
Safety Analysis in Formal Specification

Kaisa Sere and Elena Troubitsyna

Department of Computer Science, Åbo Akademi University,
Turku Centre for Computer Science (TUCS),

Lemminkäisenkatu 14 A, FIN-20520 Turku, Finland,
{Kaisa.Sere, Elena.Troubitsyna}@abo.fi

Abstract. Formal methods give us techniques to specify the functional-
ity of a system, to verify its correctness or to develop the system stepwise
from an abstract specification to its implementation. These aspects are
important when designing safety-critical systems. Safety analysis is a vi-
tal part of the development of such systems. However, formal methods
seldom interface well with the more informal techniques developed for
safety analysis. Action systems is a formal approach to distributed com-
puting that has proven its worth in the design of safety-critical systems.
The approach is based on a firm mathematical foundation within which
the reasoning about the correctness and behaviour of the system under
development is carried out. The purpose of this paper is to show how we
can incorporate the results of safety analysis into an action system speci-
fication by encoding this information via available composition operators
for action systems in order to specify robust and safe controllers.

1 Introduction

Formal methods give us techniques to formally specify the functionality of a sys-
tem, to verify its correctness or to develop the system stepwise from an abstract
specification to its implementation. These aspects are important when designing
safety-critical systems. Safety analysis is a vital part of the development of such
systems. However, formal methods seldom interface well with the more infor-
mal techniques developed for safety analysis [13, 6]. Hansen et al. [5] spotted
the problem of the semantic gap between the abstract level of the hazard anal-
ysis and the way of software specification. They suggest to use the results of
Fault Tree Analysis as a source of the formulation of requirements which em-
bedded software should meet. In their approach a description of fault trees is
given in terms of real-time temporal logic. Their goal is to obtain a safety in-
variant which embedded software should preserve. Wong and Joyce [16] show
how safety-related hazards are expressed in terms of source code for embedded
software in order to verify this with respect to the hazards. The purpose of this
paper is to develop a theory on how safety analysis techniques are used hand-
in-hand with formal specification methods and how the results of the analysis
are stepwise adopted by the specification in order to produce safe and robust
systems consisting of both hardware and software.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1564–1583, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Safety Analysis in Formal Specification 1565

We use the action system formalism [1] as our formal design technique. This
formalism is a state-based approach to system design. It provides a completely
rigorous foundation for the stepwise development of system specifications and
implementations. It has found many applications especially among parallel and
distributed systems among which many are safety-critical [3, 10]. Our target
systems are reactive, i.e., usually concurrent systems that interact with their
environment and respond to not only normal safe situations, but to the occurred
hazardous situations as well. We often call this environment a plant. Examples
of such systems are embedded control systems.

In our earlier work [9, 14] we have proposed methods to reason about the
impact of probabilistic behaviour of components on the overall safety of a con-
trol system. We concentrated on the probabilistic extension of the specification
language developing tools to reason quantitatively about the systems’ reliability
and safety. Here we use the available modularization operators, most notably
the prioritising composition [11], to capture the idea of safety related hazards.
Our preliminary work [12] shows that the approach seems promising. We show in
this paper how to embed the results of a hazard analysis into an action systems
specification in a stepwise manner. The embedding is carried out within a formal
calculus, the refinement calculus for action systems [1]. Our approach is similar
to that of Hansen et al. in the sense that we can also obtain a safety invariant as
a result of the safety analysis as they do. In addition, our approach allows the
identified hazards to be specified and handled by the controller software. Hence,
we focus on the specification aspect here.

Overview. In Section 2, we briefly describe action systems concentrating on the
language issues and refinement as well as defining the important composition
operators. In Section 3, we outline the way control systems are specified in the
action systems framework. In Section 4, we show how the results of the Fault
Tree Analysis can be encoded into the formalism. We exemplify the approach
in Section 5. In Section 6, we concentrate on hazard analysis in a more general
setting. We end in Section 7 with some concluding remarks.

2 Action Systems

An action system A is a set of actions operating on local and global variables:

A =̂ const c; global z ; |[var a ; A0 ; do A1 [] . . . [] An od]|
The systemA describes a computation, in which local variables a are first created
and initialised in A0. Then repeatedly any of the enabled actions A1, . . . ,An is
non-deterministically selected for execution. The computation terminates if no
action is enabled, otherwise it continues infinitely. Actions operating on disjoint
sets of variables can be executed in any order or in parallel.

Actions are taken to be atomic, meaning that only their input-output be-
haviour is of interest. They can be arbitrary sequential statements. Their be-
haviour can therefore be described by the weakest precondition predicate trans-
former of Dijkstra [4]: wp(A, p) is the weakest precondition such that action A

1566 Kaisa Sere and Elena Troubitsyna

terminates in a state satisfying predicate p. In addition to the statements con-
sidered by Dijkstra, we allow pure guarded commands g → A, non-deterministic
choice A [] B between actions A,B , and nondeterministic assignment v := v ′.Q
which assigns to variables v such a value v ′ that the predicate Q holds.

wp(abort , p) =̂ false wp((A ; B), p) =̂ wp(A,wp(B , p))
wp(skip, p) =̂ p wp((A [] B), p) =̂ wp(A, p) ∧ wp(B , p)
wp(v := e, p) =̂ p[v := e] wp((g → A), p) =̂ g ⇒ wp(A, p)

wp(v := v ′.Q , p) =̂ (∀v ′.Q ⇒ p[v := v ′])

Generally, an action that establishes any postcondition is said to be miraculous.
We take the view that an action is only enabled in those initial states in which
it behaves non-miraculously. The guard of an action characterises those states
for which the action is enabled:

gd A =̂ ¬wp(A, false)

The body S of an action A = g → S is denoted by sA.
Let A and B be actions. The prioritising composition A // B selects the first

operand if it is enabled, otherwise the second, the choice being deterministic.

A // B =̂ A [] (¬gd A → B)

The prioritising composition of two actions is enabled if either operand is.

gd(A // B) = gd A ∨ gd B

Let us now study different notions of refinement for action systems [2]. We say
that action A is refined by action C , written A ≤ C , if, whenever A establishes
a certain postcondition, so does C :

A ≤ C iff for all p: wp(A, p) ⇒ wp(C , p)

Together with the monotonicity of wp this implies that for a certain precondition,
C might establish a stronger postcondition than A (reduce nondeterminism of
A) or even establish postcondition false (behave miraculously).

A variation of refinement is if A is (data-) refined by C via a relation R,
written A ≤R C . For this, assume A operates on variables a, u and C operates
on variables c, u. Let R be a predicate over a, c, u:

A ≤R C iff for all p: R ∧ wp(A, p) ⇒ wp(C , (∃ a·R ∧ p))

Data refinement allows the local variables of an action system to be replaced.
We have the following theorem to prove data refinement between actions:

Theorem 1. A ≤R C holds iff

(i) R ∧ gd C ⇒ gd A
(ii) for all p: R ∧ gd C ∧ wp(sA, p) ⇒ wp(sC , (∃a·R ∧ p))

Safety Analysis in Formal Specification 1567

Rule 1 a: =? ≤ a: = a ′.Q ,where a: =? =̂ a: = a ′.true
Rule 2 For two actions A,B : A [] B ≤ A // B
Rule 3 g1 ∨ g2 → abort // g(A) → A ≤ g1 → abort // g2 → B [] g(A) → A

where A and B can also be abortive
Rule 4 a: =? ≤R c: = c′.Q if Q ∧ R ⇒ (∃a ′·R[a, c: = a ′, c′])
Rule 5 A1;A2 ≤R C1;C2 if A1 ≤R C1 and A2 ≤R C2
Rule 6 A1 // A2 ≤R C1 // C2 if A1 ≤R C1 and A2 ≤R C2

and R ∧ gd A1 ⇒ gd C1

Fig. 1. Refinement rules

The next theorem presents conditions to be verified in order to establish
refinement between action systems.

Theorem 2. A ≤R C holds iff

(i) C0 ⇒ (∃a·R ∧ A0)
(ii) A ≤R C
(iii) R ∧ gd A ⇒ gC

The proofs of Theorem 1 and Theorem 2 can be found elsewhere [2].
When carrying out refinement in practice one seldom appeals to the general

definition of refinement. Instead certain pre-proven refinement rules are used.
Figure 1 presents a number of rules [12] that are especially useful when working
with hazards as will be seen later.

3 Specifying Control Systems with Safety Consideration

Let us now sketch a way to specify control systems within action systems for-
malism. Rather than embody all the requirements in the initial specification,
we introduce some of them in successive refinement steps. Usually, refinement is
used as a way of verifying the correctness of an implementation with respect to a
specification, but is it can also be used as a way of structuring the requirements
such that they are easier to validate [3, 10]. In this paper we develop mechanisms
to handle failure situations by the refinement activity.

Our initial action system is intended to model the behaviour of the overall
system, that is, the physical environment and the controller together. It allows
us to use assumptions that we make about how the environment behaves. The
initial specification of the system is very abstract. Usually it is built in such a way
that all the details concerning interaction between the plant and the controller
(via sensors and actuators) as well as details of failures are omitted.

Below a control system is modelled as an interleaving between the plant P
and the controller C

System =̂ const c; global z ; |[var pv , cv , fail ; I ; do P ; C od]| (1)

1568 Kaisa Sere and Elena Troubitsyna

The action I initialises the system. Both P and C are actions and they might
share variables. This initial specification of the plant action P is

P =̂ pv , z , fail : =?, ?, ?

where pv are the state variables needed to model the local state of the plant,
and the controller action C is

C =̂ Failure // (Unit1 [] Unit2 [] . . . [] UnitM)

The controller consists of a prioritising composition of the action Failure

Failure =̂ fail → Emergency

which shuts down the system if a failure occurs, i.e., the action Emergency is
equivalent to abort , and the actions Uniti , i = 1..M , which have the form

Uniti =̂ gi → control actioni

Here for simplicity we assume that the occurrence of a global system failure is
modelled by a local variable fail . Later we drop this simplification and consider
the action Failure guarded by a predicate over the global and the local variables
of the system. Each of the actions Uniti specifies the control required to operate
a certain plant device (we call it a plant unit) in absence of failures. They can
refer to the variables pv , z , and normally some other variables, too, denoted
as cv in (1) . Observe that we can be certain that there are no failures present
when an action Uniti is executed as the prioritising composition between the
faulty behaviour and the control actions ensures this. Without this operator,
i.e., using the choice operator between these actions, the control actions would
require a more elaborate guard, namely gi ∧¬fail . This latter approach is taken
for instance by Liu and Joseph [8].

In our initial specification System we assume that the state of the plant can be
directly observed by the controller. Further refinement of the initial specification
leads to the introduction of implementation details which make the specification
more realistic: the controller cannot observe the real state of the plant any more
but rather makes assumptions about it based on sensor readings. Control is
performed by means of actuators which, like the sensors, are modelled as state
variables [3]. Eventually, we arrive at the representation of the system in the
form presented in Fig. 2.

In our previous work on action systems for safety-critical systems [3, 10],
failure modes of the components together with the safety invariant imposed on
the system were given a priori. The task was to capture these requirements into
a specification. In the industrial practice, however, the design of a safety-critical
system assumes that this information is unavailable and should be obtained as
a result of a safety analysis of the system. On the base of the safety analysis
the designer should build the controller so that it is able to withstand faults
appearing in the fault-prone units. To obtain the failure modes for the controlling
program we show how the specification and refinement of the system under
construction can proceed hand-in-hand with the safety analysis.

Safety Analysis in Formal Specification 1569

�
�

�
�

Actuators

�
�

�
�

VariablesVariables
Controller

Actions
Environment

Actions
Controller Environment

�
���

-
�

-
� @

@@I�
�	

Sensors

�
�

�
�

@
@@R

Controller Environment

�
�

�
�

Fig. 2. Structure of the system specification

Observe, that both the safety analysis and the stepwise program development
conduct reasoning from an abstract level to a concrete level. The safety analysis
starts by identifying hazards which are potentially dangerous, and proceeds by
producing detailed descriptions of them together with finding the means to cope
with these hazards. We incorporate the information that becomes available at
each stage of the safety process by performing corresponding refinements of the
initial specification, as shown in Fig. 3.

With such an approach the preliminary hazard identification gives the se-
mantics to the action Failure: it is a reaction on the occurrence of the identified
hazard. When the system enters a hazardous state it violates the safety invari-
ant and therefore, should be shut down. Safe operation of the action system
System (1) can be expressed via a safety invariant safety on the state variables
of the system:

safety =̂ ¬fail ⇒ safety condition

Safety is checked within the weakest precondition calculus by ensuring that the
initial state establishes safety, and that wp(C , safety) holds, i.e. the actions of
the controller preserve safety. As the safety analysis proceeds more information
on the failures causing hazardous situations becomes available and allows us to
weaken the safety invariant by expressing this new information.

4 Representing a Fault Tree in a Specification

There are a number of standard techniques for producing detailed description of
the identified hazards [6, 13]. In this paper we choose the Fault Tree Analysis
and show next, how to incorporate the information obtained as a result of the
fault tree analysis in the initial system specification (1) given in form of an action
system. The Fault Tree Analysis (FTA) is a deductive safety analysis technique.
It is a top-down approach applied during the entire design stage. A preliminary
hazard identification provides information about functions of the system and
the possible failures (see Fig. 3). This information is taken as an input for the
FTA. The result of the FTA is an identification of those component faults that
result in different hazardous situations. Each fault tree has a root representing

1570 Kaisa Sere and Elena Troubitsyna

?

?

?

?

?

?

� -

� -

� -

� -

� -

� -

Safety Analysis

code generation

single failure mode
Abstract specification with a

data refinement
Partitioning of failure modes
to represent identified hazards

refinement
Prioritizing of failure modes

data refinement
Detail specification of each
failure according to fault tree

data refinement
Introduction of fault-tolerance
in the specification

Introduction of the required
redundancy

data refinement

Code of controller program

Preliminary hazards
identification

Estimation of each hazard level

Fault tree analysis for each
identified hazard

Identification of means of

Software Development

redundancy
Decisions on introduction of

procedures for each hazardous fault
detection and fault tolerance

Fig. 3. Interaction of software development process with safety analysis

a hazardous failure. The tree traces the system to the lower component level
revealing the possible causes of the failure.

A fault tree consists of two main entities, leaves and gates. The leaves, often
called events, represent the system states which in combination with other events
lead to the occurrence of the hazardous fault represented by the root of the tree.
The gates are logical connectives which join the leaves. They describe which
particular combination of events results in the occurrence of the hazard. In this
paper we consider two basic logical gates, namely disjunction and conjunction.
Below we present the rules which allow us to embed the information about
failures given in the form of a fault tree in the specification of the system given
in the form of an action system.

A leaf of a fault tree describes a certain set of system states. It, therefore, can
be expressed as a predicate over the state variables of the system. In the system
specification the leaves, or more precisely the predicates representing the leaves,
appear as the guards of the actions which specify the reaction of the system on
the occurred faults. With each event we also associate a certain level of criticality
defined by the level of the fault tree at which that particular event appears. The
root of the tree, therefore, is the event of the first level of criticality, the events
directly connected to the root by means of a logical gate have the second level
of criticality etc. It is clear, that the occurrence of an event which is close to
the root might lead to an inevitable catastrophe, and therefore, should be dealt
with urgently.

A gate of a fault tree defines the logical operator (conjunction or disjunction)
over the predicates representing the leaves which the gate connects. Therefore,
if an action specifies a reaction of the controller on the combination of certain
events we define its guard on the base of the gate which conjoins these events.

Safety Analysis in Formal Specification 1571

����

��

...(2,N)
E

E
(1,1)

(a) (b)

... E

E
(1,1)

E
(2,1) (2,1)

E
(2,N)

Fig. 4. Basic fault trees

The approach we advocate in this paper suggests to analyse a fault tree in
a stepwise manner. Namely, we start from the specification of the system in
form (1) where the value true of the boolean fail represents the root of the fault
tree. Here for simplicity, we assume that there is only one hazard identified for
a given system. In the next section we extend the technique to reason about
systems with several hazards. Analysing the fault tree level after level we step-
wise embed detailed representation of the faults and model the reaction of the
controller in the specification. As a result, we obtain a specification of the sys-
tem within which both faults and reactions on them are specified in terms of
the state variables. Moreover, the faults are treated according to their criticality
which is defined by the levels of the fault tree. Below we describe a number of
generic rules which allow us to specify faults preserving the structure of the fault
tree.

Consider the fault tree (a) in Fig. 4, where events E(2,1), . . . ,E(2,N) are caused
by failures of sensors and actuators (see Fig.2) or represent certain events over
globally observed system states (e.g. the states of the physical environment). The
event E(i,j) stands for the j − th event on the i − th level of the fault tree. Even
though we consider here only two levels, the results can be applied recursively to
an arbitrary number of levels. We show an example of this in the next section.

The occurrence of the failure E(1,1) and the system reaction on that can be
specified by the action Failure of the following form:

Failure =̂ E(2,1) ∨ . . . ∨ E(2,N) → Reaction on E(1,1)

where E(2,1), . . . ,E(2,i) are predicates over the local variables of the system repre-
senting sensor and actuator failures and E(2,i+1), . . . ,E(2,N) are predicates over
the global variables representing events over globally observed system states.
Moreover,

E(1,1) = E(2,1) ∨ . . . ∨ E(2,N)

Data refinement allows us to change the local part of the state space (i.e.
to manipulate the local variables of the specification) provided the behaviour of

1572 Kaisa Sere and Elena Troubitsyna

the system on the global level is preserved. Therefore, the events expressed as
predicates over the global variables of the system should obtain a detail represen-
tation already in the initial specification of the system as new globally observable
behaviour cannot be added via refinement. This restriction allows us to ensure
that the behaviour of the refined specification is subsumed by the behaviour of
the initial specification. In contrary, the representation of the events which do
not refer to the global state can be very abstract in the initial specification.

Consider again the fault tree (a) in Fig. 4 where none of the events E(2,1),
. . . , E(2,N) refers to the global state and hence are for simplicity modelled by
the local variables E(2,1), . . . ,E(2,N) in the system specification. For that case we
have the following result:

Theorem 3. The action system A of the form (1) such that E(1,1) = fail in
the fault tree (a) in Fig. 4 is refined by the action system A′:

A′ =̂ const c; global z ; |[var v ,E(2,1), ...,E(2,N); I ′; do P ; C ′ od]|

where I ′ initialises the variables and the controller action C ′ is a prioritising
composition of the reaction on the occurred failure E(1,1) specified by the action
Failure ′

Failure′ =̂ E(2,1) ∨ . . . ∨ E(2,N) → Emergency

with the control actions:

C ′ =̂ Failure′ // (Unit1 [] Unit2 [] . . . [] UnitM)

Proof. The refinement relation R =̂ fail = (E(2,1)∨. . .∨E(2,N)) allows us to prove
that A ≤R A′ appealing to Theorem 2, hence, proving the theorem.

Next we develop a similar rule for specifying the fault tree (b) in Fig. 4 which
contains the logical gate conjunction. Assume that events E(2,1), . . . ,E(2,i) are
caused by failures of sensors and actuators (see Fig.2) and events E(2,i+1), . . . ,
E(2,N) represent certain events over globally observed system states. The occur-
rence of the failure E(1,1) is caused by the conjunction of these events as specified
by the fault tree. We specify the occurrence of the event E(1,1) and the reaction
of the controller on that by the action Failure of the following form:

Failure =̂ E(2,1) ∧ . . . ∧ E(2,N) → Reaction on E(1,1)

where E(2,1), . . . ,E(2,i) are again predicates over the local variables of the system
and E(2,i+1), . . . ,E(2,N) are predicates over the global variables and

E(1,1) = E(2,1) ∧ . . . ∧ E(2,N)

Note, that in case a failure is caused by disjunction of a set of events (the
fault tree (a) in Fig. 4) the controller is intolerant to the occurrence of any
single event from this set. In case of conjunction (the fault tree (b) in Fig. 4)
the situation is different: the controller can cope with each particular event to

Safety Analysis in Formal Specification 1573

preclude the occurrence of the more critical failure caused by the conjunction of
these events.

Again for simplicity assume that none of the events E(2,1), . . . ,E(2,N) of the
fault tree (b) in Fig. 4 refers to the global states and are therefore modelled by
local variables of the same name in the system specification. Then the following
theorem provides us with a formal technique to represent such a fault tree in the
specification as a refinement of the initial system specification.

Theorem 4. The action system A of the form (1) such that E(1,1) = fail in
the fault tree (b) in Fig. 4 is refined by the action system A′:

A′ =̂ const c; global z ; |[var v ,E(2,1), . . . ,E(2,N); I ′; do P ; C ′ od]|

where I ′ is the new initialisation and the controller action C ′

C ′ =̂ Failure′ // (Unit1 [] Unit2 [] . . . [] UnitM)

is a prioritising composition between the control actions Unit1,Unit2, . . . , UnitM
and the action Failure ′

Failure′ =̂ E(2,1) ∧ . . . ∧ E(2,N) → Emergency
// E(2,1) → RescueE(2,1)

[] . . .

[] E(2,N) → RescueE(2,N)

which specify the reaction Emergency of the controller on the occurrence of the
hazardous failure E(1,1), together with the reaction statements RescueE(2,1) , . . . ,
RescueE(2,N) on the local variables E(2,1), ...,E(2,N).

Proof. The refinement relation R =̂ fail = (E(2,1)∨. . .∨E(2,N)) allows us to prove
that A ≤R A′ on the base of Theorem 2. This results in proving the theorem.

The statements RescueE(2,1) . . . ,RescueE(2,N) specify invocations of the mainte-
nance procedures as the responses on the occurred failures of the sensors and
the actuators (see Fig.2).

The treatment of a more general case where the events E(2,1), . . . , E(2,N) can
refer to both global and local states is different in the sense that we have to give
a detailed description of the events over the global system state already in the
initial specification. The reasoning about the events referring to the local part
of the state space is, however, still conducted as above.

Below we present a general form of the initial specification of the action
Failure for this case which additionally specifies controller reactions on com-
bined events caused by multiple failures. In that case the action representing the
occurrence of failure E(1,1) of the fault tree (b) in Fig. 4 contains also the ac-
tions specifying the reactions on these combined events. The specification of the
occurrence of the failure E(1,1) as well as the occurrences of the combinations of
the events E(2,1), . . . ,E(2,N) with the reactions of the controller are represented
by the action Failure below

1574 Kaisa Sere and Elena Troubitsyna

Failure =̂ E(2,1) ∧ ... ∧ E(2,N) → Emergency

//
∧

i∈[1..N]

E(2,i) → Resque1

[] . . . (2)

[]
∧

i∈[1..N]

E(2,i) → Resquel

where E(2,1), . . . ,E(2,N) are predicates over the local and the global variables.
Here the statements Resque1, . . ., Resquel specify the invocations of the mainte-
nance procedures as the responses on the occurred events. The guards of these
actions are formed from arbitrary event combinations and might describe reac-
tions on each of the events E(2,1), . . . ,E(2,N) separately as well.

5 Example: A Heater Controller

To illustrate both construction of a fault tree and building of the corresponding
specification we consider an example — a heater controller for a tank of toxic
liquid. A computer controls the heater using a power switch on the basis of
information obtained from a temperature sensor. The controller tries to maintain
the temperature between certain limits. If the temperature exceeds a critical
threshold the toxic liquid can harm its environment in a certain way (we leave
it unspecified).

We start the safety analysis of our system (see Fig. 3) by the preliminary
hazard identification. Since the system can harm its environment as a result of
overheating of the toxic liquid, we identify the hazard overheating and proceed
the analysis by constructing the corresponding fault tree. The fault tree in Fig. 5
identifies the faults of the system components and their logical combinations
which lead to overheating.

Overheating of the toxic liquid, the event E(1,1) takes place if the temperature
reaches a predefined threshold, heat is supplied, and a failure to switch off the
heater takes place. Therefore, E(1,1) = E(2,1) ∧ E(2,2) ∧ E(2,3). The failure to
switch of the heater, the event E(2,3) is a result of the failure to issue the switch
off signal or a primary switch failure, E(2,3) = E(3,1)∨E(3,2). Finally, the failure
E(3,1) occurs if either the controller fails or the temperature sensor fails and
indicates a wrong (lower than the real) temperature, E(3,1) = E(4,1) ∨ E(4,2).

Designing a formal specification of the system according to the approach
proposed in this paper, we depict the information obtained from the construction
of the fault tree. Our initial specification of the system below:

Safety Analysis in Formal Specification 1575

��

��

��

��

��

Heater
is on

Failure to switch

Primary switch
failure

Controller
failure

Temperature
sensor failure

E E E

E E

(2,1) (2,2) (2,3)

(4,1) (4,2)

E
(3,2)

off heater
Temperature

is high

Failure to issue
switch off signal

(3,1)
E

E
(1,1)

Overheating

Fig. 5. Fault tree of overheating

A =̂ const tr : Real / ∗ critical threshold ∗ /
ht : Real / ∗ high temperature limit ∗ /
lt : Real / ∗ low temperature limit ∗ /
maxd : Real / ∗maximal temperature decrease per unit of time ∗ /
maxi : Real / ∗maximal temperature increase per unit of time ∗ /
maxt : Real / ∗maximal feasible temperature ∗ /
lt < ht < tr ;

global t : Real / ∗ temperature ∗ /
heat : on|off / ∗ supply of heating ∗ /

|[var E(2,3):Bool ; I ; do Environment ; Controller od]|

has the form (1) where Controller = Failure // Switch.
As described previously, the action Failure specifies the occurrence of over-

heating and the rescue procedures undertaken by the controller as responses to
the occurred failures. Overheating is the result of the conjunction of the events
E(2,1), E(2,2), E(2,3). We express the event E(2,1) by the predicate t ≥ tr , where t
is a global variable modelling the temperature of the liquid and tr is the critical
temperature threshold defined by the corresponding constant in our specifica-
tion. Similarly, the event E(2,2) is represented by the predicate heat = on. The
global variable heat evaluates to on if the heater is switched on and to off oth-
erwise. The event E(2,3) is caused by the failures of the sensor and the actuator,

1576 Kaisa Sere and Elena Troubitsyna

which will appear in the specification later. Meanwhile we model the failure
E(2,3) by a local variable with the same name: the variable E(2,3) is true if the
event E(2,3) takes places. Therefore, we define overheating, the event E(1,1), as
follows:

overheating = t ≥ tr ∧ heat = on ∧ E(2,3)

If overheating takes place the system should be shut down. However, if no
failure to switch off heating occurs the controller can preclude an immediate
occurrence of overheating by switching off the heater. We pessimistically assume
that the system is shut down if there is a failure to switch off the heater. We
specify a more realistic treatment of this failure as soon as a detailed specification
of the sensor and the actuator becomes available. The specification of the action
Failure

Failure =̂ overheating → abort
// t ≥ tr ∧ heat = on → heat : = off
[] E(2,3) → abort

is obtained on the basis of the reasoning described in Section 4. Observe, that the
structure of the part of the fault tree in Fig. 5 we analyse here is similar to the
structure of the fault tree (b) in Fig. 4. The general form of an action specifying
the responses of the system to combined events was given by the action (2). Here
we applied the same kind of reasoning to obtain the action Failure.

The rest of the system specification is rather typical for control systems
treated within the action system formalism. Specifying the initialisation we as-
sume that the system starts its operation in a state where no failures have
occurred: I =̂ E(2,3): = false.

We specify the environment very abstractly: we merely describe an arbitrary
temperature change and a non-deterministic occurrence of a fault.

Environment = Envp ;Envf
Envp = t : =?
Envf = E(2,3): =?

The control action Switch specifies the switching off and on the heater in order
to maintain the liquid temperature in the safe region:

Switch =̂ t ≥ ht ∧ heat = on → heat : = off
[] t ≤ lt ∧ heat = off → heat : = on

The analysis of the next level of the fault tree is based on the application
of Theorem 3: the occurrence of the event E(2,3) results from the disjunction
of the events E(3,1) and E(3,2). To specify the event E(3,1) we introduce a local
variable E(3,1) which is true if the event occurs. The event E(3,2) results from
the failure of the actuator — the power switch. To specify this we introduce the
local variable sw stat modelling the status of the switch in our specification. To
simplify the reasoning we omit the detailed specification of an invocation of a

Safety Analysis in Formal Specification 1577

switch repair procedure and present only its effect: the repaired power switch.
The specification of the response on the event E(3,1) is similar to that of the
event E(2,3).

The specification of the system A′ is as follows

A′ =̂ . . . |[var sw stat :ok |failed ; E(3,1):Bool ; I ′ ;
do Environment ′;Controller ′ od]|

where Controller ′ = Failure′ // Switch is obtained by taking into account infor-
mation obtained from the analysis of the second and the third levels of the fault
tree in Fig. 5 as specified by the action Failure′

Failure′ =̂ overheating ′ → abort
// t ≥ tr ∧ heat = on → heat : = off
// sw stat = failed → sw stat : = ok
[] E(3,1) → abort

Here overheating ′ = t ≥ tr ∧ heat = on ∧ (sw stat = failed ∨ E(3,1)).
Also in this step we refine the environment action by considering maximal

system dynamics and by modelling the occurred failures over the introduced
local variables:

Environment ′ =̂ Env ′p ;Env ′f
Env ′p =̂ t : = t ′.t −maxd ≤ t ′ ≤ t + maxi ∧ 0 ≤ t ≤ maxt
Envf =̂ sw stat : =? ; E(3,1): =?

The new initialisation is I ′ =̂ sw stat : = ok ; E(3,1): = false
On the base of Theorem 3 and the refinement rules given in Fig.1 it can be

shown that the action system A′ refines the action system A with the refinement
relation R1

R1 =̂ E(2,3) = (sw stat = failed ∨ E(3,1))

Analysing the last level of the fault tree in Fig. 5, we observe that the event
E(4,1) cannot be expressed in the specification of the controller. The failure of
the controller is caused by the hardware or software error. However, it points out
the necessity to introduce a controller independent device in the system design,
a watch dog. Such a device periodically checks the status of the controller and
shuts down the system or activates a stand-by controller if the main controller
fails. Therefore, we consider the event E(4,2) which specifies a failure of the tem-
perature sensor. The introduction of a representation of the sensor in the system
specification transforms the specification of the controller in such a way that the
controller relies on the sensor readings to perform its duties. The real state of
the environment becomes inaccessible to the controller. Applying Theorem 3 we
perform data refinement of the system obtaining the specification A′′.

A′′ =̂ . . . |[var sw stat , sen stat :ok |failed ; t tr , t est1, t est2:Real ; I ′′ ;
do Environment ′′;Controller ′′ od]|

1578 Kaisa Sere and Elena Troubitsyna

where Controller ′′ = Failure′′ // Switch′. The initialisation establishes a state
where both the temperature sensor and the power switch function properly.

I ′′ =̂ sw stat : = ok ; sen stat : = ok ;t tr : = t ;t est1, t est2: = t tr , t tr

The environment models a change of the temperature, independent occurrences
of the sensor and the actuator failures, and an estimate of the temperature made
by the controller:

Environment ′′ =̂ Env ′p ; Env ′′f ; T Estim
Env ′′f =̂ sw stat : =? ; sen stat : =?;

t tr : = t tr ′.sen stat = ok ⇒ t tr ′ = t∧
sen stat = failed ⇒ t tr ′ = t tr

T Estim =̂ t est1, t est2: = t est ′1, t est ′2.Q

where

Q = (sen stat = ok ⇒ t est ′1 = t tr ∧ t est ′2 = t tr) ∧ (sen stat = failed ⇒
(t est ′1 = (if t est1 + maxi < maxt then t est1 + maxi else maxt)∧
t est ′2 = (if t est2 −maxd > 0 then t est2 −maxd else 0)))

Compared to the action Failure′, the action Failure′′ introduces additionally
a reaction to the failure of the sensor. Moreover, it defines overheating by tracing
the whole fault tree (Fig. 5):

Failure′′ = overheating ′′ → abort
// t est1 ≥ tr ∧ heat = on → heat : = off
// sw stat = failed → sw stat : = ok
// sen stat = failed → sen stat : = ok

with overheating ′′ = t est1 ≥ tr ∧ heat = on ∧ (sw stat = failed ∨ sen stat =
failed).

In the specification of the controller we change the access to the real temper-
ature and substitute it by the temperature estimate of the controller:

Switch′ =̂ t est1 ≥ ht ∧ heat = on → heat : = off
[] t est2 ≤ lt ∧ heat = off → heat : = on

Data refinement between the action systems A′ and A′′, A′ ≤R2 A′′, is proved
with the refinement relation

R2 =̂ E(3,1) = sen stat ∧
(sen stat = ok ⇒ t = t tr ∧ t est1 = t tr ∧ t est2 = t tr) ∧
(sen stat = failed ⇒ t est2 ≤ t ≤ t est1)

Safety Analysis in Formal Specification 1579

6 Prioritising Hazards

Section 4 provided us with techniques that allow us to represent a single hazard in
a specification. Often, however, there are several hazards identified for a system
under construction. We need, therefore, to generalise the presented approach to
reasoning about system hazards in general.

We assume that a set of hazards H is obtained as a result of the hazard
identification. For each hazard Hi ∈ H an appropriate fault tree FTi is con-
structed. The obtained fault trees form a set FT : each tree from the set can be
represented in the system specification as described in Section 4. Here we focus
on the interaction between the representation of hazards in the specification.

Analysing the set of hazardsH we assess the risk associated with each hazard
from this set. The assessment is based on available quantitative information
about component reliabilities or on expert judgements about the likelihood and
severity of each hazard. Having assessed the risks associated with the identified
hazards we can classify them. There are a number of methods and standards
providing guidance for the classification of risks [13]. Without going into details
we assume without loss of generality that there are three disjoint classes of
hazards formed on the basis of the classification of risks associated with the
hazards.

Class I : {H1, . . . ,Hc1}
Class II : {Hc1+1, . . . ,Hc2}
Class III : {Hc2+1, . . . ,Hc3}

Let us make this more concrete by giving a potential interpretation to the
classes. Assume that on the base of the performed classification we formulate
failure modes of the system to be designed. The system enters Emergency mode
if any of the hazardous situations from Class I occurred. Hence, these are the
hazards that are intolerable and have a high risk associated with them. The
mode Resque is caused by hazards belonging to class Class II . These are less
severe hazards but still critical. They should be avoided or their effect should be
mitigated. An occurrence of a hazard from Class III transforms the system into
the Degraded mode. Here the failures can be tolerated as the risks associated
with the corresponding hazards are negligible.

Now we return to the specification of the system from the software point
of view. Developing the specification of the controller which should withstand
several types of hazardous failures it is desirable to carry out the development
process in such a way that the produced classification of hazards is preserved.

Consider again the general form of the system specification (1). As we de-
scribed previously the guard of the action Failure, fail is in general a predicate
over the global and the local variables. It expresses the occurrence of the iden-
tified hazardous failure. Since we now consider a set of hazardous failures the
predicate fail should express the occurrence of any of them, i.e.

fail =
∨N

i=1 Hi

1580 Kaisa Sere and Elena Troubitsyna

where each of the predicates Hi , Hi ∈ H for i = 1..N describes a corresponding
hazard in terms of the state variables as explained in Section 4. In the initial
system specification we assume pessimistically, that each of the hazardous faults
is treated equally by Emergency statement.

To introduce the different failure modes in the general specification of failures
given by the action Failure we partition it as shown below:

Failure = Fail1 [] Fail2 [] Fail3

The three actions Fail1,Fail2,Fail3 which describe the different classes of haz-
ards:

Fail1 =̂ gFail1 → Emergency
Fail2 =̂ gFail2 → Resque
Fail3 =̂ gFail3 → Degraded

The action Fail1 specifies the reaction of the system on hazards from Class I
which is Emergency, shut down of the system. The occurrence of a hazard or
several of them is modelled by the guard of the action, which is defined to be
disjunction of hazards from Class I :

gFail1 =̂ ∨c1
i=1Hi

The hazards belonging to Class II are specified by the action Fail2. Since a
hazard from Class II does not lead to the imminent catastrophe, some actions to
bring the system back to a non-hazardous state should be undertaken. Generally,
the action has the form

Fail2 =̂ Hc1+1 → Resquec1+1 [] . . . [] Hc2 → Resquec2

Here each of the individual actions becomes enabled if a corresponding hazard
from Class II occurs. The body of each action is an invocation of some Resque
procedure. The structure of the action Fail3 is similar to the action Fail2, but has
the hazards of Class III as the guards and corresponding corrective procedures
as the bodies.

Another safety requirement which we capture in the specification is a ne-
cessity to cope with the failures according to their criticality: we give priority
to failures with high risks associated to them. Hence, Fail1 should be executed
immediately when enabled. Also Fail2 and Fail3 will be taken whenever enabled
provided no action in a higher priority class is enabled. A normal control action
Uniti is only taken when there are no failures detected in the system. Therefore,
the most severe hazards — hazards belonging to Class I should be handled by
the controller with highest priority. They form the class of highest priority in
the specification of the controller. Consequently, the priority of the class de-
creases with increasing its priority index. The non-deterministic choice between
the failure actions cannot guarantee this. The effect is obtained by prioritising
the failure actions:

Fail1 [] Fail2 [] Fail3 ≤ Fail1 // Fail2 // Fail3

Safety Analysis in Formal Specification 1581

The generalisation of the made observations from the perspective of the pro-
gram refinement is given by the following theorem:

Theorem 5. The action system

A =̂ const c; global z ; |[var pv , cv ; I ; do P ; (Failure // C) od]|

such that

Failure=̂ fail → Emergency

where fail is a predicate over the local and the global system variables and
Emergency is equivalent to abort is refined by the action system

A′ =̂ const c; global z ; |[var pv , cv ; I ; do P ; (Failure′ // C) od]|

where

Failure′ =̂ fail1 → Emergency
// fail2 → Rescue
// fail3 → Degraded

and

fail1 =̂
∨c1

i=1 Hi

fail2 =̂
∨c2

i=c1+1 Hi

fail3 =̂
∨N

i=c2+1 Hi

and where Hi for i = 1..N are the predicates over the local and the global variables
such that fail =

∨N
i=1 Hi

Proof. The theorem follows from the observation that an action guarded by
the disjunction of predicates can be partitioned to actions guarded by separate
disjuncts. Moreover, the application of Rule 2 in Fig. 1 allows us to prioritise
these actions. Finally, abort statement is trivially refined by any statement (by
itself also as follows from the reflexivity of the refinement).

7 Concluding Remarks

We have shown how information about hazardous situations occurring in a plant
can be embedded in the formal specification of a control program. Via this
embedding the hazardous situations are treated according to their criticality
and urgency. This allows to enhance safety of the overall system by ensuring
that in case some marginal failure occurred simultaneously with a more critical
failure the latter one will be treated with the highest priority. The development
of the heater controller in Section 5 illustrated the application of the approach.

We have chosen to model the plant with the controlling software within the
action system formalism. Our approach to embed safety analysis within the
system development was based on using the refinement calculus associated with
action systems. The creation of the system specification was carried out in the

1582 Kaisa Sere and Elena Troubitsyna

stepwise manner: each refinement step incorporated information supplied by the
corresponding level of the fault tree. Our example on the heater controller in
Section 5 confirmed that the stepwise program refinement can naturally proceed
hand-in-hand with the safety analysis. Observe also, the benefits of such an
incorporation: the final form of the action modelling failures correctly prioritises
the failures according to their criticality by the construction. A more elaborate
case study on the approach is given in an accompanying paper [15] where we
design a mine pump control system.

Further refinement steps are concentrated on the introduction of detailed
specification of each identified hazard as illustrated in Section 5. Observe that
applying the results of Theorem 5 we obtain a possibility to reason about each
hazard in context of its own class. The reasoning structured in this way ensures
a correct prioritising of failures causing hazards of different criticality. Therefore,
when applying the techniques from Section 4 to elaborate on each of the identified
hazards we do not only preserve the structure of the corresponding fault trees,
but also the criticality of faults constituting the hazards from different classes.

Even though we in this paper concentrated on safety analysis and faulty
behaviour of a system, the system itself is developed in a modular fashion, con-
centrating first on the normal behaviour of the system stating both the plant and
the controller requirements within a single framework. Thereafter the different
failure mechanisms are incorporated into the specification. Hence, we can sepa-
rate the concerns, concentrate on parts of the system separately as well as use
and state assumptions about the physical plant itself. This is an approach tradi-
tionally advocated by action systems [3, 10]. We as well as other researchers [7]
argue that only such an approach makes a formal analysis of a system feasible,
easily adjustable and less redundant.

Acknowledgements. The work reported here was supported by the Academy of
Finland. The authors are grateful to the anonymous referees for their comments
on the paper.

References

[1] R. J. R. Back and K. Sere. From modular systems to action systems. Proc.
of Formal Methods Europe’94, Spain, October 1994. Lecture Notes in Computer
Science. Springer–Verlag, 1994.

[2] R. J. R.Back and J. von Wright. Trace Refinement of Action Systems. In Proc.
of CONCUR-94, Sweden, August 1994. Lecture Notes in Computer Science.
Springer–Verlag, 1994.

[3] M. Butler, E. Sekerinski, and K. Sere. An Action System Approach to the Steam
Boiler Problem. In Jean-Raymond Abrial, Egon Borger and Hans Langmaack,
editors, Formal Methods for Industrial Applications: Specifying and Program-
ming the Steam Boiler Control, Lecture Notes in Computer Science Vol. 1165.
Springer-Verlag, 1996.

[4] E.W. Dijkstra. A Discipline of Programming. Prentice Hall International, En-
glewood Cliffs, N.J., 1976.

Safety Analysis in Formal Specification 1583

[5] K.M. Hansen, A. P. Ravn and V. Stavridou. From Safety Analysis to Software
Requirements. In IEEE Transactions on Software Engineering, Vol.24, No.7,
July 1998

[6] N.G. Leveson. Safeware: System Safety and Computers, Addison-Wesley, 1995.
[7] N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D. Reese. Requirements

Specification for Process-Control Systems. In IEEE Transactions on Software
Engineering, 1994.

[8] Z. Liu and M. Joseph. Transformations of programs for fault-tolerance. In
Formal Aspects of Computing, Vol 4, No. 5 1992, pp. 442-469

[9] A. McIver, C.C. Morgan and E. Troubitsyna. The probabilistic steam boiler: a
case study in probabilistic data refinement. In Proc. of IRW/FMP’98, Australia,
1998.

[10] E. Sekerinski and K. Sere (Eds.). Program Development by Refinement - Case
Studies Using the B Method. Springer Verlag 1998.

[11] E. Sekerinski and K. Sere. A Theory of Prioritizing Composition . The Computer
Journal, VOL. 39, No 8, pp. 701-712. The British Computer Society. Oxford
University Press.

[12] K. Sere and E. Troubitsyna. Hazard Analysis in Formal Specification. In Proc.
of SAFECOMP’99, France, 1999. To appear.

[13] N. Storey. Safety-critical computer systems. Addison-Wesley, 1996.
[14] E. Troubitsyna. Refining for Safety. TUCS Technical Report No.237, February

1999.
[15] E. Troubitsyna. Specifying Safety-Related Hazards Formally. In Proc. of

ISSC’99, USA, 1999. To appear.
[16] K. Wong and J. Joyce. Refinement of Safety-Related Hazards into Verifiable

Code Assertions. in Proceedings of SAFECOMP’98,, Heidelberg, Germany, Oc-
tober, 1998.

	Introduction
	Action Systems
	Specifying Control Systems with Safety Consideration
	Representing a Fault Tree in a Specification
	Example: A Heater Controller
	Prioritising Hazards
	Concluding Remarks

