
A PVS-Based Approach for Teaching

Constructing Correct Iterations

Michel Lévy and Laurent Trilling

Laboratoire IMAG-LSR
B.P. 72, 38041 St Martin d’Hères, France

Michel.Levy@imag.fr, Laurent.Trilling@imag.fr

Just claiming the importance of formal methods is not enough, it is necessary to
teach programming using formal methods. Also, we have to convince students
to use them in their programming. To fill this goal, two points seem necessary:
a no-fault approach combined with (apparently) affordable proofs and the use
of automatic provers.

More than twenty years ago, David Gries and others said that the goal should
be to forbid the construction of incorrect programs by teaching constructions of
correct programs using a no-fault approach. This point of view appears to us to
be both simple and challenging for students, because teaching correct program
construction means teaching methodologies based on a process with well-defined
steps which decomposes into sub-tasks, each of which is human in scope. Human
scope means the sub-tasks are considered obvious or easy to prove by humans;
for example, easy to prove sub-tasks preferably do not require inductive proof.

Formal pen and paper teaching of program construction methodologies using
formal methods is not enough, since proofs by hand sometimes contain over-
looked errors and, by not facing this reality, students do not develop the con-
viction to use these methods systematically. What is needed here are computer
systems to check proof automatically. Using such systems challenges students to
write correct proofs, and, in turn, motivates students to employ formal methods
in their programming.

Our first objective relates to designing a system called CIA-PVS (for Con-
structions d’Itérations Assistées par PVS). This system is used in teaching a long
known and well known methodology for constructing simple programs, i.e. loops.
CIA-PVS is based on a well known proof-checker, PVS (for Prototype Verifica-
tion System), which was developed at SRI (Stanford Research Institute). What
is expected from the CIA-PVS system is that it reacts quasi-automatically to
prove the lemmas necessary for the construction of programs which are tradi-
tional exercises such as the Dutch National Flag and the dichotomic research in
an ordered list. What should be noted here is the simplicity of the lemmas to be
proved. The real difficulty in constructing the program should not be the proof
of these lemmas but the formalisation of the problem as the definition of the for-
mulas expressing the result of the program, the invariants and the termination
function of the iteration.

Our second objective relates to evaluating CIA-PVS for teaching program-
ming via a methodology employing formal methods. In particular, the evaluation

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1859–1860, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



1860 Michel Lévy and Laurent Trilling

will be based on two criteria: automatic proof power and modelisation. Modeli-
sation refers to the capacity to model easily the formal methods methodology
so as to reduce as much as possible the gap between the formal teaching of the
methodology and the concrete use of it in programming.

Our work began by constructing a PVS theory, called CIA-PVS, which proves
the methodology itself. We need to prove it because, even if a methodology is, like
this one, very well-known and appears to everybody correct, it is still possible
that an error will arise as we attempt to formalise it precisely. Moreover, the
use of this theory reduces the proving task of students, as desired, because the
proof of the well-foundedness of the methodology is done once and for all. The
use of subtypes provided by PVS to construct CIA-PVS has been very useful
for reaching this goal. First experimentation on simple yet not trivial problems
is encouraging. Once CIA-PVS is proved, power is clearly impressive in many
cases and that is clearly positive. The remaining sensitive points are (1) some
proofs may become easier or more difficult depending the chosen modelisation
and (2) some proofs require a significant know-how level in PVS. The challenge
for teaching remains both to define a starting knowledge of PVS to be taught
to students and to extend CIA-PVS to deal with more sophisticated exchanges
with students.


	A PVS-Based Approach for TeachingConstructing Correct Iterations

