
Component and Interface Refinement in

Closed-System Specifications

Reino Kurki-Suonio

Software Systems Laboratory
Tampere University of Technology

P.O. Box 553, FIN-33101 Tampere, Finland
rks@cs.tut.fi

Abstract. A closed-system specification models a system in the context
of its assumed environment. A component is then a view on the total
system, where unnecessary details of other components and the external
environment have been abstracted away. Starting from a crude initial
model, details of components can be introduced in separate component
refinements, and the resulting views can be synthesized by composition
into a detailed model of the total system. In contrast to open systems,
also component interfaces can be refined in this process. The original
model may therefore have abstract interfaces, whose implementability
with the available mechanisms is one of the concerns in component re-
finements. However, since component refinements may then interfere,
conditions are needed for their composability. Such conditions are de-
rived in this paper, and the application of component refinements to
interface refinement is investigated.

1 Introduction

By a closed-system specification we understand a specification that contains also
a description of the environment in which the specified component or system is
intended to be used. The external environment of a reactive system can then be
understood as one of the components. In contrast, an open-system specification
describes a component or system in isolation from other components and the
external environment.

“It takes two to tango,” i.e., an open system does not exhibit temporal be-
haviors in the absence of a cooperating environment. In [7] it has therefore been
argued that components of an interactive system are not proper units for struc-
turing a specification. In particular, it seems strange to decompose a system
into open components before specifying rigorously the joint behaviors that they
should produce. As discussed in [9], such a decomposition does not simplify
proofs, either, and may make them harder.

It should be noted, however, that the distinction between open and closed
systems is to some extent in the eye of the beholder. In process algebraic ap-
proaches, for instance, an isolated process is usually understood as an open
system that can be composed with other processes. From the viewpoint of this

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. I, LNCS 1708, pp. 134–154, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Component and Interface Refinement in Closed-System Specifications 135

paper it is, however, a closed system, in which a generic environment cooperates
to produce temporal behaviors.

Since refining an interface affects all components that communicate through
it, closed-system specifications provide a natural framework for discussing in-
terface refinement. However, working on a single large specification, which en-
compasses all components and the environment, need not be feasible in practice.
Also, the closed-system view should not prevent working on the components
separately. It should therefore be possible to treat components as partial but
separately refinable and composable views, in which all unnecessary information
on other components and the environment is ignored.

This leads to a specification process that is illustrated in Fig. 1. A crude model
is first given at a high level of abstraction, with focus on cooperative behaviors.
Partitioning into components is then imposed on this closed system, reflecting
an architectural view of an eventual implementation. Having not paid attention
to concrete mechanisms for component interaction in the crude model, this par-
titioning gives, in general, interactions that are not directly implementable with
the intended communication mechanisms.

closed system at
a high level of abstraction

· · ·

· · · · · ·

· · ·

partitioning

component refinement

composition

· · ·

· · ·

· · ·

component 1 component k

refined
component 1

component k component 1
refined

component k

refined
component 1

refined
component k

Fig. 1. Utilizing components in closed-system specification.

Next, the components in the partitioned model are refined by separate (se-
quences of) component refinements, which are allowed to refine also their inter-
faces, thereby affecting also other components in a restricted manner. Obviously,
this process can be applied recursively by partitioning a component under con-
sideration into subcomponents and refining these independently. The resulting
specification is layered in the sense that the refinement history provides a layered
structure of abstractions, where each refinement step has added a new layer to
the previous ones, and composition steps have synthesized them.



136 Reino Kurki-Suonio

The crucial problem in this process is that component refinements should
remain composable into a total specification, preserving all (safety and liveness)
properties introduced in them. To make the role of interface refinements in this
process more concrete, consider the schematic illustration in Fig. 2, where boxes
and ellipses stand for variables and actions, respectively, and A is an interface
action between the two components. Although assigned to component 1, A may
access and modify variables in both components, which means that some coop-
eration is involved in its execution. In refining component 1 one may wish, for
instance, to split A into more elementary interface actions, which then affects
also component 2. On the other hand, in refining component 2 one may wish, for
instance, to temporarily refuse interaction A, which means disabling of an action
that belongs to component 1. Obviously, the composability of such component
refinements is not evident.

A

Component 1 Component 2

Fig. 2. Illustration of a component interface.

The formal basis for investigating these problems in this paper is Temporal
Logic of Actions (TLA) [8]. In their work on TLA, Abadi and Lamport have
analyzed the relationship between open and closed systems, and derived com-
posability conditions for component refinements [1]. The problems investigated
here are, however, somewhat different. Allowing component refinements to af-
fect also external interface actions in other components makes the problem more
general, but is essential for effective interface refinement. On the other hand,
to achieve traceability of actions between different levels of abstraction, certain
conventions are adopted for the use of TLA. Due to associated restrictions on
the fairness properties that are expressible, the problem becomes manageable.

The structure of the rest of the paper is as follows. Section 2 is an intro-
duction to TLA and its use in layered specifications. Composition of layered
specifications is defined so that conventional composition of independently spec-
ified components can also be understood in terms of it. Component structure is
imposed on specifications in Sect. 3. The core of the paper is in Sect. 4, where
sufficient conditions are derived for the composability of component refinements,
and in Sect. 5, where the approach is applied to interface refinement. The paper
ends with some concluding remarks and a brief discussion on related work in
Sect. 6.

2 Layered TLA-Based Specifications

The reader is assumed to be familiar with the basic notions and terminology
of temporal logic. Some of the special characteristics of TLA [8] are briefly ex-



Component and Interface Refinement in Closed-System Specifications 137

plained in this section, together with conventions that support its use in layered
specifications.

2.1 TLA Formulas

TLA is a linear-time logic, where expressions are evaluated for behaviors, which
are infinite sequences of states. Variables that are used to model system prop-
erties are state functions, which have unique values in each state. For a state
function or state predicate p, its evaluation in state s will be denoted by s[[p]].

Corresponding to a state change, an ordered pair of states is a step, and
actions are “step predicates” that are evaluated for steps. Variables in the first
and the second state of a step are denoted by unprimed and primed variable
names, respectively.

For an action A, state predicate Enabled A expresses that there exists a
possible next state which, together with the given state, gives a step that satisfies
A. This predicate is called the enabling condition or guard of action A.

A stuttering step, where all variables in a given set X retain their values, is
denoted by StutX ,

StutX =def ∀x ∈ X : x′ = x,

and the stuttering extension of any action A is denoted by [A]X ,

[A]X =def A ∨ StutX .

In TLA, an action is allowed to appear only in Enabled state predicates
and in contexts of the form 2[A]X . Since no “next state” operator is used,
this makes the satisfaction of TLA formulas insensitive to stuttering. That is,
addition and/or deletion of stuttering steps becomes inessential for behaviors,
and logical implication can therefore be taken as the refinement relation between
TLA specifications.

As usually, “3” will denote the dual of “2”,

3E =def ¬2¬E.

The dual of 2[A]X will be denoted by 3〈A〉X , where

〈A〉X =def A ∧ ¬StutX .

As a derived operator we will use “;” (leads to),

E1 ; E2 =def 2(E1 ⇒ 3E2),

and shorthand notations will be used for strong and weak fairness conditions
with respect to actions,

SFX(A) =def 23〈A〉X ∨32¬Enabled 〈A〉X ,

WFX(A) =def 23〈A〉X ∨ 23¬Enabled 〈A〉X .

When subscripts X are understood from the context, they will be omitted in
the following. Hiding of state variables by quantification will not be discussed in
this paper.



138 Reino Kurki-Suonio

2.2 Operational Expressions

An operational model can be formalized as a TLA expression of the form

S = P ∧2[A1 ∨ · · · ∨Am]X ∧ sF ∧ wF , (1)

where X is the set of variables included in the specification, P is a satisfiable
state predicate that constrains their initial values, Ai are actions that specify
how the values of variables can be changed in individual steps, and sF and wF
are conjunctions of strong fairness conditions SFX(Ai) and weak fairness condi-
tions WFX(Ai), respectively, with respect to some of these actions. When these
conditions for sF and wF are satisfied, we say that expression (1) is operational,
or provides an operational specification.

By saying that a property expressed by TLA formula E holds in S we mean
that S ⇒ E is identically true. Safety and liveness properties are separated in
(1) so that the first two conjuncts are pure safety properties, and the last two
express pure liveness properties.

The structure of (1) allows to express S in terms of a specification language
where individual actions Ai are given as syntactic units and can be referred to
by their names. With individually given actions Ai we will use a script symbol
A to stand both for the collection of actions

A = {A1, . . . , Am}
and for their logical disjunction

A = A1 ∨ · · · ∨Am.

It will be clear from context which of the two is meant. Expression (1) can then
be abbreviated to

S = P ∧ 2[A]X ∧ sF ∧ wF . (2)

Analogously, sF and wF will be used both for TLA formulas in (1) and for the
associated sets of actions Ai for which these formulas contain fairness conditions
SF(Ai) and WF(Ai), respectively.

For simplicity it will be assumed in the following that all Ai ∈ A are non-
stuttering and mutually exclusive , i.e., Ai ⇒ ¬StutX , and Ai ⇒ ¬Aj for i 6= j.

2.3 Refinement by Layers of Superposition

By superposition we understand a transformation of (2) into a formula of the
same form,

T = Q ∧ 2[B]Y ∧ sG ∧ wG, (3)

in which

– the set of variables may be extended, X ⊆ Y ,
– the initial condition may be strengthened, Q ⇒ P ,



Component and Interface Refinement in Closed-System Specifications 139

– each action Bj ∈ B is either a refinement of some Ai ∈ A called its ancestor,

Bj ⇒ Ai,

or a new action that does not modify any variables in X ,

Bj ⇒ StutX ,

in which case StutX is called its ancestor,
– sG and wG are conjunctions of strong and weak fairness conditions with re-

spect to some actions Bj ∈ B.

The situation is illustrated in Fig. 3.

[A]XXS :

[B]YYT :

includes implies

Fig. 3. Schematic illustration of superposition.

Although this definition does not say anything about liveness properties sG
and wG, we take it as a default that Bj ∈ sG, if Ai ∈ sF for its ancestor Ai, and
analogously for wG.

From a theoretical viewpoint it is a restriction that each action in B is re-
quired to have a unique ancestor in A∪ {StutX}, but for a specification process
an explicit refinement history between actions is desirable. It is also useful to
have the default convention that, in the absence of explicit refinements of Ai,
action Ai ∧ StutY \X is taken as its default refinement.

Provided that Q in (3) is satisfiable, T is an operational expression where all
safety properties of S are preserved. In general it is not a refinement of S, and
the liveness properties of S, expressed by sF and wF , need not be satisfiable by
any sG and wG that are permissible in (3). For default refinements it is, however,
obvious that the associated liveness properties are preserved by default fairness
conditions in (3).

When operational specifications are derived in incremental steps of superpo-
sition refinement, preservation of safety properties is guaranteed by construction,
while proof obligations are obtained for preservation of liveness properties. At
each stage we then have a correct view of the total system at some level of
abstraction, where some parts of the system are given only in an abstract rep-
resentation, and nondeterminism is utilized for a conservative approximation of
actions. Such a specification process leads to a layered specification, by which
we understand an operational TLA expression together with the superposition
refinement history by which it has been developed.



140 Reino Kurki-Suonio

2.4 Data Refinement in Superposition

In refinement it is often necessary to replace “abstract” data structures, which
are suitable for mathematical manipulation, by “concrete” data structures that
are more appropriate for efficient implementation.

Variables for new data representation can be introduced in superposition,
but old variables cannot be removed. However, if one proves an invariant

2(x = f(y))

between an old variable x and other variables y, then x no longer needs explicit
representation. Therefore, x can then be understood to have become a non-
primitive state function, which henceforth provides only an abstract view on the
concrete data structures by which it has been replaced.

Similarly, if an action with enabling guard g accesses but does not modify
variable x, and invariant

2(g ⇒ x = f(y))

can be proved, x can be locally replaced by f(y) in the action, making the action
independent of x.

2.5 Composition of Layered Specifications

When two superposition refinements of the same specification (2) are given,

T1 = Q1 ∧ 2[B1]Y1
∧ sG1 ∧ wG1,

T2 = Q2 ∧ 2[B2]Y2
∧ sG2 ∧ wG2,

it is assumed that the new variables introduced in them are different, Y1∩Y2 = X .
Two actions B1 ∈ B1, B2 ∈ B2, are then said to be compatible, if they have the
same ancestor in A ∪ {StutX}. An action B1 ∈ B1 with ancestor StutX is also
said to be compatible with StutY2 , and similarly for B2 ∈ B2 and StutY1 .

By composition T1 ⊕T2 (see Fig. 4) we then understand the following super-
position on both T1 and T2, and hence also on S:

T1 ⊕ T2 = (Q1 ∧Q2) ∧ 2[B]Y1∪Y2
∧ sG ∧ wG, (4)

where

– B consists of conjoined actions Bi ∧ Bj for all compatible pairs Bi ∈ B1 ∪
{StutY1}, Bj ∈ B2 ∪ {StutY2},

– sG consists of those actions in B for which an ancestor in either B1 or B2

belongs to sG1 or sG2, respectively, and
– wG consists of those actions in B for which an ancestor in either B1 or B2

belongs to wG1 or wG2, respectively.



Component and Interface Refinement in Closed-System Specifications 141

AX

B1Y1 B2Y2

BY1 ∪ Y2

S :

T1 : T2 :

T1 ⊕ T2 :

Fig. 4. Illustration of superposition relations in composition.

Obviously, “⊕” is commutative and associative. Notice that it is an oper-
ation between layered specifications, not of mere TLA expressions, since the
compatibility of actions in T1 and T2 depends on their refinement histories.

Under the above assumptions, layered specifications T1 and T2 are said to be
composable, if their composition (4) is an operational expression and a refinement
of both T1 and T2, i.e., Q1∧Q2 is satisfiable, and all safety and liveness properties
of both T1 and T2 hold in (4). In the special case of a dummy S (i.e., X = A =
∅), T1 and T2 are independent and therefore always composable. The following
Lemma is also obvious:

Lemma 1. If T1 and T2 are superposition refinements of S, and no action in
S is given explicit refinements in both of them, then T1 and T2 are composable.

From a theoretical viewpoint one would not need to restrict to compatible
pairs in the conjoined actions in (4). For a specification process it is desirable,
however, that ancestor histories of actions are traceable to all levels of abstrac-
tion. For an operational interpretation it is also an advantage that conjoined
actions are guaranteed not to have conflicting “assignments” to variables.

2.6 Composition of Independent Specifications

Composition of layered specifications is a generalization of composition in its
conventional meaning, since the latter can be understood as the reduced case of
composing mutually independent specifications. In this case it is often convenient
to use parameterized actions of the form

A = ∃x : A(x),

where A(x) is a step predicate that depends on parameter x.
In superposition, when A = ∃x : A(x) is an ancestor of a refined action

B = ∃x : B(x), direct correspondence will be assumed between their parameters
so that B(x) ⇒ A(x). Obviously, if the value of x is not uniquely determined by
the guard of A, further constraints can be introduced for it in B.



142 Reino Kurki-Suonio

When “open” components are “closed” into closed-system models, param-
eterized actions provide effective means to describe their communication with
their environments. Composition, followed by a simple superposition step, can
then describe how the components act as each other’s environments.

As an example, consider independently specified components T1 and T2,
where T1 gives output x to its environment by action A = ∃x : A(x), and
T2 receives input y from its environment by action B = ∃y : B(y). Since actions
A and B are compatible with each other and also with stuttering actions, com-
position T1 ⊕ T2 then contains the conjoined action ∃x, y : A(x) ∧B(y) and also
(default refinements of) both A and B. By a simple superposition step, where
the default refinements are deleted1 and the guard of the conjoined action is
strengthened with x = y, all output from T1 is directed to T2 as such, and all
input to T2 is taken from T1.

Obviously, if T1, for instance, contains a fairness requirement with respect to
action A, the above construction need not preserve this liveness property. This
would be the case, for instance, if action B in T2 would not accept all output
produced by A in T1. In the following we will study this problem in a slightly
different and more general setting.

3 Components in Closed Systems

Although closed-system specifications can be used in a bottom-up manner as
outlined in Sect. 2.6, their main advantages come up when the top-down direc-
tion needs to be supported. Proceeding from top down is most natural in the
specification of reactive systems; in fact it sounds paradoxical to specify com-
ponents of a reactive system and their interfaces before specifying what they
should do together [7].

In a top-down specification process, a closed-system model is partitioned into
components at some stage. In this section we discuss such partitionings and their
role in the specification process.

3.1 Partitioning of State

With k components in a closed-system specification, the global state consists of
the local states of these components, s = (s1, . . . , sk). Correspondingly, the set
of variables X is partitioned into disjoint subsets

X = X1 ∪ · · · ∪Xk, Xi ∩Xj = ∅ for i 6= j,

so that variables in Xi are assigned to the responsibility of component i. Each
Xi is partitioned further into shared and private variables, Xi = Xshd

i ∪Xpvt
i , so

that external accesses (i.e., accesses by actions in other components) are allowed
only to shared variables.
1 An action is deleted in superposition by strengthening its guard to be identically

false.



Component and Interface Refinement in Closed-System Specifications 143

A crucial property of superposition is that no new write accesses can be
introduced for any old variables, but read accesses can. To model situations
where also external read accesses are restricted to those actions that have already
been provided for that purpose, hidden variables Xhdn

i are defined as a subset
of Xshd

i for which even no new external read accesses are allowed.
In the presence of components, the initial condition P is assumed to be

separable into conditions on the local states of the components. Denoting the
global state by a pair s = (si, t), where the first component is the local state
of component i, and t denotes the rest of the state, this assumption can be
formulated as

(si, t)[[P ]] ∧ (ui, v)[[P ]] ⇒ (si, v)[[P ]]. (5)

The initial condition P is then effectively a conjunction of local conditions for
the components.

3.2 Partitioning of Actions

The responsibility for each action is also assigned to some component, yielding
a partitioning

A = A1 ∪ · · · ∪ Ak, Ai ∩ Aj = ∅ for i 6= j.

This induces also an associated partitioning of fairness conditions,

sF = sF1 ∪ · · · ∪ sFk, wF = wF1 ∪ · · · ∪ wFk,

so that sFi and wFi contain only actions in Ai.
In principle, each TLA action involves all variables in X , independently of

whether it changes their values or not. In an operational interpretation, however,
an action does not need to access all variables in X . A notion of dependence on
variables is therefore needed in the following.

Intuitively, an action A write depends on variable x ∈ X , if it may modify the
value of x, and it read depends on x, if its guard EnabledA or its effect on other
variables may depend on the value of x. More precisely, we define these depen-
dencies by occurrences of x′ resp. x in the given textual representation (where
“stuttering assignments” x′ = x are omitted), independently of whether these
occurrences are semantically significant or not. Therefore, these dependencies
fall outside of TLA, and may in some situations be changed without affecting
the TLA meaning of actions.

Actions in Ai that are allowed to depend on shared variables in other com-
ponents are called interface actions and are denoted by Aifc

i . Other actions in
Ai are local to component i. From the viewpoint of component i, actions in Aifc

i

are internal interface actions in it, while those in Aifc
j , i 6= j, are external to it.



144 Reino Kurki-Suonio

3.3 Partitioning of Action Parameters

Parameterized actions are often useful as interface actions. In simple situations
a parameter then models an input/output value that is transmitted from one
component to others.

In general, parameter values need not be uniquely determined, and they
may depend on variables in several components. Instead of input or output,
one might then talk about “interput.” Obviously, an implementation may then
need complex communication, in which the components agree on an appropri-
ate “interput” value. Partitioning into components requires, however, that the
responsibility for each parameter is assigned to one of the components involved.
Intuitively this is the component that makes the final decision on the value.

Analogously to separability of initial conditions, guards of interface actions
are assumed to be separable with respect to parameters assigned to the respon-
sibility of different components. More precisely, if ∃x, y : g(x, y) is the guard of
an interface action, where x denotes parameters that are the responsibility of
one component, and y denotes the other parameters, we require

g(x, y) ∧ g(u, v) ⇒ g(x, v). (6)

3.4 Utilizing Components

A refinement of a partitioned specification should normally preserve or refine
its component structure. Honoring this structure means that the partitioning of
variables and actions into components remains compatible with their old parti-
tionings. Similarly, compatible partitionings are required in composition of par-
titioned systems, and actions in different components should then be taken as
mutually incompatible.

To serve a useful purpose, component structure should not be a mere add-
on to a closed-system specification. In particular, partitioning into components
should make it possible to work on the components independently in paral-
lel paths of refinement. Because of interactions, component specifications are
never, however, completely independent, since they always make some assump-
tions about their environments. Therefore, when proceeding to lower levels of
abstraction, it should be possible to make also these assumptions more concrete.

To decide what the role of components should be in a (closed-system) speci-
fication process, we start from their role in implementation:

In implementation, the purpose of components is to provide modularity, where
component implementations are composable into an implementation of the total
system.

For specification we then adopt the analogous view:

In specification, the purpose of components is to provide modularity, where com-
ponent refinements are composable into a refined specification of the total system.

Notice that this statement makes no reference to implementations. Therefore, al-
though a specification component may focus on what corresponds to an eventual
implementation component, such a correspondence is not necessary.



Component and Interface Refinement in Closed-System Specifications 145

4 Component Refinements

In this section we discuss component refinements that serve the purpose out-
lined above. First we discuss simple component refinements, in which only those
actions are refined that are the responsibility of the refined component, and
show that these are insufficient for some practical needs. Then we formulate a
robustness condition that allows also refinement of external interface actions but
still guarantees composability. Throughout the section it will be tacitly assumed
that component refinements conform to the given partitioning, and that new
variables and actions are introduced only to the component being refined.

4.1 General Assumptions

Given an operational specification S with k components, the idea is to refine
the components in S independently, yielding closed-system specifications T i,
i = 1, . . . , k, which are composable into

T = T 1 ⊕ · · · ⊕ T k, (7)

which then is a refinement of each T i and hence also of S.2

Let P be the initial condition in S, and let Qi be the strengthened initial
condition in T i. To guarantee separability (5) of the initial condition Q1∧· · ·∧Qk

in T , we require

(si, t)[[Qi]] ∧ (ui, v)[[P ]] ⇒ (si, v)[[Qi]]. (8)

For interface actions we make the simplifying assumption that only one (ex-
plicit or implicit) refinement is given in T i for each of them. (Since fairness
requirements are associated with individual actions, this constrains the fairness
properties that can be expressed.) No new fairness requirements are allowed for
actions in other components, and all new parameters introduced in T i must be
the responsibility of component i. We also assume that only those parameters
are constrained in T i that are the responsibility of component i, and that the
separability condition (6) is preserved. Therefore, if ∃x, y : g(x, y) is the guard
of a parameterized interface action, where x denotes the parameters that are the
responsibility of component i, and ∃x, y : hi(x, y) is the corresponding refined
guard in T i, we require

hi(x, y) ∧ g(u, v) ⇒ hi(x, v). (9)

4.2 Simple Component Refinements

By a simple component refinement of component i we understand a refinement
that satisfies the above general assumptions and in which only those actions are
explicitly refined that are the responsibility of component i. On account of (8)
and Lemma 1 such refinements are always composable:
2 Actions introduced as new actions in different T i are considered mutually incompat-

ible in this composition.



146 Reino Kurki-Suonio

Theorem 1. Simple component refinements are composable.

Obviously, simple component refinements are sufficient in situations where
accesses to external interface variables need not be modified. In addition, they
allow restricted interface refinement by additional read dependencies on external
interface variables. Still, they are insufficient in many situations that arise in
practice.

As an example, consider specification of a data storage with external actions
Put(x) and Get(x) for storing and retrieving data values x, respectively. At a
high level of abstraction an abstract data structure can be used for data storage,
and actions Put and Get can then be enabled whenever there is room for more
data or the storage is nonempty, respectively. At a lower level of abstraction with
concrete data structures, the data storage component may, however, sometimes
need internal storage reorganization. In a refined specification, the need for such
reorganization may therefore enable a new action Reorg and disable Put and Get
temporarily, until reorganization by Reorg has taken place (see Fig. 5). Therefore,
what intuitively is just a refinement of the data storage component would also
refine external interface actions to it.

Put

Get

x

x

Environment Data storage

Reorg

Fig. 5. Need for temporary refusal of external interface actions.

The reason for this phenomenon is that, although each interface action is
assigned to some component, its execution requires cooperation from other com-
ponents involved. When this cooperation is made more explicit at lower levels
of abstraction, interface refinement is needed. In this example a simple kind of
interface refinement is sufficient: the data storage component should be able to
refuse external interface actions, which requires strengthening of their guards.
We also notice that without a fairness requirement for Reorg such a component
refinement would not be composable with environment refinements that add
fairness requirements for Put and Get.

4.3 Robust Component Refinements

For reasons explained above, we allow a component refinement also to refine
external interface actions to the component. Additional fairness requirements
are not, however, allowed to be introduced for them.



Component and Interface Refinement in Closed-System Specifications 147

By T i
0 we will denote the reduction of component refinement T i where fairness

assumptions are restricted to concern only local actions in component i. We then
have the following Lemma:

Lemma 2. If a property holds in the reduction T i
0 of some component refinement

T i, it also holds in the composition T = T 1 ⊕ · · · ⊕ T k.

Proof. For safety properties this is obvious. Liveness properties in T i
0 are ex-

pressed by fairness requirements for local actions in component i. Since (the
ancestors of) these actions cannot be refined in any other component refinement
T j, j 6= i, their guards are the same in T and T i

0. Therefore, the lemma holds
also for liveness properties. ut

As a consequence, composition T is a refinement of all T i iff it satisfies those
fairness requirements that each T i gives for internal interface actions.

Next we formalize the idea that a component refinement can only temporarily
refuse an external interface action. Let A be an external interface action to
component i in specification S, let g be the guard of A, and let hi be the guard of
its refinement in component refinement T i. (Possible parameters are existentially
quantified within A, g and hi.) We say that T i is insistent on A, if condition

23g ⇒ 23〈A〉 ∨32(g ⇒ hi) (10)

holds in T i
0.

A simpler condition that implies (10) and is often applicable is that hi can
be represented in the form hi = g ∧ ri such that conditions

g ; ri,

2[ri ⇒ r′i ∨A]

hold in T i
0.

A component refinement T i is now called robust if, in addition to the general
assumptions given above, T i is insistent on all external interface actions. We
have:

Theorem 2. Robust component refinements are composable.

Proof. It is sufficient to consider fairness properties of interface actions. Let
A = ∃x : A(x) be an internal interface action in component i in S, with x
denoting its parameters collectively, and let g = ∃x : g(x) and hi = ∃x : hi(x)
be the guards of A and its refinement in T i, respectively. For each component j,
j 6= i, for which A is an external interface action, let hext

j = ∃x : hext
j (x) be the

guard of its refinement in T j.
The guard of the corresponding conjoined action in composition T is then

h = ∃x : (hi(x) ∧
∧

j

hext
j (x)).



148 Reino Kurki-Suonio

It is now sufficient to prove that

23hi ⇒ 23〈A〉 ∨32(hi ⇒ h) (11)

holds in T , since this would imply that a (weak or strong) fairness property
associated with (the refinement of) A in T i would be satisfied also in T . Since
hi ⇒ g, insistence condition (10) and Lemma 2 give us a weaker implication

23hi ⇒ 23〈A〉 ∨32(hi ⇒ (∃x : hi(x) ∧
∧

j

∃x : hext
j (x))),

where the different parameter values for which hi(x) and hext
j (x) are true at the

same time may be different. By parameter independence assumptions (6) and
(9) there must then, however, exist also common parameter values for them,
which leads to (11). ut

In the example outlined in Sect. 4.2, weak fairness on action Reorg is obviously
sufficient for making the suggested refinement of the data storage component
insistent on external interface actions Put and Get. Therefore, this refinement is
composable with unknown environment refinements.

5 Interface Refinement

When interactions have been defined at a high level of abstraction, they need not
be realistic for direct implementation. Therefore, the need may arise to refine
“abstract interactions” into more elementary “concrete interactions.” In this
section we discuss how component refinements can be used for this purpose.

Above it was assumed that component refinements totally conform to the
original partitioning of variables and actions into components. In interface re-
finement this assumption needs to be relaxed. Another interesting point is that,
since both internal and external interface actions can be refined in robust com-
ponent refinements, the interface between two components can often be refined
by refining either one of them.

By interface refinement we understand refinements that affect interface ac-
tions. The following important varieties of it can be distinguished:

– Representation of interface data can be changed by data refinement.
– External interface actions can be temporarily refused.
– The atomicity of an interaction can be refined by splitting it into more

elementary actions. The responsibilities for these may be assigned to the
parties involved, and the synchronization of the parties may be loosened.

In this section we will sketch out generic examples to discuss problems associated
with atomicity refinement of interactions.



Component and Interface Refinement in Closed-System Specifications 149

5.1 Changes in Responsibilities

Although each interface action is assigned to the responsibility of a specific com-
ponent, its implementation requires some cooperation from each of the compo-
nents involved. In refining an interface action the roles of other components may
therefore become explicit in actions that are assigned to their responsibility, and
this may also affect the partitioning of variables and actions. Since components
have no significance in terms of TLA, composable refinements remain compos-
able independently of such changes.

Obviously, for components to have any significance, arbitrary changes to the
partitioning should not be allowed. The principles that we adopt are that a com-
ponent refinement can reallocate only responsibilities of the refined component
to other components, and that all such changes honor the general requirements
for partitionings, even when composed with unknown component refinements.
For instance, the responsibility for an action in Ai cannot be moved to another
component if it depends on variables in Xpvt

i . Similarly, a necessary condition
for changing a public variable to become private is that it belongs to Xhdn

i .
As an extreme example of changes in responsibilities, consider the following.

If it is decided in an environment refinement that a real environment will be
replaced by a simulated one, then all variables and actions of the environment
part are moved to the system part. Such an environment refinement can then
be composed with a system refinement, yielding a refined specification with a
simulated environment.

Conversely, we can think of a system refinement that moves all its responsibil-
ities to the external environment. This would reflect the decision that a separate
system part will not be used, and everything will be implemented by rules and
activities imposed on the environment. This demonstrates that, although an
interface refinement can be carried out as a refinement of one component, its
feasibility cannot be judged without considering all parties concerned.

5.2 Example: Simplifying an Interface Action

In a high-level specification an external interface action may directly execute
some computation that an implementation should assign to local actions. As
an example, consider a closed system consisting of an environment component
(component 1) and a system component (component 2), where system variable
x ∈ Xhdn

2 (initialized as 0) is used to accumulate information given by an envi-
ronment action A ∈ Aifc

1 ,

A(i : integer) : true
→ x′ = f(i, x),

where f denotes some integer-valued function. In the notations, an arrow is
used to separate the guard of an action from its “assignments,” and “stuttering
assignments” are not given explicitly.

The problem with this interface is that all computing, i.e., each evaluation of
function f , is done by the environment, which therefore also needs access to the



150 Reino Kurki-Suonio

accumulated value x. A robust system refinement can, however, be given, which
refines the interface so that variable x is effectively removed, and evaluation of
f is moved to take place in a system action (see Fig. 6).

A x
i

x

s, j

yB

wC

i

Fig. 6. Example of interface simplification.

As for variables, new system variables s, j ∈ Xshd
2 and y ∈ Xpvt

2 are intro-
duced in this refinement, initialized as true, 0 and 0, respectively. Interface action
A, which is external to the system component, is refined into B,

B(i : integer) : A(i)
∧ s = true
→ j′ = i

∧ s′ = false ,

and a new local system action wC is introduced,

wC : s = false
→ y′ = f(j, y)
∧ s′ = true.

Prefix w on wC expresses a weak fairness requirement, which ensures that this
refinement is, indeed, a robust component refinement of the system part.

Obviously, invariant 2(x = (if s = true then y else f(j, y))) now makes
x redundant and, since no additional dependencies on x can be introduced in
potential environment refinements, x can be removed. Evaluation of function f
has then been effectively moved from the environment to the system part, and
environment access to x has been removed.

5.3 Example: Refinement of Communication

The normal method to refine the atomicity of an action A is to introduce new
actions which together with a refined action B accomplish what was originally
done by A alone. Compared to A, the enabling of B is then delayed until the new



Component and Interface Refinement in Closed-System Specifications 151

actions have done all the preparatory work. Here we illustrate how this technique
can be used for refining the atomicity of communication between components.

Consider the situation illustrated in the upper part of Fig. 7. There, the
environment part gives an integer x to the system part in an atomic action A.
For simplicity it is assumed that action A updates no environment variables.
Removing this restriction will be discussed below.

A integerinteger
x

Environment Part System Part

B integerinteger
x

D digits
d

Fig. 7. Example of atomicity refinement.

Assuming that an implementation cannot transmit an entire integer atomi-
cally, a refinement is needed where the digits of x are transmitted one by one.
This can be expressed as an environment refinement, which can be outlined as
follows (see lower part of Fig. 7). The digits d of x are given to the system part
by a new environment action D. Once all of them have been transmitted, ac-
tion B, which is a refinement of A, can reconstruct x from them. By proving
the invariant that this integer is indeed x, the dependence of B on environment
variables (shown by a dashed line) can be removed, and B can be changed into
a local system action.

5.4 Loosening of Component Synchronization

In the previous example it was assumed that action A did not update any en-
vironment variables. Otherwise the dependence of B on environment variables
could not have been removed. In general, an interface action may update vari-
ables in all parties involved, and an implementation may therefore need commu-
nication in each direction, and refinement of atomicity then needs loosening of
synchronization between the components.

To sketch how this affects the refinement of interface atomicity, consider a
situation where an interface action A models two-way communication between
two components, updating variables x and y in them (see upper part in Fig. 8).

To get rid of synchronous updating of x and y, one of them (x) has to
be transformed into a non-primitive state function. Therefore, let z be a new
variable whose value will “almost always” agree with that of x. The functions
of action A can then be split into more elementary actions as follows (see lower



152 Reino Kurki-Suonio

A yx

Component 1 Component 2

B yx

z C

E D

Fig. 8. Loosening of synchronization in two-way communication.

part of Fig. 8): a new action C transmits the required values to component 2,
action B, which is a refinement of A, then updates y accordingly and computes
the feedback, which is subsequently returned to component 1 by another new
action D, and still another new action E finally updates z.

For the correctness of such a refinement it is essential that x has, indeed,
become a non-primitive state function that needs no explicit representation,
i.e., x is needed in component 1 only when its value is present in z. Another
aspect that needs attention is that the enabling of A (and hence also of B) may
depend on variables in component 2. Therefore, action C may be executed also
in situations where its effects need to be canceled.

6 Concluding Remarks

The idea of layered specifications, as presented in Sect. 2, was developed in
connection with the DisCo specification language [4, 5]. Technically, an import
clause in DisCo takes the composition of one or more layered specifications as
a basis for superposition. Partitioning into components and component refine-
ments, as discussed in this paper, are not supported by the language. The layered
structure of DisCo specifications has been utilized in an aspect-oriented manner,
where different aspects of the specification are addressed in parallel paths of su-
perposition refinement. Preservation of liveness properties in the composition of
the resulting refinements has been treated on a case-by-case basis.

Another approach to TLA-based specifications has been developed in cTLA
[3]. Instead of layered specifications, cTLA supports composition of independent
specifications (and subsequent superposition) in the manner outlined in Sect. 2.6.
Similarly to DisCo, preservation of liveness properties needs to be considered on
a case-by-case basis. In the event-based formal framework of LOTOS, where
fairness properties are not specified, essentially the same technique is known as
the constraint-oriented specification style [2].



Component and Interface Refinement in Closed-System Specifications 153

Object-oriented concepts have not been used in this paper. In DisCo, state
variables are given in terms of classes and objects, actions are parameterized
by the objects that can “participate” in them, and inheritance of single-object
methods has been generalized into inheritance of capabilities to participate in
such multi-object actions [6]. DisCo specifications are therefore patterns of in-
teractive object systems. The results of this paper can be generalized also to
this object-oriented situation, where components are collections (or patterns) of
objects with associated actions.

Unlike conventional approaches to modularity, layered specifications make it
possible to start formal modeling at a high level of abstraction, where compo-
nent interfaces have not yet been fixed. Components can then be considered as
different “aspects,” on which the focus is set in parallel refinement paths. In
particular, component interfaces can also be refined in this process. Conditions
for the composability of such component refinements have been investigated in
this paper. The approach seems natural for codesign, for instance, where the
joint activities of the components should be specified before deciding on exact
partitioning and concrete interfaces [10].

The viewpoint of this paper has been that of a top-down specification pro-
cess. Therefore, attention has not been paid to techniques for component reuse.
Layered specifications make it possible, however, to reuse specifications also at
a high level of abstraction, where the operands of composition do not focus on
implementation components. Need for reuse at such levels is apparent in design
patterns, for instance, to which layered specifications and the object-oriented
inheritance mechanism of DisCo have been applied in [11].

References

[1] Abadi, M., Lamport, L.: Conjoining specifications. ACM TOPLAS 17 (May 1995)
507–534

[2] Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language LO-
TOS. Computer Networks and ISDN Systems 14 (1987) 25–59

[3] Herrmann, P., Krumm, H.: Compositional specification and verification of high-
speed transfer protocols. In Protocol Specification, Testing and Verification XIV
(Eds. S. T. Vuong and S. T. Chanson), Chapman & Hall 1994, 339–346

[4] Järvinen, H.-M.: The Design of a Specification Language for Reactive Systems.
Tampere University of Technology, Publication 95, 1992

[5] Järvinen, H.-M., Kurki-Suonio, R., Sakkinen, M, Systä, K.: Object-oriented spec-
ification of reactive systems. Proc. 12th Int. Conf. on Software Eng., IEEE Com-
puter Society 1990, 63–71

[6] Kurki-Suonio, R.: Fundamentals of object-oriented specification and modeling of
collective behaviors. In Object-Oriented Behavioral Specifications (Eds. H. Kilov
and W. Harvey), Kluwer 1996, 101–120

[7] Kurki-Suonio, R., Mikkonen, T.: Harnessing the power of interaction. In Infor-
mation Modelling and Knowledge Bases X (Eds. H. Jaakkola, H. Kangassalo and
E. Kawaguchi), IOS Press 1999, 1–11

[8] Lamport, L.: The temporal logic of actions. ACM TOPLAS 16 (May 1994) 872–
923



154 Reino Kurki-Suonio

[9] Lamport, L.: Composition: a way to make proofs harder. Compaq Systems Re-
search Center, Technical Note 1997-030a, January 1998

[10] Mikkonen, T.: A development cycle for dependable reactive systems. In Proc. IFIP
International Workshop on Dependable Computing and its Applications, DCIA98.
Available at http://www.cs.wits.ac.za/research/workshop/ifip98.html

[11] Mikkonen, T.: Formalizing design patterns. Proc. 20th Int. Conf. on Software
Eng., IEEE Computer Society 1998, 115–124


	Introduction
	Layered TLA-Based Specifications
	TLA Formulas
	Operational Expressions
	Refinement by Layers of Superposition
	Data Refinement in Superposition
	Composition of Layered Specifications
	Composition of Independent Specifications

	Components in Closed Systems
	Partitioning of State
	Partitioning of Actions
	Partitioning of Action Parameters
	Utilizing Components

	Component Refinements
	General Assumptions
	Simple Component Refinements
	Robust Component Refinements

	Interface Refinement
	Changes in Responsibilities
	Example: Simplifying an Interface Action
	Example: Refinement of Communication
	Loosening of Component Synchronization

	Concluding Remarks

