Theories of Programming: Top-Down and
Bottom-Up and Meeting in the Middle

C.A.R. Hoare

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD
tony.hoare@comlab.ox.ac.uk

1 Introduction

The goal of scientific research is to develop an understanding of the complexity
of the world which surrounds us. There is certainly enough complexity out there
to justify a wide range of specialist branches of science; and within each branch
to require a wide range of investigatory styles and techniques.

For example, among the specialists in Physics, cosmologists start their spec-
ulations in the vast distances of intergalactic space, and encompass the vast
time-scales of the evolution of the stars. They work methodically downward in
scale, until they find an explanation of phenomena that can be observed more
or less directly by the naked eye.

At the other end of the scale, particle physicists start with the primitive
components of the material world, currently postulated to be quarks and glu-
ons. They then work methodically upward in scale, to study the composition
of baryons, hadrons, and leptons, clarifying the laws which govern their assem-
bly into atoms and molecules. Eventually, they can explain the properties of
materials that we touch and smell and taste in the world of every day.

In spite of the difference in scale of their starting points, and in the direc-
tion and style of their investigations, there is increasing excitement about the
convergence and overlap of theories developed by cosmologists and by particle
physicists. The point at which they converge is the most significant event in the
whole history of the universe, the big bang with which it all started.

The same dichotomy between top-down and bottom-up styles of investigation
may be found among mathematicians. For example, category theorists start
at the top with a study of the most general kind of mathematical structure,
as exemplified by the category of sets. They then work downward to define
and classify the canonical properties that distinguish more particular example
structures from each other.

Logicians on the other hand start from the bottom. They search for a min-
imal set of primitive concepts and notations to serve as a foundation for all of
mathematics, and a minimal collection of atomic steps to define the concept of
a valid proof. They then work methodically upward, to define the more familiar
concepts of mathematics in terms of the primitives, and to justify the larger
proof steps which mathematicians need for efficient prosecution of their work.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. I, LNCS 1708, pp. 1-I27, 1999.
© Springer-Verlag Berlin Heidelberg 1999

2 C.A.R. Hoare

Fortunately in this case too, the top-down and the bottom-up styles of investi-
gation both seek a common explanation of the internal structure of mathematics
and clarification of the relationship between its many branches. Their ultimate
goal is to extend the unreasonable power of mathematical calculation and make
it more accessible to the experimental scientist and to the practicing engineer.

Computer science, like other branches of science, has as its goal the under-
standing of highly complex phenomena, the behaviour of computers and the
software that controls them. Simple algorithms, like Euclid’s method of finding
the greatest common divisor, are already complex enough; a challenge on a larger
scale is to understand the potential behaviour of the million-fold inter-linked op-
erating systems of the world-wide computing network.

As in physics or in mathematics, the investigation of such a system may
proceed in a choice of directions, from the top-down or from the bottom-up.
In the following exposition, this dichotomy will be starkly exaggerated. In any
particular scientific investigation, or on any particular engineering project, there
will be a rapid alternation or mixture of the two approaches, often starting in
the middle and working outward. A recommendation to this effect is made in
the conclusion of the paper.

An investigation from the top-down starts with an attempt to understand the
system as a whole. Since software is a man-made artifact, it is always relevant
to ask first what is its purpose? Why was it built? Who is it for? What are the
requirements of its users, and how are they served?

The next step is to identify the major components of the system, and ask
how they are put together? How do they interact with each other? What are the
protocols and conventions governing their collaboration? How are the conven-
tions enforced, and how does their observance ensure successful achievement of
the goals of the system as a whole?

A top-down theory of programming therefore starts by modelling external
aspects of the behaviour of a system, such as might be observed by its user.
A meaningful name is given to each observation or measurement, so that the
intended behaviour of the system can be described briefly and clearly, perhaps
in a user manual for a product, or perhaps even in a specification agreed with
the user prior to implementation.

The set of observations is extended to include concepts needed to describe the
internal interfaces between components of the system. The goal of the theory is
to predict the behaviour of a complex assembly by a calculation based only on
descriptions of the behaviour of its major components. The collection of formulae
used for these calculations effectively constitutes a denotational semantics for the
languages in which a system is specified, designed, and eventually implemented.

The programming language used for ultimate implementation is defined by
simply selecting an implementable subset of the mathematically defined nota-
tions for describing program behaviour. The correctness of a program simply
means that all possible observations of its behaviour under execution are in-
cluded in the range defined by its specification.

Theories of Programming 3

The development of the theory starts from the denotational definitions and
continues by formalisation and proof of theorems that express the properties
of all programs written in the language. The goal is to assemble a collection
of mathematical laws (usually equations and inequations) that will be useful in
the top-down design of programs from their specifications, and ensure that the
resulting code is correct by construction.

Investigation of a complex system from the bottom-up starts with an at-
tempt to discover a minimum collection of primitive components from which
it has been made, or in principle could have been. These are assembled into
larger components by primitive combinators, selected again from a minimal set.
The notations chosen to denote these primitives and combinators constitute the
syntax of a simple programming language.

Since programs are intended for execution by a machine, their operational
meaning is defined by enumerating the kinds of primitive step that will be taken
by the machine in executing any program that is presented to it. The theory
may be further developed by investigation of properties of programs that are
preserved by all the possible execution steps; they are necessarily preserved
throughout execution of any program.

The resulting classification of programs is presented as a set of axioms that
can be used in proofs that a program enjoys the relevant property. The proper-
ties are often decidable, and the axioms can be used as a type system for the
programming language, with conformity checkable by its compiler.

In favourable cases, the type system allows unique or canonical types to be
inferred from an untyped program. Such inference can help in the understand-
ing of legacy code, possibly written without any comprehensible documentation
describing its structure or purpose (or worse, the original documentation often
has not been kept up to date with the later changes made to the code).

The benefits of a top-down presentation of a theory are entirely complemen-
tary to those of a bottom-up presentation. The former is directly applicable to
discussion and reasoning about the design of a program before it has been writ-
ten, and the latter to the testing, debugging, and modification of code that has
already been written. In both cases, successful application of the theory takes
advantage of a collection of theorems proved for this purpose. The most useful
theorems are those which take the form of algebraic laws.

The advantages of both approaches can be confidently combined, if the over-
lap of laws provided by both of them is sufficiently broad. The laws are a specifi-
cation of the common interface where the two approaches meet in the middle. I
suggest that such a convergence of laws developed by complementary approaches
and applied to the same programming language should be a rigorous scientific
criterion of the maturity of a theory and of a language, when deciding whether
it is ready for practical implementation and widespread use.

4 C.A.R. Hoare

2 Top-Down

A top-down presentation of a theory of programming starts with an account
of a conceptual framework appropriate for the description of the behaviour of a
running program as it may be observed by its users. For each kind of observation,
an identifier is chosen serve as a variable whose exact value will be determined
on each particular run of the program.

Variables whose values are measured as a result of experiment are very fa-
miliar in all branches of natural science; for example in mechanics, z is often
declared to denote the displacement of a particular object from the origin along
a particular axis, and e z denotes the rate of change of . We will find that
such analogies with the normal practice of scientists and engineers provide illu-
mination and encouragement at the start as well as later in the development of
theories of programming.

There are two special times at which observation of an experiment or the run
of a program are especially interesting, at the very beginning and at the very
end. That is why the specification language VDM introduces special superscript
arrow notations: z to denote the initial value of the global program variable z,
and z to denote its final value on successful termination of the program. (The
Z notation uses z and z’ for these purposes).

Fragments of program in different contexts will update different sets of global
variables. The set of typed variables relevant to a particular program fragment
is known as its alphabet. In the conventional sequential programming paradigm,
the beginning and the end of the run of a program are the only times when it is
necessary or desirable to consider the values of the global variables accessed and
updated by it. We certainly want to ignore the millions of possible intermediate
values calculated during its execution, and it is a goal of the theory to validate
this simplification.

A full understanding of a description of program behaviour requires prior
specification of its alphabet, and agreement on the way in which the value of
each variable in it can be determined by experiment. To interpret the meaning
of a program without knowing its alphabet is as impossible as the interpretation
of a message in information theory without knowing the range of message values
that might have been sent instead.

Not all the relevant parameters of program behaviour have to be directly
observable from outside the computer; some may be observable only indirectly,
by their effect on other programs. Actually, even the values of the program
variables inside the computer are inaccessible to a user; they can be controlled
or observed only with the aid of an input-output package, which is written in
the same language as the program under analysis. The indirect observations are
needed to make successful predictions about the behaviour of larger programs,
based on knowledge of the behaviour of their components parts.

Successful termination is one of the most important properties of a program
to predict, so we need a special variable (called ok) which is s true just if and
when termination occurs. The corresponding initial variable ok indicates that
the program has started. Of course a false value of ok will never be conclusively

Theories of Programming 5

observed; but that doesn’t matter, because the intention of the theorist and the
programmer alike is to ensure it that ok is necessarily true, and to prove it. Such
a proof would be vacuous if the possibility of its falsity were not modelled in the
theory.

In general, for serious proof of total correctness of programs, it is essential
to model realistically all the ways in which a program can go wrong, even if not
directly observable. In fact, the progress of science is marked by acceptance of
such unobservable abstractions as force and mass and friction as though they
were directly measurable quantities. As Einstein pointed out, it is the theory
itself which determines what is observable.

In the interactive programming paradigm, the most important observable
component of program behaviour is an interaction between the system and its
environment. Each kind of interaction has a distinct name. For example, in the
process algebra CCS [6] the event name coin may stand for the insertion of a
pound coin in the slot of a vending machine, and the event name choc may stand
for the selection and extraction of a chocolate bar by the user.

The CSP [7] variant of process algebra allows the user to record a trace of
the sequence in which such events have occurred while the machine is running;
so (coin, choc, coin) is a value of trace observed in the middle of the second
transaction of the machine; the empty trace () is the value when the machine is
first delivered.

We also model the possibility of deadlock (hang-up) by recording the set of
events currently offered by the machine’s environment, but which it refuses to
accept. For example, initially the machine refuses {choc} because it has not been
paid (or perhaps because it has run out of chocolates). A deadlocked machine is
one that refuses all the events offered by its environment.

Practical programming of useful systems will involve a combination of in-
teractive and imperative programming features; and the relevant alphabet must
include both internal variable names and external event names. The special vari-
able ok should be reinterpreted as succes_s\ful stabilisation, or avoidance of livelock
(divergence). A new special variable wait is needed to distinguish those stable
states in which the program is waiting for an interaction with its environment
from those in which it has successfully terminated.

An important achievement in the theory of programming has been to for-
malise separate models for sequential and for interactive programs, and then to
combine them with only a minimum of extra complexity.

A top-down theory of programming is highly conducive to a top-down method-
ology for program design and development. The identifiers chosen to denote the
relevant observations of the ultimate program are first used to describe the in-
tended and permitted behaviour of a program, long before the detailed program-
ming begins. For example, a program can be specified not to decrease the value
of z by the statement

T <7

<

6 C.A.R. Hoare

A precondition for termination of a program can be written as the antecedent
of a conditional

(z <27 A ok) = ok

The owner of a vending machine may specify that the number of choc events
in the trace must never exceed the number of coin events. And the customer
certainly requires that when the balance of coins over chocs is positive, extraction
of a chocolate will not be refused.

Explicit mention of refusals is a precise way of specifying responsiveness or
liveness of a process, without appeal to the concept of fairness. But there is
nothing wrong with fairness: it can be treated simply by allowing traces to be
infinite. A fair trace is then one that contains an infinite number of occurrences
of some relevant kind of event.

It is not an objective of a programming theory to place finitary or other re-
strictions on the language in which specifications are written. Indeed, our goal is
to place whole power of mathematics at the disposal of the engineer and scientist,
who should exercise it fully in the interests of utmost clarity of specification, and
utmost reliability in reasoning about correctness. We will therefore allow arbi-
trary mathematical statements as predicates: as in the mu-calculus, we will even
allow the definition of weakest fixed points of monotonic predicate transformers.

In an observational semantics of a programming language, the meaning of
an actual computer program is defined simply and directly as a mathematical
predicate that is true just for all those observations that could be made of any
execution of the program in any environment of use.

For example, let z, y, and z be the entire alphabet of global variables of a
simple program. The assignment statement z := z 4 1 has its meaning com-
pletely described by a predicate stating that when it is started, the value of x
is incremented, and that termination occurs provided the value of z is not too
large. The values of all the other global program variables remain unchanged

T<mar Aok = ohkANz=24+1ANY=y A z=2

Similarly, the behaviour of the deadlock process in a process algebra can be
described purely in terms of its trace behaviour—it never engages in any event,
and so the trace remains forever empty

trace = ()

(Here and in future, we will simplify our treatment of processes by ignoring issues
of divergence).

This kind of definition of programming concepts enables us to regard both
specifications and programs as predicates placing constraints on the range of
values for the same alphabet of observational variables; the specification restricts
the range of observations to those that are permitted; and the program defines
exhaustively the full range of observations to which it could potentially give rise.

As a result, we have the simplest possible explanation of the important con-
cept of program correctness. A program P meets a specification S just if the

Theories of Programming 7

predicate describing P logically implies the predicate describing S. Since we
can identify programs and specifications with their corresponding predicates,
correctness is nothing but the familiar logical implication

P=3S5

For example, the specification of non-decreasing z is met by a program that
increments x, as may be checked by a proof of the implication

H;/\?<max/\:z::::1:+1 = ?g?/\ﬁc

This simple notion of correctness is obviously correct, and is completely general
to all top-down theories of programming. Furthermore it validates in complete
generality all the normal practices of software engineering methodology.

For example, stepwise design develops a program in two (or more) steps. On a
particular step, the engineer produces a design D which describes the properties
of the eventual program P in somewhat greater detail than the specification S,
but leaving further details of the eventual program to be decided in later steps.

The general design method is defined and justified by the familiar cut rule of
logic, expressing the mathematical property of transitivity of logical implication

D=S P=D
P=S5

In words this rule may be read: if the design is correct relative to the specification,
and if the program meets its design requirement, then the program also meets
its original specification.

The most useful method of constructing the specification of a large system is
as the conjunction of its many requirements. Programs and designs can also be
combined by conjunction, provided that they have completely disjoint alphabets.
In that case, the conjunction can generally be implemented by parallel execution
of its operands.

Such a parallel implementation is also possible when programs share parts
of their alphabet, provided that these include observations of all the ways in
which the programs can interact with each other during their execution. In these
cases, the stepwise approach to implementation can be greatly strengthened if
each step is accompanied by a decomposition of the design D into separately
implementable parts D; and Ds.

The correctness of the decomposition can be checked before implementation
starts by proof of the implication

Dl/\DgiD

Further implementation of the designs D; and D, can be progressed indepen-
dently and even simultaneously to deliver components P; and Ps. When the
components are put together they certainly will meet the requirements of the
original design D.

8 C.A.R. Hoare

The proof principle that justifies the method of design by parts is just the
expression of the monotonicity of conjunction with respect to implication

Pr=Dy Py= D,

Py NPy = Dy AN Dy

An even more powerful principle is that which justifies the reuse of a previously
written library component, which has been fully described by the specification L.
We want to implement a program P which uses L to help achieve a specification
S. What is the most general description of a design for P that will achieve this
goal in the easiest way? The answer is just S \VV L, as described by the proof rule

P=SVvL
PANL =S

The Boolean term S V L is often written as an implication (e.g., L D §); indeed,
the above law, together with the inference in the opposite direction, is used
in intuitionistic logic to define implication as an approximate inverse (Galois
connection) of conjunction. An implication is always a predicate, but since it is
antimonotonic in its first argument, it will rarely be a program.

The identification of programs with more abstract descriptions of their be-
haviour offers a very simple and general explanation of a number of important
programming concepts. For example, a non-deterministic program can be con-
structed from two more deterministic programs P and) by simply stating that
you do not care which one of them is selected for execution on each occasion.
The strongest assertion you can make about any resulting observation is that it
must have arisen either from P or from Q.

So the concept of non-determinism is simply and completely captured by the
disjunction P V @, describing the set union of their observations. And the proof
rule for correctness is just the familiar rule for disjunction, defining it as the
least upper bound of the implication ordering

Pr=D P,=D
P1VP2:>D

In words, if you want a non-deterministic program to be correct, you have to
prove correctness of both alternatives. This extra labour permits the most gen-
eral (demonic) interpretation of non-determinism, offering the greatest opportu-
nities for subsequent development and optimisation.

Existential quantification in the predicate calculus provides a means of con-
cealing the value of a variable, simultaneously removing the variable itself from
the alphabet of the predicate. In programming theory, quantification allows new
variables local to a particular fragment of program to be introduced and then
eliminated.

In a process algebra, local declaration of event names ensures that the internal
interactions between components of an assembly are concealed, as it were in a
black box, before delivery to a customer. Observations of such interactions are

Theories of Programming 9

denoted by some free variable, say z occurring in the formula P, ; on each
execution of P, this variable must have some value, but we do not know or care
what it is. The value and even the existence of the variable can be concealed by
using it as the dummy variable of the quantification (3 z.P,).

An important example of concealment is that which occurs when a program
component P is sequentially composed with the component @, with the effect
that @ does not start until P has successfully terminated. The assembly (denoted
P; @) has the same initial observations as P, and the same final observations
as). Furthermore, we know that the initial values of the variables of @) are the
same as the final values of the variables of P.

But in normal sequential programs we definitely do not want to observe
these intermediate values on each occasion that execution of the program passes
a semicolon. Concealment by existential quantification makes the definition of
sequential composition the same as that of composition in the relational calculus

(P; Q) =ar 32.P(7,2) A Q(z, T)

Here we have written z and its superscripted variants to stand for the whole list
of global variables in the alphabet of P and @. In a procedural programming
language sequential composition is the commonest method of assembling small
components. The definition given above shows that the properties of the assem-
bly can be calculated from a knowledge of its components, just as they can for
conjunction.

Surprisingly, sequential composition is like conjunction also in admitting an
approximate inverse, —a generalisation of Dijkstra’s weakest precondition [3].
L\ S is defined as the weakest specification [4] of a program P such that P; L
is guaranteed to meet specification S. There is also a postspecification, similarly
defined. Such inverses can be invaluable in calculating the properties of a design,
even though they are not available in the eventual target programming language.

In the explanation of stepwise composition of designs, we used conjunction to
represent assembly of components. Conjunction of program components is not
an operator that is generally available in a programming language. The reason
is that it is too easy to conjoin inconsistent component descriptions, to produce
a description that is logically impossible to implement, for example,

(z:=z+1)A(z:=2+2), which equals false

So a practical programming language must concentrate on operators like sequen-
tial composition, which are carefully defined by conjunction and concealment to
ensure implementability. Negation must also be avoided, because it turns true,
which is implementable, to false, which is not.

That is why prespecifications, which are antimonotonic in their first argu-
ment, cannot be allowed in a programming language. But there is a compen-
sation. Any operator defined without direct or indirect appeal to negation will
be monotonic, and the programmer can use for the newly defined operator the
same rules for stepwise decomposition that we have described for conjunction.
The whole process of software engineering may be described as the stepwise

10 C.A.R. Hoare

replacement of logical and mathematical operators used in specifications and
designs by the implementable operators of an actual programming language.

Ideally, each step should be small and its correctness should be obvious. But
in many interesting and important cases, the structure of the implementation
has to differ radically from the usual conjunctive structure of the specification,
and the validity of the step must be checked by a more substantial proof. You
do not expect to build an engine that is fast, eco-friendly, and cheap from three
simpler components, each of which enjoy only one of these properties. A mis-
match with implementation structure can throw into question the value of prior
specification. But it should not; indeed, the value of specification to the user is
greatest just when it is fundamentally and structurally simpler than its delivered
implementation.

The simplest implementable operator to define is the conditional, in which the
choice between components P and () depends on the truth or falsity of a boolean
expression b, which is evaluated in the initial state. So b can be interpreted as a
predicate b, in which all variables are replaced by their initial values.

if bthen Pelse Q = b APV -5 AQ

All the mathematical properties of the conditional follow directly from this def-
inition by purely propositional reasoning.

The most important feature of a programming language is that which permits
the same portion of program to be executed repeatedly as many times as desired;
and the most general way of specifying repetition is by recursion.

Let X be the name of a parameterless procedure, and let F(X) be the body
of the procedure, written in the given programming language, and containing
recursive calls on X itself. Since F' is monotonic in the inclusion ordering of the
sets of observations desribed by predicates, and since these sets can be regarded
as a complete lattice, we can use Tarski’s fixed point theorem to define the
meaning of each call of X as the weakest possible solution of the implication
X = F(X).

This definition applies also to recursively defined specifications. Incidentally,
if F' is expressed wholly in programming notations, it will be a continuous func-
tion, and an equivalent definition can be given as the intersection of a descending
chain of iterates of F' applied to true.

A non-terminating recursion can all too easily be specified as a procedure
whose body consists of nothing but a recursive call upon itself. Our choice of the
weakest fixed point says that such a program has the meaning true, a predicate
satisfied by all observations whatsoever. The programmer’s error has been pun-
ished in the most fitting way: no matter what the specification was (unless it
was also trivally true), it will be impossible to prove that the product is correct.

This interpretation of divergence does not place any obligation on an im-
plementor of the programming language actually to exhibit the full range of
allowable observations. On the contrary, the implementor may assume that the
programmer never intended the divergence, and on this assumption may validly
perform many useful optimisations on the program before executing it.

Theories of Programming 11

PvQQ=QvVvP
PV(QVR)=(PVQ) VR
PV false =P

P V true = true
PA(QVR)=(PAQ)V(PAR)
P; (QV R) = (P P; R)

)

=

)

Q) V(
(QVR); P=(Q; P)V (R; P

Table 1. Basic algebra of non-determinism

As a result of such optimisations, the program may even terminate, for ex-
ample,

while 2 <0 do z:=z —1; z := abs(x)

can be optimised to nothing, because the optimiser assumes that the intention
of the while loop was to terminate, which only happens when z starts positive.
The anomalous terminating behaviour of the optimised program for negative x is
allowed by the semantics, and is entirely attributed to the fault of the program-
mer. Our theory of programming, whose objective is to avoid non-termination,
can afford to treat all instances of non-termination as equally bad; and the whole
theory can often be simplified just by regarding them as equal.

After definition of the relevant programming concepts, the next stage in the
top-down exploration of the theory of programming is the formalisation and
proof of the mathematical properties of programs. The simplest proprieties are
those that can be expressed as algebraic laws, either equations or inequations;
they are often pleasingly similar to algebraic properties proved of the familiar
operators of the arithmetic of numbers, which are taught at school.

For example, it is well known that disjunction—used to define non-determin-
ism in programming—is like multiplication: it is associative and commutative,
with false serving as its unit and true as its zero. Furthermore, conjunction dis-
tributes through disjunction, and so do most simple programming combinators,
including sequential composition: see Table [Il Laws are the basis for algebraic
reasoning and calculation, in which professional engineers often develop consid-
erable skill.

The same principles of programming language definition apply to process
algebras, which have the observational variable trace in their alphabet. One of
the risks of interactive programming is deadlock; and the worst deadlock is the
process that never engages in any recordable action, no matter what events the
environment may offer to engage in at the same time. As a result, its trace is
always empty

0 =4 trace = ()
This definition is equally applicable to the process STOP in CSP.

12 C.A.R. Hoare

A fundamental operation of a process algebra is external choice P+ @, which
allows the environment to choose between its operands by appropriate selection
of the first event to occur. It has an astonishingly simple definition

P+Q =4 (PANQAO)V(OA(PVQ))

While the trace is empty, an event can be refused by P + @ just if it can be

refused by both of them. When the trace is non-empty, the subsequent behaviour
is determined by either P or @, whichever is consistent with the first event in
the trace. If both are, the result is non-deterministic.

As in the case of the conditional, the algebraic properties of this simple
definition can be simply verified by truth tables. External choice is commutative,
idempotent and associative, with unit 0; and it is mutually distributive with
non-deterministic union. The corresponding operator O in CSP has the same
properties, but its definition has been made a little more complicated, to take
account of the risk of divergence of one of its two operands. The top-down
approach to both theories helps to elucidate exactly how two very similar theories
may in some ways be subtly different.

The aim of the top-down method of system development is to deliver pro-
grams that are correct. Assurance of correctness is obtained not just by testing
or debugging the code, but by the quality of the reasoning that has gone into its
construction. This top-down philosophy of correctness by construction is based
on the premise that every specification and every design and every program can
be interpreted as a description of some subset of a mathematically defined space
of observations. But the converse is certainly not true. Not every subset of the
observation space is expressible as a program. For example, the empty predicate
false represents a specification that no physical object could ever implement: if
it did, the object described would be irretrievably unobservable.

The question therefore arises, what are the additional characteristics of those
subsets of observations that are in fact definable in the restricted notations of a
particular programming language? The answer would help us to distinguish the
feasible specifications that can be implemented by program from the infeasible
ones that cannot.

The distinguishing characteristics of implementable specifications have been
called healthiness conditions [Dijkstra]. They act like conservation laws or sym-
metry principles in physics, which enable the scientist quickly to dismiss impos-
sible experiments and implausible theories; and similarly they can protect the
engineer from many a wild-goose chase. As in the natural sciences, healthiness
conditions can be justified by appeal to the real-world meaning of the variables
in the alphabet. Analysis of termination gives a good example.

A characteristic feature of a program in any programming language is that
if its first part fails to terminate, any fragment of program which is written
to be executed afterwards will never be started, and the whole program will
also fail to terminate. In our top-down theory, the non-terminating program is
represented by the predicate true; so the relevant healthiness condition can be

Theories of Programming 13

neatly expressed as an algebraic law, stating that true is a left zero for sequential
composition

true; P = true, for all programs P

This law is certainly not true for all predicates P; for example, when P is false,
we have

true; false = false

This just means that the healthiness condition is succeeding in its primary pur-
pose of showing that unimplementable predicates like false can never be ex-
pressed as a program.

The majority of simple algebraic laws that are applicable to programs can
be proved once-for-all as mathematical theorems about sets of observations; and
they can be applied equally to designs and even to specifications. But healthiness
conditions, as we have seen, are just not true for arbitrary sets: they cannot be
proved and they must not be applied to specifications. Their scope is mainly
confined to reasoning about programs, including program transformation and
optimisation. It is therefore an obligation on a programming theorist to prove
that each healthiness condition holds at least for all programs expressible in the
restricted notations of the programming language, and perhaps to certain design
notations as well.

The method of proof is essentially inductive on the syntax of the language. All
the primitive components of a program must be proved to satisfy the healthiness
condition; furthermore, all the operators of the language (including recursion)
must be proved to preserve the health of their operands. Here is a proof that
union and sequential composition preserve the healthiness condition that they
respect non-termination: for union,

true; (P V Q)
= (true; P) V (true; Q)
relational composition distributes through disjunction

= true V true by induction hypothesis, P and @ are healthy

= true V is idempotent

and for sequential composition,

true; (P; Q)
= (true; P); Q composition is associative
= true; @ by inductive hypothesis, P is healthy
= true by inductive hypothesis, @) is healthy

Algebraic laws are so useful in reasoning about programs, and in transforming
them for purposes of optimisation, that we want to have as many laws as possible,
provided of course that they are valid.

14 C.A.R. Hoare

How can we know that a list of proven laws is complete in some appropriate
sense? One possible sense of completeness is given by a normal form theorem,
which shows that every program in the language can be reduced (or rather
expanded) to a normal form (not necessarily expressible in the programming
language).

A normal form should be designed so that the identity of meaning of non-
identical normal forms is quite easy to decide, for example, merely by rearranging
their sub-terms. Furthermore, if two normal forms are unequal, it should always
be possible to find an observation described by one of them but not the other.

Unfortunately, there may be no finite set of algebraic laws that exactly char-
acterises all true facts about the programming language. For example, even the
simple relational calculus has no complete finite axiomatisation. One interpreta-
tion of the Church-Turing hypothesis states that no top-down analysis can ever
exactly characterise those sets of observations that are computable by programs
from those that are not. It is only by modelling computation steps of some kind
of machine that we can distinguish the computable from the incomputable.

Specifications are inherently incomputable. It is their negations that are re-
cursively enumerable: and they need to be, because we want to be able to prove
by counterexample that a program is not correct. If your chief worry is accidental
description of something that is incomputable or even contradictory, top-down
theory development does not immediately address this concern. Complete pro-
tection can be obtained only by starting again from the bottom and working
upward.

3 Bottom-Up

A bottom-up presentation of a theory of programming starts with a definition
of the notations and syntactic structure of a particular programming language.
Ideally, this should be rather a small language, with a minimum provision of
primitive features; the hope is that these will be sufficiently expressive to define
the additional features of more complex languages.

As an example language, we choose a subset of the pi-calculus at about the
level of CCS. Figure[l expresses its syntax in the traditional Backus-Naur form,
and Figure Pl gives an informal specification of the meaning.

The traditional first example of a process expressed in a new process algebra
is the simple vending machine VM: see Figure Bl It serves an indefinite series of
customers by alternately accepting a coin and emitting a chocolate. The expected
behaviour of a single customer engaging in a single transaction is

cust =g¢ coin.choc.0

The behaviour of the whole population of customers is modelled by the un-
bounded set !cust. This population can insert an indefinite number of coins; and
at any time a lesser number of chocolates can be extracted.

But we plan to install a simple VM that can serve only one customer at a
time. To implement this sequentialisation, we need an internal control signal nz,

Theories of Programming 15

by which the machine signals to itself its own readiness for the next customer;
a complete definition of the vending machine is given in Figure 3

(event) := (identifier) | (identifier)

(process) ::= 0| (event).(process)
| ((process) | (process)) | |{process)
| (new(identifier)) (process)

Fig. 1. Syntax

0 is the deadlock process: it does nothing.

— coin.P is a process that first accepts a coin and then behaves like P.
— nz.0 first emits a control signal nz and then stops.

— nx.(Q first accepts a control signal nx and then behaves as Q.

— P | Q executes P and @ in parallel. Signals emitted by one may be accepted by
the other.

— | P denotes parallel execution of an unbounded number of copiesof P: P | P | P | ...

— (new e) P declares that e is a local event used only for interactions within its
scope P.

Fig. 2. Explanation

one =g nx.coin.choc.nz.0
many =4 (lone) | (nz.0)

VM =4 (new nz) many

Fig. 3. Vending machine

The operational semantics of the programming language is presented as a
collection of formulae, describing all the permitted steps that can be taken in the
execution of a complete program. Each kind of step is described by a transition
rule written in the form P — @, where P gives a pattern to be matched against
the current state of the program, and @) describes how the program is changed
after the step. For example, the rule

(e.P)[(e.Q)—(P[Q)

16 C.A.R. Hoare

describes an execution step in which one process accepts a signal on e which is
sent by the other. Emission and acceptance of the signal are synchronised, and
their simultaneous occurrence is concealed; the subsequent behaviour is defined
as parallel execution of the rest of the two processes involved.

The reduction shown above can be applied directly to a complete program
consisting of a pair of adjacent processes written in the order shown and sep-
arated by the parallel operator |. But we also want to apply the reduction to
processes written in the opposite order, to processes which are embedded in a
larger network, and to pairs that are not even written adjacently in that network.

Such reductions can be described by a larger collection of formulae: e.g.,

(@) (eP)—Q|P
(e.Q)|(e.P) | R—(Q[P)| R
(e.QIR)|(@P) = (QIR)[P

But even this is only a small subset of the number of transition rules that would
be needed to achieve communication in all circumstances. A much easier way to
deal with all cases is to just postulate that | is a commutative operator, that it
is associative, and that it has unit 0.

Plo=P
PlQ=Q|P
PI(QIR)=P[(Q|R)

(These equations are more usually written with equivalence (=) in place of equal-
ity, which is reserved for syntactic identity of two texts. They are called structural
congruences, because they justify substitution in the same way as equality.)

These are called structural laws in a process calculus. They represent the
mobility of process, because the implementation may use the equations for sub-
stitution in either direction, and so move a process around until it reaches a
neighbour capable of an interaction with it. In a bottom-up presentation, these
laws are just postulated as axioms that define a particular calculus; they can
be used in the proof of other theorems, but they themselves are not susceptible
of proof, because there is no semantic basis from which such a proof could be
constructed.

The laws governing reduction apply only to complete programs; and they
need to be extended to allow reduction steps to take place locally within a
larger context. For example a local reduction can occur anywhere within a larger
parallel network, as stated by the rule

if P— P’ then (P|Q)— (P'|Q)
A similar law applies to hiding.

if P — P’ then (new e)P — (new e)P’

Theories of Programming 17

But there is no similar rule for e.P. A reduction of P is not permitted until
after e has happened. It is only this omission of a rule that permits terminating
programs to be distinguished from non-termination.

One of the main objectives of a theory of programming is to model the
behaviour of computing systems that exist in the world today. The world-wide
network of interconnected computers is obviously the largest and most important
such system.

Any of the connected computers can emit a communication into the network
at any time. There is reasonable assurance that the message will be delivered at
some later time at some destination that is willing to accept it (if any). But the
exact order of delivery does not necessarily reflect the order of sending: messages
in the net can overtake each other.

This aspect of reality is very simply encoded in the calculus by adding a
single new reduction step. This just detaches a message from its sender, and
allows the message to proceed independently in its own timescale through the
network to its destination.

2P — (2.0)| P

This means that the sender P is not delayed if the receiver is unready at the
time of sending. The subsequent actions of the sender proceed in parallel with
the journey undertaken by its message.

A calculus with such a reduction rule is called asynchronous, and output
prefixing is usually omitted from its syntax. That is why the algebraic laws for
an asynchronous calculus are different from those of a synchronous one.

Structural laws are also used in addition to reductions to formalise the in-
tended meaning of the constructions of the language. For example, the repetition
operator (!P) denotes an unbounded set of parallel instances of the same process
P. The addition of a new instance of P therefore makes no difference, as stated
in the unfolding law

IP="P|(IP)
This law can be applied any number of times
P|(\P)=P|P|(IP) = ...

If each application allows a reduction, we can generate an infinite reduction
sequence leading to potential non-termination. Consider for example the process
P that reduces in one step to the empty process

P=4(e0]|€0) - 0[]0=0
This can be put into a repetition
IP=(e0]|e0)|!/P - 0O|!P =P

It follows that !P can be subjected to an infinite series of reductions, without
ever engaging in a useful interaction with its environment. This is just what is

18 C.A.R. Hoare

known as divergence or livelock, and it is clearly and obviously definable on the
basis of an operational semantics. A top-down presentation cannot give such an
obviously appropriate definition of non-termination, and has to postulate that
the artificial variable ok is mysteriously allowed to take the value false whenever
there is a risk of divergence.

Another useful definition in operational semantics is that of a labelled tran-
sition, in which the transition relation — is labelled by a trace of interactions
with the environment that can occur during the evolution of the process.

PLQ=y4P2Q

P Q=g 3PP e P AP S Q
where = is the reflexive transitive closure of —.
Now we can trace the evolution of our vending machine, using a few structural

laws which seem reasonable

many
= nz.0|!one
= 7z.0 | (nz.coin.choc.nz.0) | lone expanding !
— 0] (coin.choc.nz.0) | lone reduction
= coin.choc.nz.0 | lone 0 is unit of !
— coin.(choc.nz.0 | lone reduction
L choc.mz.0 | lone def 2"
hoc .
X 7.0 | lone similarly
(coin,choc) .
many = — = many local reduction
(coin,choc)
VM = ((new nz) many = — ' VM)

This mathematical derivation is a close simulation of the execution of the pro-
gram. But does it prove that the program is correct? And what does correctness
mean for a programming language that has been defined only in terms of its
internal execution rather than what can be observed from outside?

The usual answer to the more general question is that a program is adequately
specified in the programming language itself by displaying the equations that it
should satisfy. For example, perhaps what we really want to prove about the
vending machine is

VM = coin.choc. VM

(In a more abstract language like CCS or CSP, such an equation would be
permitted as a recursive definition of VM).

Theories of Programming 19

In constructing the proof of such equations, free use may be made of all the
structural laws of the calculus. But in general the structural laws are deliberately
restricted to transformations on the static shape of a formula, and they do not
give enough information about equality of dynamically evolving behaviour. Such
reasoning would require a set of laws much larger than those postulated by the
calculus. What laws should they be? And how are they justified?

The solution to this problem is of startling originality. The user of the calculus
is allowed to extend its set of laws by any new equations that may be desired,
provided that this does not lead to a contradiction. A contradiction is defined as
the proof of an equation between processes that obviously ought to be different,
like a divergent process and a non-divergent one. For example, an equation P =
@ leads to contradiction if you can find some program C[P] containing P which
does not diverge, but when P is replaced by @, C[Q] actually can diverge.

Finer discriminations may be imposed by defining a function obs(P), which
maps a program P to some simple set of observations that may be made of
it. For example, obs(P) might map P onto the set of environments in which it
might deadlock. In each case, one might observe the set of events offered by the
environment but refused by the process. Then a contradiction is defined as a law
that equates two programs with different observable refusal sets. An equation
established in this way is called a contextual equivalence.

Proving that a proposed law P = @) leads to contradiction is quite a chal-
lenge, because the context C]] that reveals it may be very large. But proving that
something is not a contradiction can be even harder, because it involves con-
sideration of the infinite set of all possible contexts that can be written around
P and @Q; such a universal hypothesis requires an inductive case analysis over
all the combinators of the calculus. Sometimes, only a reduced set of contexts is
sufficient; this fact is established by proof of a context lemma.

As a result of their syntactic orientation, proofs by induction tend to be
specific to a particular calculus, and care is needed in extending their results to
calculi with a slightly different syntax, different reductions, or different structural
laws. For this reason, each new variation of a familiar calculus is usually presented
from scratch.

Heavy reliance on induction certainly provides a strong motive for keeping
down the number of notations in the original syntax to an inescapable core of
primitives, even if this makes the language less expressive or efficient in practical
use. The pursuit of minimality tends to favour the design of a language at a
relatively low level of abstraction. The power of such a language matches that of
machine code, which offers enormous power, including the opportunity for each
instruction to interfere with the effect of any other.

In the presence of multi-threading or non-determinacy, understanding of the
behaviour of an arbitrary program becomes rapidly impossible. And there are few
general theorems applicable to arbitrary programs that can aid the understand-
ing, or permit optimising transformations that preserve behavioural equivalence.
The solution to this problem is to confine attention to programs that follow de-
fined protocols and restrictive conventions to limit their mutual interaction.

20 C.A.R. Hoare

The meaning of conformity with the convention is defined by means of a type
system, which is also usually presented in a bottom-up fashion. The syntax gives
a notation for expressing all the types that will be needed. Then a collection of
axioms and proof rules provide a means of deducing which parts of each program
can be judged to belong to a particular type. In a higher level programming
language the programmer may be required or allowed to provide adequate type
information for variables and parameters; but most of the labour of type checking
or even type inference can be delegated to a compiler.

The consistency of the typing system is established by showing that pairs
of programs equated by the structural laws have the same type, and that each
reduction step in execution preserves the proper typing of its operand. This is
called a subject reduction theorem. Subsequent development of the theory can
then be confined to properly typed programs.

A type system based on an operational model may be designed to supply
information that is highly relevant to program optimisation. For example, it can
detect dead code that will never be executed, and code that will be executed
at most once. Other type systems can guarantee absence of certain kinds of
programming error such as deadlock. If it is known that no type can be deduced
for such an erroneous program, then type consistency ensures that the error can
never occur a run time.

Because type systems enforce disciplined interaction, well-typed programs
often obey additional laws, useful both for comprehension and for optimisation.
Type systems thereby raise the level of abstraction of an operationally defined
programming language; their role in the bottom-up development of a theory is
complementary to that of healthiness conditions, which in a top-down develop-
ment bring abstract denotational specifications closer to implementable reality.

Operational presentations of semantics are particularly appropriate for anal-
ysis of security aspects of communication in an open distributed network, where
co-operation between a known group of agents is subject at any time to acci-
dental or deliberate interference by an outsider. The main role of the language
is to define and limit the capabilities of the outsider.

For example, the localisation operator (new e) enables an agent in the system
to invent an arbitrary secret code or a monce, and the structural laws of the
language are designed to ensure that it remains secret except to those who
have received it in an explicit communication. It is then the responsibility of
an implementation of the language to enforce this level of secrecy by choice of
an appropriate cryptographic method. Furthermore, if the proof of security of a
protocol depends on observance of type constraints, it is essential at run time
to check the types of any code written by an outsider before executing it in a
sensitive environment.

The purpose of a secure protocol can often be described most clearly by an
equation P = @), where P describes the situation before some desired interaction
takes place, and @ describes the desired result afterwards. For example, we might
use the equation

(e.P|7.Q) = P|Q

Theories of Programming 21

to describe the intended effect of transmission of a signal e from @ to P. But this
is not a valid equation in the calculus, because it is not secure against interference
by an outsider R, which can intercept and divert the signal, as permitted by the
reduction

eeP|eQ|eR — eP|Q|R

This reduction will be inhibited if the name e is kept secret from the outside, so
it is valid to equate

(new ¢) (e.P|e.Q) = (new ¢) (P| Q)

Since it is assumed that the outsider is limited to the capabilities of the pro-
gramming language, an arbitrary attack can be modelled by a context C[] placed
around both sides of the equation. A standard proof of contextual equivalence
would be sufficient to show that there is no such context. That is exactly what
is needed to show that no outsider can detect or affect the desired outcome
described by the equation.

As in this example, the required protection is often achieved with the aid of
the new operator, which prevents an outsider from detecting or communicating
a signal with the new name. It is much more difficult to design a top-down theory
for application to problems of security, privacy and authentication. A top-down
theory has to start with a decision of exactly what an intruder could observe
of another agent in the system, and what attacks are possible upon it. But this
understanding is exactly what the security analysis seeks to develop; it cannot
be postulated in advance.

A great deal of research effort has been expended on designing proof tech-
niques that are simpler to apply and more efficient to mechanise than proof by
non-contradiction. Many of these methods use a variation of the technique of
bisimulation [6]. A bisimulation is a postulated equivalence between programs
that is respected by the individual steps of the operational semantics of the lan-
guage, i.e., if two programs belong to the same equivalence class before the step,
they belong to the same equivalence class afterwards.

For particular calculi and for particular kinds of bisimulation, theorists have
proved that the postulation of the bisimulation as an equality will not lead to
a contradiction. Then that kind of bisimulation may safely be used to prove
equality of arbitrary programs in the language. For a well-explored calculus,
there may be a whole range of bisimulations of varying strength, some suitable for
mechanisation, and some suitable for quick disproof. They are all approximations
to the truly intended notion of equality, which is defined by the more elusive
concept of contextual equivalence.

As described above, much of the effort in a bottom-up theory goes into the
determination of when two programs are equal. This is absolutely no problem in
a top-down theory, where normal mathematical equality of sets of observations
is used throughout. Conversely, much of the effort of a top-down theory goes into
determination of which subsets of observations correspond to implementations.
This is absolutely no problem in a bottom-up theory, where programs are always

22 C.A.R. Hoare

by definition computable. In each case the theorist approaches the target by a
series of approximations. In the happy circumstance that they are working on
the same language and the same theory, top-down and bottom-up will eventually
meet in the middle.

4 Meeting in the Middle

A brief summary of the merits and deficiencies of top-down and bottom-up
presentations show that they are entirely complementary.

— A top-down presentation of a theory of programming gives excellent support
for top-down development of programs, with justifiable confidence that they
are correct by construction.

By starting with observable system properties and behaviour, it permits and
encourages the advance specification of a system yet to be implemented, and
the careful design of the interfaces between its major components. It provides
concepts, notations and theorems that can be used throughout the design
and implementation of software systems of any size and complexity.

On the other hand, an abstract denotational semantics gives no help at
all in the debugging of incorrect programs. It is therefore useless in the
analysis of legacy systems, many of which have been written and frequently
changed without regard to general design principles, clarity of structure, or
correctness of code.

— A bottom-up presentation of a theory of programming gives excellent sup-
port for reasoning about the execution of programs that have already been
written.

By starting with a definition of the individual steps of execution, it models
directly the run-time efficiency of programs. Execution traces provide the
primary diagnostic information on debugging runs of incorrect programs.

On the other hand, an operational semantics gives no help at all in relating
a program to its intended purpose. It is therefore useless in reasoning about
programs before they have been written in the notations of a particular
programming language.

If programming theory is ever to make its full contribution to the practice
of programming, we must offer all the benefits of both styles, and none of the
deficiencies. Neither approach could be recommended by itself. It is clearly foolish
to provide a conceptual framework for program design if there is no way of
executing the resulting program step by step on a computer. It would be equally
unsatisfactory to present an operationally defined theory if there is no way of
describing what a program is intended to do.

In the natural sciences, it is a necessary condition of acceptability of a theory
that it should agree with experiment. Experiments are equally important in

Theories of Programming 23

validation of theories of programming. They test the efficiency with which a new
programming concept can be implemented and the convenience with which it
can be used. An experiment which requires the design, implementation and use
of a completely new programming language is prohibitively time-consuming.

For rapid scientific progress, it is preferable just to add a single new feature
to an existing programming language, its compiler and its run time system. The
first trial applications may be conducted by a group of experimental program-
mers, who have accepted the risk that the new feature may soon be changed or
withdrawn. Even such a limited experiment is expensive; and worse, it is difficult
to interpret the results, because of uncontrollable factors such as the skill and
the experience of the people involved.

That is why it is advisable to restrict experimentation to test only theories
that have shown the highest initial promise. The promise of a theory is not
judged by its popularity or by its novelty or by its profitability in competition
with rival theories. Quite the reverse: it is by its coherence and close agreement
with other theories that a new theory can be most strongly recommended for
test. Such agreement is much more impressive if the theories are presented in
radically differing styles.

From the practical point of view, it is the stylistic differences that ensure
complementarity of the benefits to the user of the programming language. And
the results of the experiment are much more convincing if the implementors and
trial users are completely independent of the original theorists, as they usually
are in more mature branches of Science.

The unification of theories is not a goal that is easy to achieve, and it often
requires a succession of adjustments to the details of the theories, and in the way
they are tested. The development of an abstract denotational model to match a
given operational semantics is known as the problem of full abstraction. It took
many years to discover fully abstract models for PCF, a simple typed functional
programming language that was presented by an operational semantics.

A recent model [1, [5] represents a type of a programming language by the
rules of a two-person game, and a function by a strategy for playing the game. A
large and complex collection of healthiness conditions is imposed on the games
and strategies to ensure that every strategy that satisfies them can be denoted
by a program expressed in the syntax of PCF.

It is generally considered sufficient to prove this just for finite games, which
correspond to programs that do not use recursion or any other form of unbounded
iteration. That is the best that can be done, because it is impossible within an
abstract model to formulate healthiness conditions that will select exactly those
sets of observations that are implementable as iterative programs.

In the practical development and analysis of programs, it is quite uncommon
to make a direct appeal to the definition of the programming language, whether
denotational or operational. Much more useful are theorems that have been
based on those definitions; many of these take the form of algebraic laws, either
proven from definitions or postulated as healthiness conditions. The importance
of laws is recognised both by top-downers and by bottom-uppers, who measure

24 C.A.R. Hoare

progress in their chosen direction by accumulation of larger collections of useful
laws.

When both theories have been adequately developed, I suggest that an ap-
propriate measure of successful meeting in the middle is provided by the overlap
of the two collections of laws. Adjustments can (and should) then be made to
the details of both theories, until the overlap is sufficiently broad to meet all the
needs of practice. If the practitioner uses just the appropriate laws in the appro-
priate circumstances, the merits of both approaches can be safely combined.

In a perfect meeting, the laws derived from the top-down and from the
bottom-up would be exactly the same. In fact, this is not necessary. All that
is needed is that the operationally defined axioms and laws should be a subset
of those provable from the denotational definitions. Then all the remaining laws
proveable from the denotations will be contextual equivalences. The existence of
the denotational model guarantees their consistency, even without the need for
an exhaustive inductive argument on contexts.

Identity of differently derived theories is not the only goal; and when applying
the same derivational techniques to different programming paradigms, differences
in the algebraic laws are to be expected and even welcomed. It turns out that
a great many algebraic laws are common to nearly all paradigms, but it is the
laws that they do not share that are even more interesting. The fundamental
property that distinguishes two paradigms is often very neatly expressed by an
algebraic law, free of all the clutter of detail involved in a formal definition, and
unaltered when the detail changes.

For example, functional programming languages are classified as lazy or non-
lazy. In a non-lazy language, each function evaluates its arguments first, so if
an argument aborts, so does the function call. As a consequence, functional
composition (denoted by semicolon) has abortion as its left zero:

true; P = true

However, a lazy functional language does not satisfy this law. It allows a constant
function K to deliver its answer without even looking at its argument:

true; K = K
However, a lazy language still satisfies a right zero law:
P; true = true

So does a non-lazy language, unless it allows an argument F to raise an exception
or jump. In this case the aborting function does not get the chance to start, so
FE; true = E.

Discussion of such laws is highly relevant to the selection and design of a
programming language, as well as its implementation and optimisation. Future
texts on comparative programming languages will surely exploit the power of
algebra to explain the fundamental principles of the subject.

Fascination with the elegance and expressive power of laws was what inspired
the development of abstract algebra as a branch of modern mathematics. Since

Theories of Programming 25

the earliest days, mathematics has been primarily concerned with the concept
of number. Its progress has been marked by the discovery of new and surprising
varieties. Starting with positive integers, even the discovery of zero was a major
advance. Then come negative numbers, fractions, reals, and complex numbers.

In modern times, study of the foundations of mathematics has given a deno-
tational semantics to each of these different kinds of number. Natural numbers
are defined as sets, integers and fractions as pairs, and reals as sequences. Corre-
spondingly different definitions are given for the arithmetic operations that are
performed on the different kinds of number.

In each case, algebraic laws are proved on the basis of the definitions. In spite
of the fact that the definitions are so different, most of the laws turn out to be
the same. It is the sharing of laws that justifies the use of the same arithmetic
operator to denote operations with such radically different definitions. The laws
have then inspired the development of other interesting mathematical structures,
like quaternions and matrices, for which algebraically similar operations can be
defined. Algebra, among all branches of mathematics, is the one that takes re-
usability as its primary goal.

Computing Science makes progress by discovery of new patterns and para-
digms of programming. These are embodied in new programming languages, and
subjected to the test of trial implementation and use. The procedural paradigm
was among the earliest, and still has the widest application. Now there is also a
declarative paradigm, which already splits into two major branches, the logical
paradigm which permits backtracking, and the functional paradigm that does
not. The functional paradigm splits into lazy and non-lazy varieties.

The advent of multiprocessors and networking has introduced a new para-
digm of distributed computing, with even more variations. Some of them are
based on sharing of global random access memory, and others on explicit com-
munication. Communications may be ordered or unordered; they may be global
or directed along channels; and they may be synchronised or buffered.

In addition to notations traditionally recognised in the community as pro-
gramming languages, we should consider the languages used for database queries,
spreadsheets, menu generators, and other complex interfaces that are coming into
wide-spread use. A significant challenge for programming theory is to bring some
order into this growing range of tools, and develop an understanding to assist
in the selection of an appropriate tool for each purpose, and for using them in
combination when necessary.

For purposes of classification, comparison, and combination, both denota-
tional and operational semantics have far too much detail to convey the desired
understanding and illumination. It is only the algebra that captures the essence
of the concepts at an appropriately high level of abstraction. It is perhaps for
the same reason that algebraic laws are also the most useful in practice for
engineering calculation.

The primary role of algebraic laws is recognised in the most abstract of
branches of algebra, namely category theory. Categories provide an excellent
source of elegant laws for programming. Its objects nicely represent the types of

26 C.A.R. Hoare

a programming language, and its basic operation of composition of arrows is a
model for the combination of actions evoked by parts of a program.

Additional important operators and their types are specified entirely by the
algebraic laws that they satisfy. The specification of an operator is often ac-
companied by a proof that there is only one operator that satisfies it — at least
up to isomorphism. This gives assurance that the stated laws are complete: no
more are needed, because all other categorial properties of the operator can be
proved from them. Finally, a wide range of differing categories can be explored
and classified simply by listing the operators which they make available and the
laws which they satisfy.

These considerations suggest a third approach to the development of pro-
gramming theory, one that starts with a collection of algebraic laws as a defini-
tive presentation of the semantics of a programming language [2]. The theory
then develops by working outwards in all directions. Working upwards explores
the range of denotational models for languages which satisfy the laws. Working
downwards explores the range of correct implementations for these languages.
And working sideways explores the range of similar theories and languages that
might have been chosen instead.

The work of the theorist is not complete until the consequences of theory
have been fully developed in all relevant directions. Such an ambitious pro-
gramme can be achieved only by collaboration and accumulation of results by
members of different research traditions, each of whom shares an appreciation
of the complementary contributions made by all the others.

5 Acknowledgements

The views put forward in this paper evolved during a long collaboration with
He Jifeng on research into unifying theories of programming. They contribute
towards goals pursued by the partners in the EC Basic Research Project CON-
CUR; and they have been subjected to test in the EC Basic Research Project
PROCOS. They are more fully expounded in [4], which contains a list of 188
further references. Significant contributors to this work at Oxford include Car-
roll Morgan, Jeff Sanders, Oege de Moor, Mike Spivey, Jeff Sanders, Annabelle
Mclver, Guy McCusker, and Luke Ong.

Other crucial clarifications and insights were obtained during a sabbatical
visit to Cambridge in conversations with Robin Milner, Andy Pitts, Martin Hy-
land, Philippa Gardner, Peter Sewell, Jamey Leifer, and many others. I am also
grateful to Microsoft Research Limited for supporting my visit to Cambridge,
and to researchers at Microsoft who have devoted their time to my further ed-
ucation, including Luca Cardelli, Andy Gordon, Cedric Fournet, Nick Benton
and Simon Peyton-Jones.

The organisers of POPL 1999 in San Antonio invited me to present my
thoughts there, and the participants gave useful encouragement and feedback.
Krzysztof Apt and John Reynolds have suggested many improvements that have
been made since an earlier draft of the paper, and more that could have been.

Theories of Programming 27

References

[1] S. Abramsky, R. Jagadeesan and P. Malacaria. Full abstraction for PCF. To ap-
pear in Information and Computation.

[2] J. C. M. Baeten and W. P. Weijland. Process Algebra. CUP 1990, ISBN 0521
400430.

[3] E. W. Dijkstra. A Discipline of Programming. Prentice Hall 1976, ISBN 013
215871X.

[4] C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice Hall
1998, ISBN 0-13-458761-8.

[5] J. M. E. Hyland and C. H. L. Ong. On Full Abstraction for PCF: I, II and III.
To appear in Informatics and Computation.

[6] R. Milner Communication and Concurrency. Prentice Hall 1989, ISBN 013
1150073.

[7] A. W. Roscoe. Theory and Practice of Concurrency. Prentice Hall 1998, ISBN

013 6744095.

	Introduction
	Top-Down
	Bottom-Up
	Meeting in the Middle
	Acknowledgements

