp2

where IT is total on the abstract inputs and is an input transformer for COp1
o
9

COp2 and OT is a total and injective output transformer for AOp.
If the concrete decomposition involves more than one occurrence of the same

concrete operation (as in Next above), then it may be necessary to use explicit
schema substitutions for the input names in this last formalisation.

8 Conclusions

In this paper we have presented the beginnings of a study of state based non-
atomic refinement. This led to a number of conditions for such a refinement
given in the summary above. All of these conditions are derived from the basic
definition of refinement as the reduction of non-determinism. Differences between
the sets of conditions arise firstly from whether we require both PA(C) ⊆ PA(A)
and PC (C) ⊆ PC (A) to hold, or just the former.

Considering just the former allowed us to consider how abstract inputs and
outputs could be distributed over the sequence of concrete operations. To do
so we applied the theory of IO refinement which extends standard refinement
by allowing the retrieve relation to be extended to input and output types in
addition to relating the state spaces.

The result is three sets of conditions. The first can be used when one of the
concrete operations refines skip and the other refines the original abstract oper-
ation. The second defines conditions for a general decomposition into a number
of concrete operations where the inputs and outputs are not altered. The third
used IO transformers to relax this last condition. Although the use of IO trans-
formers looks at first sight complex, they are merely wrappers which explain
how an abstract input (or output) gets turned into its concrete counterpart. Al-
though our illustrative example concentrated on input transformations, similar
transformations are feasible for the outputs of an operation.

1496 John Derrick and Eerke Boiten

Further work to be done in this area includes looking at the relationship
between upward simulations and non-atomic refinement, where we expect similar
rules could be developed. It would also be useful to develop syntactic support
for non-atomic refinement. For example, if an abstract operation is specified at
the abstract level as AOp =̂ AOp1

o
9AOp2 under what conditions is AOp1

o
9AOp2

a non-atomic refinement of AOp.

References

[1] Jean-Raymond Abrial and Louis Mussat. Specification and design of a trans-
mission protocol by successive refinements using B. In Manfred Broy and Birgit
Schieder, editors, Mathematical Methods in Program Development, volume 158 of
NATO ASI Series F: Computer and Systems Sciences, pages 129–200. Springer,
1997.

[2] L. Aceto. Action refinement in process algebras. CUP, London, 1992.
[3] E.A. Boiten and J. Derrick. IO - refinement in Z. In 3rd BCS-FACS Northern

Formal Methods Workshop, Electronic Workshops in Computing. Springer Verlag,
September 1998.

[4] M. Butler. An approach to the design of distributed systems with B AMN. In J. P.
Bowen, M. G. Hinchey, and D. Till, editors, ZUM’97: The Z formal specification
notation, LNCS 1212, pages 223–241, Reading, April 1997. Springer-Verlag.

[5] I.J. Hayes and J.W. Sanders. Specification by interface separation. Formal Aspects
of Computing, 7(4):430–439, 1995.

[6] He Jifeng and C.A.R. Hoare. Prespecification and data refinement. In Data Re-
finement in a Categorical Setting, Technical Monograph, number PRG-90. Oxford
University Computing Laboratory, November 1990.

[7] J. Sinclair and J. Woodcock. Event refinement in state-based concurrent systems.
Formal Aspects of Computing, 7:266–288, 1995.

[8] J. M. Spivey. The Z notation: A reference manual. Prentice Hall, 1989.
[9] S. Stepney, D. Cooper, and J. C. P. Woodcock. More powerful data refinement in

Z. In J. P. Bowen, A. Fett, and M. G. Hinchey, editors, ZUM’98: The Z Formal
Specification Notation, volume 1493 of LNCS, pages 284–307. Springer-Verlag,
1998.

[10] J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof. Pren-
tice Hall, 1996.

	Introduction
	A Relational View of Refinement in Z
	Simple Non-atomic Refinement
	Example - A Bank Account
	General Non-atomic Refinement
	Conditions for a Non-atomic Refinement

	Input and Output Transformations
	IO Refinement
	General IO Transformations

	Summary
	Conclusions

