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Abstract. ASSO is a formal methodology for conceptual databases de-
sign which uses aspects of the B method. In this paper, we discuss the
formal relationship between specification in ASSO and in B, defined in
terms of a translation which we prove to be sound. Further we go onto
discuss refinement in ASSO, which separates behavioural and data re-
finement, their formal relationship and their relation to refinement in
B. In this manner we can use B theory and tools to support database
development in ASSO.

1 Introduction

Formal methods such as B, Z and VDM have been developed to be applica-
ble to a broad range of computing problems. However, there are advantages to
be gained from methods specialised to particular application domains. The re-
stricted nature of the systems to be developed may impose conditions on the
methods, which can then be tailored to take advantage of the properties of that
domain. Such specialised methods would also be more acceptable to developers
accustomed to working within the culture of the application.

ASSO [7] is a formal design methodology for conceptual database design which
has been designed to combine ease of modification with efficiency of implementa-
tion whilst ensuring specification consistency and design correctness. ASSO has
been developed by integrating features of two methods. Firstly the Partitioning
Method [15], a formal relation between semantic data models [11] a high-level
view where classes are linked through specialisations within a single hierarchy,
and object models [1, 5], where classes are disjoint. ASSO extends this with a no-
tion of behavioural specialisation which allows both structural and behavioural
aspects of database applications to be specified using a Structured Database
Schema [3, 14]. Secondly, the B Method [2], one of the most highly developed
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formal methods for general software engineering currently being promoted for
commercial use. Each ASSO schema can be translated into an Abstract Ma-
chine and the formal semantics of the ASSO schemas is given exploiting the
pre-existing abstract machine semantics [3]. In this paper we assume that the
reader is familiar with the notions of B.

The direct use of B for developing database applications has disadvantages. The
B method lacks the abstraction mechanisms supported by database conceptual
languages, and its refinement has not been designed to obtain efficient database
implementations. Within ASSO, both specifications and refinements are pre-
sented using a formal conceptual design notation which uses terms familiar to
database developers. The formal semantics of the method exploit the nature of
transactions, which preserve the integrity of the database, to simplify some proof
obligations. The Partitioning Method decomposes the schema towards a logical
schema without further proof obligations.

The Structured Database Schema can be translated systematically into Abstract
Machines, and the consistency proofs of the ASSO conceptual schema can be
split into small B proofs [17, 20]. Further, the schema transformations of ASSO
refinement are also particular steps of B-refinement [18]. In this paper, we for-
malise this translation, via a reformulated semantics for ASSO. This is equivalent
to that given in [3] but it is given in terms of the language of the semantics of
B [2]. This semantics is then extended to cater for the structuring mechanisms
for ASSO, especially is-a*. As the semantics of ASSO are now given in the same
framework as B, it is then straightforward to demonstrate that the translation
is sound. Further, we discuss refinement in ASSO, which combines behavioural
refinement with the Partitioning Algorithm. Using the same semantic frame-
work we then give some results on refinement, and discuss its relationship with
refinement in B.

This paper is organised as follows. In section 2 we give a description of ASSO and
give its semantics in terms of weakest preconditions. In section 3 we describe the
translation of ASSO to B and prove the soundness of this relation. Refinement
in ASSO and its relation to refinement in B is discussed in section 4.

2 Specification in ASSO

The Structured Database Schema (SDBS) is the model which supports ASSO
specifications. It exploits the concepts of class, and is-a* relationships between
classes. A class C is an entity defining both the static and behavioural aspects of
a set of entries in the database. The static aspects are a set of objects and a set of
attributes associated with those objects, described using sets and functions. The
dynamic aspects comprise a set of state transformations, the operations, with
a distinguished operation initialisation defining the initial state of the class.
Operations are defined by applying constructors to basic operations. In this
paper, we use a generic class C, on given set S, with attributes: a1 : t1 . . . an: tn
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initialisation C, a1, . . ., an := IC , I1 . . . In, application constraint P (C, a1, . . .,
an) ,and operations op1C, . . ., opkC. Note that in ASSO the notation a : t means
an attribute a has a type t in a similar sense to an object member variable. It
should not be confused with the ASCII B notation’s use of the colon for set
membership ∈. For a class C, the following basic operations are available:

ADD C (x, v1, . . . , vn) Insert object x with attribute values v1, . . . , vn into C.
REM C (x) Remove object x from C.
SKIP C Does nothing in C.
CHANGE C ai (x,vi) Update value of attribute ai of object x in C to vi.

The weakest precondition semantics for a base operation op in C are given via
the equivalence on any arbitrary predicate R:

[op C (par list) ]R ⇔ ∃ v′·(R′ ∧ PREC(op C (par list)) ∧ prdC (op C (par list)))

where v′ is a list of primed variables of the class, C′, a′1, . . . a′n and R′ is the result
of priming all variables in R, representing the variables of C after the operation.
We define the relationship between the pre and post variables using the before-
after predicate prdC a predicate which holds for pairs of states similar to that
used to specify operations in VDM and Z. In B, the predicate is subscripted with
a variable x; in ASSO we subscript the predicate with a class C. We then define
the predicate prdC(S) for an operation S following ([2], §6.3.3) as:

prdC(S) ⇔ ¬[S](C′ 6= C) ∨ (a′1 6= a1) ∨ . . . ∨ (a′n 6= an)

Thus we have for the base operations of ASSO;

prdC(ADD C (x,v1,. . .,vn)) =
(C′ = C ∪ {x}) ∧ (a′1 = a1 <+ {(x,v1)}) ∧ . . . ∧ (a′n = an <+ {(x,vn)})

prdC(REM C (x)) = (C′ = C−{x}) ∧ (a′1 = {x}−Ca1) ∧. . .∧ (a′n = {x}−Can)
prdC(SKIP C) = (C′ = C) ∧ (a′1 = a1) ∧ . . . ∧ (a′n = an)
prdC(CHANGE C ai (x,vi)) =

(C′ = C) ∧ (a′1 = a1) ∧ . . . ∧ (a′i = ai <+ {(x, vi)}) ∧ . . . ∧ (a′n = an)

We differ from [3] by explicitly including the precondition of the base operations:

PREC(ADD C (x,v1,. . .,vn)) = x ∈ S ∧ x 6∈ C ∧ v1 ∈ t1 ∧ . . . ∧ vn ∈ tn
PREC(REM C (x)) = x ∈ C
PREC(SKIP C) = true
PREC(CHANGE C ai (x,vi)) = x ∈ C ∧ vi ∈ ti

The following constructors can be applied recursively to the basic operations:

PRE P THEN op C (par list) END Pre-conditioning.
P → op C (par list) Guarding.
CHOICE op1 C (par list) OR op2 C (par list) END Choice.
ANY y WHERE P THEN op C (par list) END Unbounded-choice.



Formal Development of Databases in ASSO and B 391

Here, P is a predicate on the variables of class C, op C (par list) op1 C (par list)
and op2 C (par list) are operations on C and y is a variable distinct from the
variables of C. Pre-conditioning specifies a the preconditioned transformation: op
C (par list) for the states satisfying P and is undetermined otherwise. Guarding
specifies a partial transformation: op C (par list) for the states satisfying P and
abort otherwise. Choice specifies a non-deterministic transformation between
op1 C (par list) and op2 C (par list). Unbounded-choice specifies an unbounded
non deterministic transformation defined by replacing any value of y satisfying
P in op C (par list).

The weakest precondition semantics for a constructed operation op in C are:

[op C (par list) ]R ⇔ ∃ v′·(R′ ∧ prdC (op C (par list)))

The before-after predicate for the operation constructors is as follows:

prdC (PRE P THEN op C (par list) END) = P ⇒ prdC (op C (par list))
prdC (P → op C (par list)) = P ∧ prdC (op C (par list))
prdC (CHOICE op1 C (par list) OR op2 C (par list) END) =

prdC (op1 C (par list)) ∧ prdC (op2 C (par list))
prdC (ANY y WHERE P THEN op C (par list) END) =

∃ y·(P ∧ prdC (op C (par list)) if y is not in C′.

A class has a set of class constraints:

class-constraintsC = C ⊆ U ∧ a1 ∈ C → t1 ∧ . . . ∧ an ∈ C → tn

That is that all objects in C must be of the given set and every attribute on
C can be regarded as a total function on the class. The class constraints are
preserved by the valid operations on the class.

Additional (explicit) application constraints may be associated with the class in
the form of a predicate IC which have to be preserved by all class’s operations.
Given operation op with precondition P the consistency obligation is given by:

IC ∧ P ⇒ [S]IC

Note that this is the same as the proof obligation on invariants in B. However,
the class constraints do not need to be proved.

Further, in class C there is a distinguished operation InitC which initialises
the class and can assign any value to the class variables. Consequently, the
class constraints cannot be guaranteed to hold for InitC and thus there is an
initialisation obligation to show that they are established.
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[InitC ](IC ∧ class-constraintsC)

Within a SDBS, a class can be either the root of a specialisation hierarchy or
defined through the is-a* relationship with a superclass. The is-a* relationship
extends the standard is-a relationship by allowing the inheritence of both at-
tributes and operations from a superclass [3].

Given the specialised class C2 is-a* C1, then the following properties hold:

– Class C2 is-a* C1 inherits both attributes and operations from class C1.
– Inherited operations are specialised on C2, that is restricted to the subclass.

The initialisation and the operations on C2 which insert objects are explicitly
specialised, whereas other operations are implicitly specialised.

– Objects of C2 are a subset of C1 objects.
– Class C2 can have specific attributes and/or operations.

An inherited operation from C1 on C2 is the parallel composition [8] of the
operation on C1 with the same operation specialised on C2. The is-a* relation
imposes the following constraint:

is-a-constraint
C2is-a*C1

= C2 ⊆ C1 ∧ C2 C a1 ∈ C2 → t1 ∧ . . . ∧
C2 C an ∈ C2 → tn

where a1:t1 . . . an:tn are the attributes of C1.

The following syntactic forms are used to specify ASSO schemas:

class name of given-set with (attr-list; const ; oper-list )
class name is-a* name with (attr-list; const ; oper-list )

The former is the base constructor of the ASSO schema classes used to specify
classes at the top of the specialisation hierarchy. The latter is used to specify
classes in is-a* relationship with other classes. Within these forms, name denotes
the class name, attr-list the attributes of the class, constr application constraints
on the class, and oper-list the operations including the initialisation. The class
constraints are implicitly specified with the class constructor.

Definition 1. A Structured Database Schema is a list of classes such that the
top class is defined through a base constructor and the remaining classes through
is-a* constructors.

If C1 is-a* C2 then the weakest precondition for inherited operations of C1 is-a*
C2 is given by:

[ op C1 is-a* C2 (par list) ]R ⇔ ∃ v′R·(prdC (op C1 (par list)) ∧
prdC (op C2 (par list)) ∧ (is-a-constraints ⇒ is-a-constraints′) ∧ R′)
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If application constraints involves only variables in single classes, then an SDBS
is a set of classes linked through the is-a* relation, and is consistent (that is
satisfies all consistency obligations) if and only if each class is consistent.

2.1 A Set Theoretic Model of ASSO

To simplify proofs, we also give a set theoretic model of the semantics of ASSO,
following that for B as given in [2] §6.4.1.

The termination predicate trm(S) on operations is defined ([2], §6.3.1) as:

trm(S) ⇔ [S[( x = x )

That is if after the operation true can be established, then the operation termi-
nates. From this derives the definitions of the termination predicate for the base
operations of ASSO. They all terminate within their precondition:

trm( ADD C (x, v1, . . ., vn)) = (x 6∈ C)
trm( REM C (x)) = (x ∈ C)
trm( SKIP C ) = true
trm( CHANGE C ai (x, vi)) = (x ∈ C)

We then define the termination predicate recursively for the constructors.

trm (PRE P THEN op C (par list) END) = P ∧ trm (op C (par list))
trm (P → op C (par list)) = P ⇒ trm (op C (par list))
trm (CHOICE op1 C (par list) OR op2 C (par list) END) =

trm (op1 C (par list)) ∧ trm (op2 C (par list))
trm (ANY y WHERE P THEN op C (par list) END) =

∀ y·(P ⇒ trm (op C (par list)) if y is not in C′

Abrial imposes a condition that the types of variables do not change in an
operation. This also holds in ASSO where variables are sets of class instances
and total functions on those sets for class attributes. The condition becomes:

class-constraintsC ∧ trm ( S ) ⇒ [ S ]class-constraintsC

For a set theoretic characterisation of ASSO we follow B in giving two sets for
each substitution: a pre-condition set pre(S), representing the states where the
preconditions of an operation holds; and a binary relation rel(S) capturing the
dynamics of the operation through the before-after predicate.

pre ( S ) = {C, a1, . . . , an| class-constraintsC ∧ trm ( C ) }

rel ( S ) = { (C, C′), (a1, a
′
1), . . ., (an, a′n) | class-constraintC ∧ class-

constraints′C ∧ prdC (S)}
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structured database schema

database

class person of PERSON with ( income:N

constraints ∀ p (p∈person ⇒ income(p)≥ 1000)

init .person() = person, income := {},{}
new .person(pers, i) =̂

PRE pers ∈ PERSON − person ∧ i ≥ 1000

THEN ADD person(pers, i)

END ;
del .person(person) =̂

PRE pers ∈ PERSON

THEN REM person(pers)

END )

class employee is-a*person with (salary:N

constraints ∀ e (e∈employee ⇒ salary(e)≥500)

init .employee() =̂ employee, salary := {},{}
new .employee(emp,s) =̂

PRE s ≥ 500

THEN ADD employee(emp, s)

END )

class student is-a* person with (matriculation:N

constraints ∀ s1, s2 (s1∈student ∧ s2∈student ∧ s1 6= s2 ⇒
matriculation(s1 ) 6=matriculation(s2 ))

init .student() =̂ student , matriculation := {},{}
new .student(pers) =̂

PRE pers ∈ PERSON − student

THEN

ANY m WHERE m ∈ N ∧ m 6∈ ran(matriculation)

THEN ADD student(pers, m)

END

END )

Figure 1: An ASSO Specification

2.2 An Example ASSO Specification

Consider a database application with the following requirements [16].

– The database maintains a set of persons and their income, a subset of em-
ployees and their salary, and a subset of students and their matriculation.
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– The income of a person is greater or equal to 1000; the salary of an employee
is greater or equal to 500; a student has a unique matriculation number.

– Instances are added when a new person is inserted into the database and
extended when a person is employed or when a person becomes a student.

– Information is removed from the database when an employee leaves the com-
pany and/ or when a student leaves or completes his or her studies.

From these requirements, we can derive an SDBS specification given in Fig-
ure 1. del.employee and del.student are operations inherited from the super-
class without being explicitly specified, so del.employee on class employee results
from the parallel composition of del.person with del.person implicitly specialised
on the employee. init.employee and init.student, (respectively new.employee and
new.student) are specialised; new.employee on class employee results from the
parallel composition of new.person with new.employee specified on the employee.

As the constraints of the is-a relationship are preserved and the application
constraints only involve separate classes [3], the consistency proof of the specified
conceptual schema can be decomposed to those of the classes.

3 Relating the B-Method and ASSO

The relationship between ASSO and B is established via a formal translation
from ASSO SDBSs into B machines, summarised as follows:

– Each class of a structured database schema can be translated into a B ma-
chine which preserve the class constraints and the is-a* constraints.

– The consistency proof of a SDBS can be split into the proof of a set of small
B consistency lemmas. Some lemmas are known to hold via the construction
of the SBDS.

Given a class C we denote its translation into B by T (C). We use similar no-
tations for the translations of other ASSO constructs into B. The translation is
shown to be correct by demonstrating that the semantics of an ASSO schema
are the same as the semantics of the set of machines into which it is translated.

Definition 2. Translation T is sound if for each ASSO class C on given set S:

1. For the class and attribute variables C, a1:t1 . . . an:tn of C, there are trans-
lations such that: T (C) ⊆ S, T (a1) ∈ C → T (t1) . . . T (an) ∈ C → T (tn).

2. For the explicit constraint P on the variables of C, there is a constraint T (P )
on the variables of T (C) such that:

∀ c ⊆ S, v1 ∈ t1 . . . vn ∈ tn · P (c, v1, . . . , vn) ⇔ T (P (T (c), T (v1), . . . , T (vn)))
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3. For each operation op in C, there is an operation T (op) in T (C) such that
for any predicate R: [ op (par list) ] R ⇔ [ T (op) (T (par list) ) ] R

MACHINE x base

SEES SS

SETS t1 , . . . , tn

CONSTANTS IC , I1 ,. . . , In

PROPERTIES IC ⊆ SS ∧ I1 ∈ IC → t1 ∧ . . . ∧ In ∈ IC → tn

VARIABLES C , a1 ,. . . , an

INVARIANT C ⊆ SS ∧ a1 ∈ C → t1 ∧ . . . ∧ an ∈ C → tn

INITIALISATION C := IC ‖ a1 := I1 ‖ . . . ‖ an := In

OPERATIONS

SKIP C =̂ skip ;
ADD C ( vc , v1 ,. . ., vn ) =̂

PRE vc ∈ SS ∧ vc 6∈ C ∧ v1 ∈ t1 ∧ . . . ∧ vn ∈ tn

THEN C , a1 , . . . , an :=

C ∪ { vc } , a1 <+ { vc 7→ v1 } , . . . , an <+ { vc 7→ vn }
END ;

REM C ( vc ) =̂

PRE vc ∈ C

THEN C , a1 , . . . , an := C − { vc }, { vc } −C a1 , . . . , { vc } −C an

END ;
CHANGE C a1 ( vx , va1 ) =̂

PRE vx ∈ C ∧ va1 ∈ t1

THEN a1 := a1 <+ { vx 7→ va1 }
END ;

. . .

CHANGE C an ( vx , van ) =̂

PRE vx ∈ C ∧ van ∈ tn

THEN an := an <+ { vx 7→ van }
END

END

Figure 2: Prototypical Base Machine

Each class in a Structured Database Schema is translated into 3 abstract ma-
chines. For each class we give a base machine with class variables and base
operations, a class machine which uses base operations to provide operations on
the class, and a top-level machine which captures the class with its is-a* relation

Base Machines. A base machine is constructed for each class, containing the
class variables and attributes, its implicit constraints, and an AMN represen-
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tation of the base operations. As in ASSO these implicit constraints are auto-
matically preserved, the consistency of this machine does not need to be proved.
By placing these operations into a separate machine we exploit the semi-hiding
principle and do not allow the implicit constraints to be violated.

We denote this machine as: Cbase = Tbase(C). This base machine for the general
class C is given as follows. The given set S generates a stateless machine SS
containing only the set S. The corresponding generic base machine is given in
Figure 2. Thus each class has its own class set, attributes, invariants, initialisa-
tion and operations. A base machine models a class as a set representing class
instances, with total functions for attributes. For each class, we declare a set of
basic operations similar to those used in ASSO.

Theorem 1. The translation Tbase is sound.

Proof. (Sketch). To show that this translation is sound, we prove that the trans-
lation of the class fragment formed by taking the instance and attribute sets of
class C together with the base operations and the initialisation.

Clearly the variables and attributes are translated as in condition 1, and there
are no explicit constraints in this fragment, so soundness condition 2 holds. For
condition 3, consider the base operation ADD C (x, v1, . . ., vn).

T (ADD C (x, v1, . . ., vn)) = ADDC (x, v1, . . ., vn)

as the translation on values is identity. We first show [ op (par list) ] R ⇒ [ T (op)
(T (par list) ) ] R Assume, for predicate R the antecedent holds:

[ADD C (x, v1, . . ., vn)]R
=∃C′, a′1, . . . , a

′
n·(R′ ∧PREC(op C (par list) )∧ prdC(op C (par list)))

=∃C′, a′1, . . . , a
′
n·(R′ ∧PREC(op C (par list) )∧

(C′=C∪{x}∧ (a′1 = a1 <+ {(x, v1)}))∧ . . .∧ (a′n = an <+ {(x, vn)})

Applying ∃-Elimination with the witnesses: C′=C∪{x}, a′1 =a1 <+ {(x, v1)}, . . . ,
a′n = an <+ {(x, vn)}) results in:

(x ∈ S∧x 6∈ C ∧ v1 ∈ t1 ∧ . . . ∧ vn ∈ tn)∧
[C′:=(C ∪ {x}),a′1:= a1 <+ {(x, v1)}, . . . , a′n:= an <+ {(x, vn)}]R′

Which is the same predicate as:

[ADDC (x, v1, . . ., vn)]R = (x ∈ S ∧ x 6∈ C ∧ v1 ∈ t1 ∧ . . . vn ∈ tn)∧
[C:=(C ∪ {x}), a1:= a1 <+ {(x, v1)}, . . . , an:= an <+ {(x, vn)}]R

The argument can be given in reverse to show [ op (par list) ] R ⇐ [ T (op)
(T (par list) ) ] R. A similar argument holds for the other base constructors.
Thus a base machine is a sound translation of the base operations of a class.
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Note that as a consequence of this proof, the base operations of machine Cbase

must preserve its invariant, which is the translation of class-constraintsC . The
ASSO base operations have been shown to preserve this property, and thus so
do the translated operations. There still remains the proof obligation that the
initialisation establishes the class constraints (invariant) on T (C).

Class Machines. The next stage is to INCLUDE base machines in a class
machine for each class. The operations of this machine are directly translated
from the corresponding ASSO operations. This machine also includes any ex-
plicit constraints on the class, generating the appropriate proof obligations. The
generic class machine is outlined in Figure 3. The base operations of the class
are not exported outside this machine, and thus are not required to satisfy the
explicit invariants on the machine.

MACHINE C class

SEES S

INCLUDES C base

INVARIANT P(C,a1, . . . , an)

OPERATIONS

op1 C . . .

. . .

opk C . . .

opY1 C . . .

. . .

opYp C . . .

END

Figure 3: Prototypical Class Machine

A significant difference between the B method and ASSO is shown by the treat-
ment of implicitly inherited operations [20]. In ASSO, inherited operations which
are not redefined in the subclass are inherited and specialised via the is-a* re-
lationship. However, in B such operations have to be redefined explicitly within
the class machine. Such specialisation can be systematically generated by a syn-
tactic transformation on the operations of the superclass, renaming all instances
of the identifiers of the superclass to that of the subclass. This is given by the
transformation EY,X on operations opY in the superclass Y :

Y −→ X ADDY −→ SKIPX

SKIPY −→ SKIPX CHANGEY −→ SKIPX

REMY −→ REMX opY −→ opX

and recursively through the operation constructors.
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Effectively, we only specialise explicitly those ASSO operations which delete
objects as part of their action. Operations which insert are already explicitly
specialised as a part of the definition of well formed structured database schemas
in ASSO. Operations which modify attributes of the superclass are not well-
defined in the subclass considered in isolation and can be regarded as skip. In
the generic schema in Figure 3, the operations opY1 X, . . ., opYp X represent
the explicitly inherited operations. In Figure 1 above, del.employee would have
to be explicitly defined in the class machine for employee.

Thus the translation of the structured database schema into B is not a compo-
sition of translations of database schemas. Each class machine is the result of
a top-down analysis of the whole hierarchy to generate specialisations of inher-
ited operations. This is reflected in the formal definition of the translation. The
soundness proof is direct.

Definition 3. The class translation is denoted Tclass. If C is-a* C′, the opera-
tions of Tclass(C) are Tclass(OPC) ∪ EC′,C(Tclass(OP′C) ), where OPC are the
operations of C.

Theorem 2. Tclass is sound.

Proof. (Sketch). The class and attribute variables are included via the Tbase rela-
tion, which is sound, and the explicit constraint is directly included in Tclass(C).
The explicitly specialised operations of C, op (par list) are directly translated
into Tclass(C), and using the soundness of the Tbase relation, and the equiva-
lent semantics of generalised substitution constructors in ASSO and B, we must
therefore have that:

[op (par list)] R ⇔ [Tclass(op)(Tclass(par list) ) ] R

If C is a root class we are finished. If C is-a* C′, then by definition of is-a* C has
implicitly inherited and specialised the C′ operation op (par list) op (par list).
By the above definition of Tclass(C), EC′,C(Tclass(op(par list) ) is an operation
on Tclass(C), and, via a recursive analysis of the constructs, the property holds.

The Top-Level Machine. For a complete analysis of class C in B, for each
class, a top-level machine can be constructed, with the implicitly composed oper-
ations given explicitly. These operations are formed by the placing the inherited
operation in parallel with the operation of that class, together with the implicit
constraints generated via the is-a* relation. We give the formal definition of the
translation, Ttop(C).

Definition 4. If C is a root class, then Ttop(C) = Tclass(C). If C is-a* C′, then
Ttop(C) is a B machine formed as follows:
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1. INCLUDE the class machines Tclass(C), and Tclass(C′).
2. Add to the INVARIANT the implicit is-a* constraint.
3. For each operation opC(x, u1, . . . , uj ) in Tclass(C) and opC′(x, v1, . . . , vk )

in Tclass(C′), where x is a common instance identifier variable, form the
combined operation:

op(x, u1, . . . , uj, v1, . . . , vk ) = opC(x, u1, . . . , uj ) ‖ opC′(x, v1, . . . , vk)

Theorem 3. The translation Ttop is sound.

Proof. (Sketch). If C is a root class, then Ttop(C) = Tclass(C), which is sound by
the above theorem. If C is-a* C′, then we need only show part 3 of the definition
of soundness. We can assume that the machines Tclass(C), and Tclass(C′) are
sound. Thus we have for each operation its C and its correspondent in C′:

[op(par list)] R ⇔ [Tclass(op)(Tclass(par list))] R
[op′(par list)] R⇔ [Tclass(op′)(Tclass(par list))] R

Thus we have (omitting par list for clarity)

[op] R ∧ [op′] R ⇔ [Tclass(op)] R ∧ [Tclass(op′)] R

As C and C′ have independent state variables, from [2], §7.1.3, we have that:

[op] R ∧ [op′] R ⇔ [op ‖ op′)] R
[Tclass(op)] R ∧ [Tclass(op′)] R ⇔ [Tclass(op) ‖ Tclass(op′)] R

And we are done.

As the operations have been proven to be correct, then these operations do not
need to be reproven to be consistent by virtue of the structure of ASSO, and it
is unnecessary to generate a top-level machine to establish consistency against
the inherent constraints of the is-a* relation.

4 Refinement in ASSO

ASSO has two complementary forms of refinement:

– Behavioural Refinement. Operations are refined towards implementation by
reducing non-determinism, weakening preconditions, and reducing partiality
of operations. Such a refinement between classes C1, C2 is denoted: C1 ⇐ C2.
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– Data Refinement. ASSO data refinement consists of a stepwise decomposi-
tion of classes organised into a specialisation hierarchy, representing a con-
ceptual schema. A set of smaller specialisation hierarchies is generated step
by step until a set of disjoint classes is obtained, which defines the ASSO
logical schema having separate classes for each intersection class. The ASSO
data refinement uses the Partitioning Method, a recursive algorithm working
on graphs. Such a refinement between classes C1, C2 is denoted: C1 ≡ C2.

To verify an ASSO refinement, the relationship which links the corresponding
consistency proof obligations of any two behaviourally refined schemas must be
logical implication. The relationship which links corresponding consistency proof
obligations before and after partition is logical equivalence. The partitioning
algorithm ensures that this holds without proof.

5 Behavioural Refinement

Behavioural refinement modifies operations, whilst preserving the consistency of
the operations. Thus we can define a behavioural refinement as follows.

Definition 5. Given ASSO operations op1 and op2 where op1 terminates and
satisifies the constraints P (that is P ⇒ [ op1 ]P ) and if op2 terminates and
satisfies P ′ such that: trm(op1) ⊆ trm(op2) ∧ P ⇒ P ′, then we can say that
op2 is a refinement of op1 with respect to P , written op1 ⇐ op2.

We can then use this definition to define refinement of classes.

Definition 6. Given classes C1 and C2 which have the same instances, at-
tributes, application constraints and operation names, then

C1 ⇐ C2 if and only if ∀ opC1∈ C1 · opC1 ⇐ opC2

with respect to the implicit and explicit constraints of C1.

Thus we can prove the refinement of a classes by considering the refinement of
each of its operations in turn (including the implicitly specialised ones). Note
that the similar proposition for B does not hold.

The forms of behavioural refinement above satisfy this definition of refinement.

Theorem 4. Weakening the precondition, reducing partiality, and reducing non-
determinism are all refinements.
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Proof. We assume that we have classes C1, C2 with implicit and explicit con-
straints on C1, P . Then a given opC1 is transformed into opC2 and we show that
opC1 ⇐ opC2 .

Weakening the precondition. If PRE(opC1 ) ⇒ PRE(opC2), then pre(opC1) ⊆
pre(opC2 ). So by definition, trm(opC1) ⊆ trm(opC2). As the substitution of the
operation has not changed, rel(opC1 ) = {trm(opC1)} C rel(opC2) (where C is
domain restriction), P is preserved by opC2 and hence trm(opC1) ⊆ trm(opC2 ∧
P ⇒ P ′ and thus it is a refinement.

Reducing partiality. If trm(opC1) ⊆ trm(opC2), again the operation’s substitution
has not changed, so rel(opC1 ) = {trm(opC1)} C rel(opC2) and P is preserved by
opC2 , hence: trm(opC1) ⊆ trm(opC2) ∧ P ⇒ P ′ and it is a refinement.

Reducing non-determinism. In this case there two properties: pre(opC1) =
pre(opC2 ), hence: trm(opC1) = trm(opC2), and rel(opC2) ⊆ rel(opC1 ) that is the
before-after relation becomes more restricted. Thus for any (s, s′) ∈ rel(opC2 ),
(s, s′) ∈ rel(opC1 ), so P holds and we have a refinement.

class student is-a* person with (matriculation:N

init .student() =̂ student , matriculation := {},{}
new .student(pers) =̂

PRE pers ∈ PERSON − student

THEN ADD student(pers, max(ran(matriculation))+ 1)

END )

Figure 4: A Behavioural Refinement of new. student

ASSO refinement is compositional. That is, in a Structured Database Schema,
if a class is refined, then the whole schema is refined. This is captured in the
following theorem.

Theorem 5. If C1 and C1 are classes, and the Structured Database Schema
C1 is-a* C2 is constructed, where there are no explicit application constraints
between the classes, then the following two properties hold:

i). If C1 ⇐ C′
1 then C1 is-a* C2 ⇐ C′

1 is-a* C2.
ii). If C2 ⇐ C′

2 then C1 is-a* C2 ⇐ C1 is-a* C′
2.

Thus we can say that is-a* is monotonic with respect to refinement.

Proof. (Sketch): i). If C1 ⇐ C′
1 then for any operation op = opC1 ‖ opC2 .

Therefore if opC1 ⇐ opC′
1
, then as S and R have independent variables, we have

opC1 ‖ opC2 ⇐ opC′
1
‖ opC2 . A similar argument holds for ii).
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Thus we can perform modular refinement on ASSO schemas. This too is in
contrast to B where the compositional structures are not in general monotonic
through refinement.

structured database schema

database1

class person−employee of PERSON with ( income:N

constraints ∀ p (p∈person−employee ⇒ income(p)≥ 1000)

init .person−employee() = person, income := {},{}
new .person(pers, i) =̂

PRE pers ∈ PERSON − (person−employee) ∧ i ≥ 1000

THEN

ADD person−employee(pers, i)

END ;
del .person−employee(person) =̂

PRE pers ∈ person−employee

THEN REM person−employee(pers)

END )

class student is-a* person−employee with (matriculation:N

constraints ∀ s1, s2 (s1∈student ∧ s2∈student ∧ s1 6= s2 ⇒
matriculation(s1 ) 6=matriculation(s2 ))

init .student() =̂ student , matriculation := {},{}
new .student(pers) =̂

PRE pers ∈ PERSON − student

THEN

ANY m WHERE m ∈ N ∧ m 6∈ ran(matriculation)

THEN ADD student(pers, m)

END

END )

Figure 5: The first SDBS generated by a partitioning step.

The SDBS in Figure 1 defines the non-deterministic operation new.student; it
selects any new value for the matriculation number which has not been used
before. A more determined version of new.student is given in Figure 4 (constraint
omitted). In this case, the value of the new matriculation is one greater than the
maximum of all the existing matriculation numbers. This new class student1 is a
refinement of student, and thus by Theorem 5, the structured database schema
formed by replacing student with student1 in database is also a refinement.
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5.1 An Example of Data Refinement

The Partitioning algorithm is complex, and its details are omitted here. To
demonstrate its effect, we apply the first step of the partition method to the
example in Figure 1.

structured database schema

database2

class person•employee of PERSON with ( income:N

constraints ∀ p (p∈person•employee ⇒ income(p)≥ 1000)

init .person•employee() = person, income := {},{}
new .person(pers, i) =̂

PRE pers ∈ PERSON − (person•employee) ∧ i ≥ 1000

THEN ADD person•employee(pers, i)

END ;
del .person•employee(person) =̂

PRE pers ∈ person•employee

THEN REM person•employee(pers)

END )

class student is-a* person•employee with (matriculation:N

constraints ∀ s1, s2 (s1∈student ∧ s2∈student ∧ s1 6= s2 ⇒
matriculation(s1 ) 6=matriculation(s2 ))

init .student() =̂ student , matriculation := {},{}
new .student(pers) =̂

PRE pers ∈ PERSON − student

THEN

ANY m WHERE m ∈ N ∧ m 6∈ ran(matriculation)

THEN ADD student(pers, m)

END

END )

Figure 6: The second SDBS generated by a partitioning step.

The initial top-level class person has been decomposed into two: the class dis-
joint from the class employee, producing the SDBS given in Figure 5, and the
intersection class with the class employee generating the structured database
schema given in Figure 6. In this latter, the new class intialisation and con-
straints of employee, and the operations on this class are parallel compositions
of the corresponding operations on the classes person and employee. Each SDBS
also takes a copy of the subclass student implicitly splitting this class between
the two partitions of person. This partitioning can be continued to generate a
logical schema of disjoint classes.
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5.2 The Relationship between the Types of ASSO Refinement

Behavioural refinement and partitioning are not independen t in ASSO; parti-
tioning also modifies operations. Consider a class A with an operation op on one
class instance which we represent as a function on its state op : A → A′. Then if
A is partitioned with respect to a class B, it is divided into two sections: A •B
and A − B. The operation is also partitioned: opA•B : A • B → (A • B)′, and
opA−B : A−B → (A− B)′. These two new operations can be combined into a
new one which refines the original:

op ⇐ opA•B ‖ opA−B

This holds as these operations on the class A do not depend on the values of
B, which may or may not be present in the new classes. Thus partitioning is
well behaved with respect to behavioural refinement for operations that only
access one class instance. However, if more than one class instance is referenced,
problems can occur. Consider the following example. Within the class A we
define the following ASSO operation:

remove either(p, q) =
PRE p ∈ A ∧ q ∈ A
THEN CHOOSE REM A p

OR REM A q
END

END

If A is partitioned with respect to class B, the following two operations result:

remove eitherA•B(p, q) =
PRE p ∈ A•B ∧ q ∈ A•B
THEN CHOOSE REM A•B p

OR REM A•B q
END

END

remove eitherA−B(p, q) =
PRE p ∈ A−B ∧ q ∈ A−B
THEN CHOOSE REM A−B p

OR REM A−B q
END

END

Clearly this does not partition the operation as not all the of the domain has been
covered. The parameters could also satisfy the preconditions: p ∈ A•B∧q ∈ A−B
or p ∈ A−B ∧ q ∈ A •B. Thus there are two other operations which should be
generated to produce a valid partition of the operation.
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remove either1(p, q) =
PRE p ∈ A•B ∧ q ∈ A−B
THEN CHOOSE REM A•B p

OR REM A−B q
END

END

remove either2(p, q) =
PRE p ∈ A−B ∧ q ∈ A•B
THEN CHOOSE REM A−B p

OR REM A•B q
END

END

However, it is unclear to which class these should belong. Clearly they cannot
belong in either class as this would violate the principle that a class’s operations
only access the variables of that class. They should belong in a class encompass-
ing both A • B and A − B; however, adding this class contradicts the goal of
partitioning of separating out all classes into independent classes.

This example demonstrates that partitioning is not in itself a valid behavioural
refinement. However, the following observation offers a solution to this prob-
lem. We observe that both remove eitherA•B and remove eitherA−B can be be-
haviourally refined further, first with a step of reduction of non-determinism,
and then with a weakening of precondition, resulting in the operations:

remove either′A•B(p, q) =
PRE p ∈ A•B
THEN REM A•B p
END

remove either′A−B(p, q) =
PRE p ∈ A−B
THEN REM A−B p
END

Now we have that

remove either(p,q) ⇐ remove either′A•B(p,q) ‖ remove either′A−B(p,q)

T hus we have restored the refinement. This can be done in general due to the
restricted nature of ASSO operation constructors and refinement.

However, we note that in general, even if partitioning is a behavioural refine-
ment, if it is done before other behavioural refinement steps, then the number
of behavioural refinement steps increases. A class divides into one class which
intersects with a given class, and another which intersects with that class’ com-
plement. An operation also divides into two, and will require two behavioural
steps to commute. Thus for efficiency as well as to avoid the above problem,
ASSO defines a process where behavioural refinement is undertaken first, and
partitioning second.
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5.3 The Relationship between ASSO and B Refinement

B refinement supports development into code. Like behavioural refinement in
ASSO this allows the weakening of preconditions, reduction of non-determinism,
and partiality of operations. B also allows programming like constructs such as
loops; these are disallowed in ASSO which remains a high-level design language.
M is refined into machine N if they are related via a coupling condition in the
invariant of N , and each operation in M has a counterpart in N . Proof obli-
gations verify refinement; that of most interest establishes that the behaviour
of the refined operation respects that of the original, within the original’s pre-
condition. Thus if in machine M with invariant I has operation op = PRE P
THEN S END and in machine N , with invariant J which includes a coupling
condition, where op = PRE Q THEN T END, the proof obligation:

P ∧ I ⇒ Q ∧ [T ]¬[S]¬J

establishes the refinement.

To use B’s refinement proofs to support ASSO, we need to show that an ASSO
refinement is a B refinement. Behavioural refinement for ASSO and B are clearly
similar. There is no change in data model, although the values held by attributes
may differ. Thus the coupling condition is that the class members are the same
before and after the refinement.

An ASSO behavioural refinement is a B refinement.

Theorem 6. Given classes C1, C2 and C1 ⇐ C2 in ASSO, then T (C1) ⇐
T (C2) in B

Proof. If we have C1 ⇐ C2 in ASSO, then we have that pairwise opC1 ⇐ opC2 .
We show that T (opC1) ⇐ T (opC2) in B. A definition of refinement of operations
in B is given ([2], §11.1.2) as:

op1 ⇐ op2 ⇔ pre(op1) ⊆ pre(op2) ∧ rel(op2) ⊆ rel(op1)

Now we have seen from the proof of the previous theorem that this holds (modulo
termination range restrictions to termination sets). Thus we have that an ASSO
refinement can be translated into a B refinement.

A step of data refinement partitions each class into two, and also partitions
operations. The coupling constraint in thus that the union of the two partitions
after refinement is the same as the whole class before, i.e. if class C is being
partitioned away from class D, then the coupling condition is: C =(C •D)∪(C−
D). If the union of partitioned operations cover the original operation, in the
case where only one member of the class is accessed in an operation, then the
parallel composition of the two parts of the partitioned operation constitute a B
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refinement of the original operation. Since the partitioning algorithm preserves
the equivalence of the models, refinement proofs in this case are unnecessary.

Thus in both cases ASSO refinement is B refinement, and Theorem 7 follows.

Theorem 7. If SDBS S, represented by B Abstract Machine M , is refined into
a set of Structured Database Schema R , and R is represented by B Abstract
Machine N , then N is a B-refinement of M .

As behavioural refinement of operations is a B refinement, it can be validated
using B tools, through the translation of ASSO schema. Translating an ASSO
refinement into B exploits some properties of the two languages. As in a B
refinement the abstract invariant has to be respected by the refining machine, it
does not need to be repeated. Also we only define the refinement relation between
the top-level machine of each class. For example, the systematic translation of
the behavioural refinement in Figure 4 into B notation and proof using the
B-Toolkit [4] confirms that both student1 is a refinement of student, and also
that the structured database schema database1, formed by replacing student by
student1 in database is indeed a refinement.

6 Conclusions

ASSO is a formal methodology which has advantages for the design of databases
compared to the other formal methods currently used in industrial applications.
The is-a* relationship between structured database schema and the Partitioning
Method are original aspects of both formal methods and the database areas, pro-
viding a higher-level of conceptual design to the database developer, exploiting
the results in conceptual schemas dating back from the late 70s.

The results in this paper give three things:

i. a firm foundation for the development of databases within ASSO in terms
of the semantics of B;

ii. an established proof theory for demonstrating the consistency and correct-
ness of ASSO models;

iii. tools developed to support B which can be used to support ASSO.

The restricted subset of B’s features used by ASSO allow a relationship to be
established in a straighforward manner.

ASSO should also be compared with approaches to Object-Oriented design
within B, for example [9, 10, 12, 13, 22]. ASSO offers a different approach which
in specialisation offers different properties in inheritance of operations. Also, by
considering object-oriented databases with structuring and inheritence, we go
further than the relational approach of specifiying databases in B in [21].
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To progress further with ASSO, including using it on practical problems, it is
proposed to design tools which aid the user to construct an ASSO design, control
its structure, to prove properties, and to move towards an implementation. The
ASSO tools can be based on a part of the B Toolkit, together with new tools,
such as those supporting partitioning. An initial design for these tools, which
integrate with the B-Toolkit, is discussed in [18].

Acknowledgements

This work has been supported by the CNR short-term mobility programme,
1998. The authors would like to thank the chairman of the B track of FM99 and
the anonymous referees for their useful comments and suggestions.

References

[1] S Abiteboul, R Hull and V Vianu: Foundations of Databases, Addison-Wesley,
1995.

[2] J-R Abrial: The B-Book: Assigning Programs to Meaning, Cambridge University
Press, 1996.

[3] R Andolina and E. Locuratolo: ASSO: behavioral specialisation modelling. In:
Jaakkola H (ed) Information Modelling and Knowledge Bases VIII, IOS Press,
1997.

[4] B-Core (UK) Ltd. The B-Toolkit Welcome page URL <http://www.b-core.com>
[5] N. Bhalla: Object-oriented data models: a perspective and comparative review,

Journal of Information Science, 1991.
[6] D. Castelli, and E. Locuratolo: A Formal Notation for Database Conceptual

Schema Specifications. Information Modelling and Knowledge Bases VI, Jaakkola,
H. (ed), IOS Press, 1994.

[7] D. Castelli and E. Locuratolo: ASSO - A formal database design methodology In
Jaakkola H (ed) Information Modelling and Knowledge Bases VI, IOS Press, 1995.

[8] E W Dijkstra., and S Scholten: Predicate Calculus and Program Semantics,
Springer-Verlag, 1990.

[9] P Facon, R Laleau and H P Nguyen: Mapping object diagrams into B specifica-
tions. In Bryant A, Semmens L T (eds) proceedings of the Methods Integration
Workshop, Leeds, UK, Springer-Verlag, 1996

[10] P Facon, R Laleau and H P Nguyen: Dèrivation de spècification formelles B à
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