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Abstract. In this paper, we study the B-Method in the light of the the-
ory of refinement calculus. It allows us to explain the proof obligations
for a refinement component in terms of standard data refinement. A sec-
ond result is an improvement of the architectural condition of [PR98],
ensuring global correctness of a B software system using the sees prim-
itive.

1 Introduction

The B-Method ([Abr96]) is a methodology for formal software development. It
has industrial tools (B-toolkit, Atelier B) and has been successfully applied to
the Mtor system, equipping the new line of subway in Paris ([Met]).

It is well known that the refinement theory of the B-Method is based on
weakest precondition semantics ([Dij76]). However, curiously, no attempt has
be made to establish a formal link between the theory of B, as exposed in the
B-Book, and the now standard theory of refinement calculus. The primary goal
of this paper is a study of this relationship.

Refinement calculus was first investigated by Back ([Ba78]), and further in-
dependently rediscovered by Morgan ([Mo88]) and Morris ([Mor87]). A good
starting point to the subject is [BW98]. Its aim is to formalize the development
of programs by stepwise refinement ([Wi71]). By removing the healthiness con-
ditions of [Dij76] (which are necessary for an executable program), a continuum
is obtained between specifications and programs. Indeed, specifications are pro-
grams (and programs are specifications). The theory is now mature; potential
applications in the B-Method are discussed in the conclusion of this paper.

Our paper is organized as follows. Section 2 introduces the refinement cal-
culus, defining the notions of predicate transformers and refinement, and the
standard notion of data refinement. Section 3 presents another notion of data
refinement. It is called data refinement through an invariant. It is this notion
which is used in the B-Method, for the proof obligations of a refinement compo-
nent. The relationship between the two notions of data refinement is established.
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Section 4 describes the primitive language of substitutions of the B-Method. Sub-
stitutions are interpreted in terms of predicate transformers. Section 5 describes
the notion of refinement in the B-Method, and relates it to standard data refine-
ment. This section ends up with an example of valid data refinement, which is
not expressible within the B-Method. Section 6 begins with an example showing
that the sees primitive of the B-Method can break the global correctness of a B-
software. Using our analysis of the B-Method in terms of the refinement calculus,
we exhibit an architectural condition ensuring global correctness. This analysis
corrects and extends the work done in [PR98]. Finally, Section 7 concludes this
work, by giving some directions of future work.

2 Predicate Transformers

Refinement calculus can be modelized using set transformers, or, equivalently,
using predicate transformers. We choose the second model, because it explicitly
deals with variables, which will be useful when dealing with common variables.
This section is taken from [Wri94] and [BW90]. It reminds the main results and
fixes the notation for the sequel.

2.1 States, Predicates, Commands, and Refinement

In programs, each variable x is associated with a set of values Dx. For any set
of variables v, a state is a function mapping every x in v to some value in Dx,
and the state space Σv is the set of states on v.

A predicate on v is a function from Σv to Bool , where Bool = {ff , tt} is
the ordered (with the order ff < tt) set of boolean values. Predv, the predicate
space on v, is the complete boolean lattice of predicates on v, with the implication
order ≤: P ≤ Q holds iff P ⇒ Q holds universally (false is the bottom element
and true is the top element).

A predicate on v can be extended to a predicate on v, w by adding new
variables w. In this paper, we do not use explicit notation for this change of view.
Substitutions [d/v] in Σv are extended to Predv in the usual way. If Q ∈ Predu,v,
the renaming of v by w in Q, Q[w/v], denotes the equivalent predicate in Predu,w.

∧
i∈I Qi =

∧{Qi · i ∈ I} and
∨

i∈I Qi =
∨{Qi · i ∈ I}

are respectively the meet and the join of the family (Qi)i∈I . Quantified predicates
are defined as follows:

∀v · P =
∧

d∈Dv
P [d/v] and ∃v · P =

∨
d∈Dv

P [d/v].

A predicate transformer is a monotonic function from predicates to predicates.
Mtranu→v is the complete lattice of predicate transformers from Predv to Predu

([Wri94] denotes it Mtranu←v). A predicate transformer S ∈ Mtranu→v is iden-
tified with a command which executes from an initial state in Σu and, if it
terminates, which gives a state in Σv (this is the weakest precondition approach,
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due to [Dij76]). In this paper, we shall indifferently use the terms command and
predicate transformer.

For commands S ∈ Mtranu→v and T ∈ Mtranv→w, sequential composition
S; T ∈ Mtranu→w is such that (S; T )(Q) = S(T (Q)).

For each lattice Mtranu→v, commands magic and abort are top and bottom
elements: magic(Q) = true and abort(Q) = false. For Mtranu→u, skip is the
identity command: skip(Q) = Q.

For two commands S, T ∈ Mtranu→v, the refinement order S ≤ T holds iff
S(Q) ≤ T (Q) holds for all Q ∈ Predv.

2.2 Properties of Commands

Let S ∈ Mtranu→v be a command, P , Q be predicates on v, and (Qi)i∈I be a
non-empty family of predicates on v. We have:

1. monotonicity: P ≤ Q ⇒ S(P ) ≤ S(Q)
2. and-distributivity: S(

∧
i∈I Qi) ≤

∧
i∈I S(Qi)

3. or-distributivity:
∨

i∈I S(Qi) ≤ S(
∨

i∈I Qi)

The following definitions are standard:

1. S is non-miraculous if S(false) = false
2. S is always terminating if S(true) = true
3. S is conjunctive if S(

∧
i∈I Qi) =

∧
i∈I S(Qi)

4. S is disjunctive if S(
∨

i∈I Qi) =
∨

i∈I S(Qi)

For instance, substitutions in the B-Method are conjunctive commands. See
[BW92] for a study of sublanguages and their relationship.

2.3 Adjoint Commands

Let S ∈ Mtranu→v be an always terminating disjunctive command. Then there
exists a unique always terminating conjunctive command Sr ∈ Mtranv→u such
that S; Sr ≤ skip and skip ≤ Sr; S. Sr is the right adjoint of S. Dually, for each
always terminating conjunctive command S ∈ Mtranu→v, there exists a unique
always terminating disjunctive command Sl ∈ Mtranv→u such that Sl; S ≤ skip
and skip ≤ S; Sl. We have:

Sr(P ) =
∨{Q · S(Q) ≤ P} and Sl(P ) =

∧{Q · P ≤ S(Q)}

Let R be a relation R(u, v) and let α, β be commands such that ∀Q on v, α(Q) =
∃v · (R ∧Q) and ∀Q′ on u, β(Q′) = ∀u · (R ⇒ Q′). Then we have: αr = β and
βl = α.
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2.4 Data Refinement

Data refinement is like refinement, with a supplementary change of variable
space. The following definition is now standard; [GM93] (where it is called cosim-
ulation) proved that it is a complete method when refining modules. The identi-
fiers a, c, g stand respectively for the set of abstract, concrete and global variables
(supposed distinct).

Let S ∈ Mtrana,g→a,g, T ∈ Mtranc,g→c,g, and α ∈ Mtranc,g→a,g be com-
mands, then S ≤α T (S is refined by T through α, see Fig. 1) iff α; S ≤ T ; α.

Σa, g - Σa, gS

Σc, g - Σc, gT

6
α

6
α

Fig. 1. S ≤α T iff α; S ≤ T ; α.

Various command constructors are monotonic through ≤α. In particular,
if S1 ≤α T1 and S2 ≤α T2 then S1; S2 ≤α T1; T2.

Another property is transitivity: if S1 ≤α S2 and S2 ≤β S3 then S1 ≤β;α S3.
An important case of data refinement is forward data refinement. It occurs when
α(Q) = ∃a · (R ∧Q), where R is a predicate on a, c, g, so we have:

S ≤α T iff ∀c, g · (∃a · (R ∧ S(Q)) ⇒ T (∃a · (R ∧Q))) for all Q ∈ Preda,g

that is: ∀a, c, g · (R∧S(Q) ⇒ T (∃a · (R∧Q))). In the case of forward data refine-
ment, the four conditions of Fig. 2 are equivalent (they correspond to previous
definitions of data refinement).

(1) α; S ≤ T ;α

(2) α; S; αr ≤ T

(3) S; αr ≤ αr; T

(4) S ≤ αr; T ; α

Σa, g - Σa, gS

Σc, g - Σc, gT

6
α

?

αr

6
α

?

αr

Fig. 2. Equivalent definitions of forward data refinement.

Forward data refinement is incomplete, but it suffices for most practical cases.
As we shall see, refinement in the B-Method is based on forward data refinement,
and its exposure in the B-Book uses the third condition of Fig. 2.

We end this section with the notion of abstraction lattice. Let R be a relation
R(a, c, g) such that ∀c, g · ∃a · R. The set of commands α such that:
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∀a · (R ⇒ Q) ≤ α(Q) ≤ ∃a · (R ∧Q)
is a complete non-empty lattice, called the abstraction lattice for (a, c, R). It is
a singleton iff R is functional.

Now S is data refined by T through R, S ≤R T , if there exists a command
α in the abstraction lattice such that S ≤α T . If α(Q) = ∀a · (R ⇒ Q), data
refinement is called backward data refinement. An example of backward data
refinement is given in Section 5.

3 Another Formulation of Data Refinement

In this section, we consider another formulation of data refinement, due to
[GP85]. We call it data refinement through an invariant. It is also used in the
B-Method. The equivalence of forward data refinement and data refinement
through an invariant is proved in [CU89], for conjunctive commands with no
common variables. We restate this proof, dealing with non-conjunctive com-
mands, and allowing common variables. Forward data refinement is the “right”
definition and data refinement through an invariant is an “operational” one,
more adequate for use in theorem provers.

3.1 Extension of a Command

Like the B-Method, [GP85] and [CU89] deal with formulae transformers, which
can be seen as “generic” predicate transformers, able to work with any variable
space. We reformulate their works with commands, so we must be able to “ex-
tend” the set of variables involved in a command. This operation looks like the
“embed” operator of [BB98].

First, we note that if Q is a predicate on v, w, we can find two families (wi)i∈I

and (Qi)i∈I , such that:

1.
⋃

i∈I{wi} ⊆ Dw,
2. each Qi is a predicate on v (it may be false),
3. Q can be written as Q =

∨
i∈I(Qi ∧ w = wi).

Definition 1. Let S ∈ Mtranu→v be a command and w be a set of variables,
distinct from v. Sw ∈ Mtranu,w→v,w is called the extension of S to the context
w, and is defined as follows: Sw(Q) =

∨
i∈I(S(Qi) ∧ w = wi).

Property 1. Let S ∈ Mtranu→v be a command, w be a set of variables, distinct
from v, P be a predicate on v, w and Q be a predicate on w. Then:

1. S(∀w · P ) ≤ ∀w.Sw(P ).
2. S(∀w · P ) = ∀w.Sw(P ) if S is conjunctive.
3. Sw(Q) = S(true) ∧Q.
4. Sw(P ∨Q) = Sw(P ) ∨ (S(true) ∧Q).
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Proof.

1. We write P =
∨

i∈Dw
(Pi ∧ w = i).

S(∀w · P ) = S(
∧

d∈Dw
P [d/w]) definition of quantifiers

≤ ∧
d∈Dw

S(P [d/w]) and-distributivity

=
∧

d∈Dw
S((

∨
i∈Dw

(Pi ∧w = i))[d/w]) definition of P

=
∧

d∈Dw
S(Pd) calculus

=
∧

d∈Dw
(
∨

i∈Dw
(S(Pi) ∧ w = i))[d/w]

=
∧

d∈Dw
Sw(P )[d/w] definition of Sw

= ∀w · Sw(P ) definition of quantifiers
2. Since S is conjunctive, the inequality in the demonstration above becomes

an equality.
3. Q can be written as Q = (

∨
j∈J w = wj) =

∨
j∈J (true ∧ w = wj).

Sw(Q) =
∨

j∈J (S(true) ∧ w = wj) definition of Q

= S(true) ∧∨
j∈J w = wj factorisation

= S(true) ∧Q definition of Q

4. P =
∨

i∈I(Pi ∧ w = wi) and Q = (
∨

j∈J w = wj) =
∨

j∈J (true ∧ w = wj).
So P ∨Q =

∨
k∈K(Rk ∧ w = wk), where:

(a) K = I + J = {(0, i) · i ∈ I} ∪ {(1, j) · j ∈ J}
i.e. K is the disjoint union of I and J ;

(b) if k = (0, i) then wk = wi and Rk = Pi;
(c) if k = (1, j) then wk = wj and Rk = true.
Sw(P ∨Q) =

∨
k∈K(S(Rk) ∧ w = wk)

=
∨

i∈I(S(Pi) ∧ w = wi) ∨
∨

j∈J (S(true) ∧ w = wj)

= Sw(P ) ∨ (S(true) ∧Q)

3.2 Data Refinement through an Invariant

Definition 2. Let a, c be disjoint sets of variables, S ∈ Mtrana→a and T ∈
Mtranc→c be commands and I be a predicate I(a, c). We denote by S ≤I T the
fact that S is data refined by T through I. Then

S ≤I T iff I ∧ S(true) ⇒ Ta(¬Sc(¬I)).

This definition must be adapted when common variables occur:

Definition 3. Let a, c, g be disjoint sets of variables, S ∈ Mtrana,g→a,g and
T ∈ Mtranc,g→c,g be commands, and I be a predicate I(a, c, g).

S ≤I T iff I ∧ g = g′ ∧ S(true) ⇒ T ′a,g(¬Sc,g′(¬(I ∧ g = g′))

where g′ are fresh variables (i.e. new and different from a, c, g) and T ′ ∈
Mtranc,g′→c,g′ is such that T ′(Q) = T (Q[g/g′])[g′/g].

For instance, let Dg = Dg′ = N, S(Q) = Q[g + 1/g], T (Q) = Q[g + 1/g], and
I = true. For simplicity, we assume that sets a and c are empty.
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1. Sc,g′(¬(I ∧ g = g′)) = Sc,g′(
∨

d∈Dg′ (g 6= d ∧ g′ = d))

=
∨

d∈Dg′ (S(g 6= d) ∧ g′ = d)

=
∨

d∈Dg′ (g + 1 6= d ∧ g′ = d) = (g + 1 6= g′).
2. So ¬Sc,g′(¬(I ∧ g = g′)) = (g + 1 = g′) =

∨
d∈Dg

(d + 1 = g′ ∧ g = d).

3. T ′a,g(¬Sc,g′(¬(I ∧ g = g′)) =
∨

d∈Dg
(T ′(d+1=g′)∧g=d)

=
∨

d∈Dg
(T (d+1=g)[g′/g]∧g=d)

=
∨

d∈Dg
((d+1=g + 1)[g′/g]∧g=d)

=
∨

d∈Dg
(d+1=g′ + 1∧g=d)=(g+1=g′+1)

3.3 Equivalence of Data Refinement Definitions

Property 2. Let u, v be disjoint sets of variables, S ∈ Mtranu→u be a com-
mand, Q1 be a predicate on u, v and Q2 be a predicate on v. Then:

∀u · S(∀v · (Q1 ⇒ Q2)) ≤ ∀u, v · (¬Sv(¬Q1) ⇒ Q2)

Proof.

∀u · S(∀v · (Q1 ⇒ Q2)) ≤ ∀u, v · Sv(Q1 ⇒ Q2) property 1.1

= ∀u, v · Sv(¬Q1 ∨Q2)

= ∀u, v · (Sv(¬Q1) ∨ (S(true) ∧Q2)) property 1.4

= ∀u, v · (¬Sv(¬Q1) ⇒ S(true) ∧Q2)

≤ ∀u, v · (¬Sv(¬Q1) ⇒ Q2)

Property 3. Let a, c be disjoint sets of variables, S ∈ Mtrana→a and T ∈
Mtranc→c be commands, I be a predicate on a, c, and α ∈ Mtranc→a be
α(Q) = ∃a · (I ∧Q). Then S ≤I T ⇒ S ≤α T .

Proof. Let Q be a predicate on c.

1. ∀a, c · (I ∧ S(∀c · (I ⇒ Q))) ≤ ∀a, c · S(∀c · (I ⇒ Q)) predicate calculus

≤ ∀a, c · (¬Sc(¬I) ⇒ Q) property 2

≤ ∀a, c · (Ta(¬Sc(¬I)) ⇒ Ta(Q)) monotonicity
2. Assume S ≤I T , that is ∀a, c · (I ∧ S(true) ⇒ Ta(¬Sc(¬I))). So we have to

prove S ≤α T . Because α has the right form, we may use the second of the
four equivalent formulations of forward data refinement: α; S; αr ≤ T , that
is: ∀a, c · (I ∧ S(∀c · (I ⇒ Q)) ⇒ T (Q)).

3. Given a, c, assume I ∧ S(∀c · (I ⇒ Q).
4. ∀c ·(I ⇒ Q) ⇒ true, so S(true) holds by monotonicity, so does Ta(¬Sc(¬I)).
5. Using step 1, Ta(Q) holds.
6. Ta(Q) = T (Q), because Q is a predicate on c.

Property 4. Let a, c be disjoint sets of variables, S ∈ Mtrana→a and T ∈
Mtranc→c be commands, I be a predicate on a, c, and α ∈ Mtranc→a be
α(Q) = ∃a · (I ∧Q). If S is conjunctive then S ≤α T ⇒ S ≤I T .
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Proof (the idea of P1 and P2 comes from [CU89]). Assume S ≤α T : for any
a, c such that I ∧ S(true), we have to prove Ta(¬Sc(¬I)). Let a0 ∈ Da, P1 =
¬Sc(¬I)[a0/a] and P2 = ∀c · (I ⇒ P1).

1. S(P2) = ∀c · Sc(I ⇒ P1) property 1.2

= ∀c · Sc(¬I ∨ P1) predicate calculus

= ∀c · (Sc(¬I) ∨ (S(true) ∧ P1)) property 1.4
2. Using predicate calculus:

S(P2)[a0/a] = (∀c · (Sc(¬I) ∨ (S(true) ∧ P1)))[a0/a]

= ∀c · (Sc(¬I)[a0/a] ∨ (S(true)[a0/a] ∧ P1[a0/a]))

= ∀c · (Sc(¬I)[a0/a] ∨ (S(true)[a0/a] ∧ ¬Sc(¬I)[a0/a]))

= ∀c · (Sc(¬I)[a0/a] ∨ S(true)[a0/a])

= (∀c · (Sc(¬I) ∨ S(true)))[a0/a]
So S(P2) = ∀c · (Sc(¬I) ∨ S(true)).

3. We have S(true) ⇒ S(P2), so I∧S(true) ⇒ I∧S(P2). Hence T (∃a ·(I∧P2))
because S ≤α T .

4. Given any c, let a be such that I∧P2 holds; we have I∧P2 = I∧∀c·(I ⇒ P1),
so I ⇒ P1, so P1 holds. Hence ∀c · (∃a · (I ∧ P2) ⇒ ¬Sc(¬I)[ao/a]).

5. By monotonicity, ∀c · (T (∃a · (I ∧ P2)) ⇒ T (¬Sc(¬I)[ao/a])).
6. We have: T (∃a · (I ∧ P2)) = T (∃a · (I ∧ P2))[a0/a]

and T (¬Sc(¬I)[a0/a]) = Ta(¬Sc(¬I))[a0/a].
So T (∃a · (I ∧ P2))[a0/a] ⇒ Ta(¬Sc(¬I))[a0/a],
hence: T (∃a · (I ∧ P2)) ⇒ Ta(¬Sc(¬I)).

7. Finally, Ta(¬Sc(¬I)) holds.

Property 4 does not hold for non-conjunctive commands. For example, let Da =
Dc = N, S(Q) = Q[1/a] ∨ Q[2/a], T (Q) = Q[1/c] ∨ Q[2/c], and I = (a = c).
Then α(Q) = ∃a · (a = c ∧Q) = Q[c/a] and S ≤α T holds.
But Ta(¬Sc(¬I)) = Ta(¬((1 6= c) ∨ (2 6= c))) = Ta(false) = false.

Theorem 1. Let a, c, g be disjoint sets of variables, S ∈ Mtrana,g→a,g and T ∈
Mtranc,g→c,g be commands, I be a predicate on a, c, g, and α ∈ Mtranc,g→a,g be
α(Q) = ∃a · (I ∧Q). Then:

(1) S ≤I T ⇒ S ≤α T

(2) S ≤I T ⇔ S ≤α T if S is conjunctive

Proof. Let g′ be fresh variables, T ′ ∈ Mtranc,g′→c,g′ be a command such that
T ′(Q) = T (Q[g/g′])[g′/g], and β ∈ Mtranc,g′→c,g be β(Q) = ∃g · (g = g′ ∧Q) =
Q[g′/g]. So β; α ∈ Mtranc,g′→a,g.
1. We have : T ′; β(Q) = T ′(Q[g′/g]) = T (Q[g′/g][g/g′])[g′/g] = T (Q)[g′/g] =

β; T (Q). So β; T = T ′; β and T ≤β T ′.
2. By transitivity: S ≤β;α T ′ ⇔ S ≤α T
3. But β; α(Q) = ∃g · (g = g′ ∧ ∃a · (I ∧Q)) = ∃a, g · (I ∧ g = g′ ∧Q).
4. Now the results hold by applying properties 3 and 4 with S, T ′, I ∧ g = g′

and β; α (the variable spaces are disjoint).
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4 The Language of Substitutions

In this section, we present the substitutions of the B-Method, and we interpret
them as commands.

The primitive language of substitutions is given in Fig. 3, where x is a list of
variables, E is a list of expressions, P is a formula, S and T are substitutions.
Substitutions have a formula transformer semantics. Let Q be a formula and
S be a substitution: [S]Q is the weakest precondition establishing Q. For the
unbounded choice substitution, we assume that Q has no free occurrence of x
(otherwise, a renaming can be done). The B-Book, page 287, establishes that
substitutions are monotonic (through implication) and conjunctive.

S [S]Q name of substitution U(S) M(S)

skip Q do nothing ∅ ∅
x := E Q[E/x] simple Var(E) {x}
P | S P ∧ [S]Q precondition Var(P ) ∪ U(S) M(S)

S [] T [S]Q ∧ [T ]Q bounded choice U(S) ∪ U(T ) M(S) ∪M(T )

P =⇒ S P ⇒ [S]Q guard Var(P ) ∪ U(S) M(S)

@x · S ∀x · [S]Q unbounded choice U(S)− {x} M(S) − {x}

Fig. 3. Definition of substitutions; used and modified variables.

Let Var(E) and Var(P ) be the sets of free variables of an expression E and of a
formula P . In Fig. 3, U(S) is the set of used variables in the substitution S and
M(S) is the set of modified variables.

Now, let Var(S) = U(S) ∪ M(S). First, we note that the notation [S]Q
can be reused for a predicate Q ∈ PredVar(S), because the involved operators
in formulae have homolog ones in predicates. So a substitution S is obviously
interpreted as a predicate transformer [[S]] in MtranVar(S)→Var(S): [[S]](Q) = [S]Q
for all Q ∈ PredVar(S).

In practice, there are many other substitutions involved in B-components
(machine, refinement, implementation) with another (verbose) syntax. However,
all these substitutions are reducible to the primitive language of substitutions.
For instance, the substitution pre P then S end is equivalent to P | S. More-
over, these substitutions are used under the context of the variables v of the
B-component. For such substitutions S, we must consider their extension [[S]]w,
where w = v −Var(S).

Some substitution constructors (for instance, the parallel operator “‖” and
the sequence operator “;”) are indirectly defined, using the normalized form
theorem1: any substitution S can be written as:

1 Its demonstration in the B-Book is flawed, but it can be easily repaired, by explicitly
dealing with the set of involved variables.
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S = trm(S) | @v′ · (prdv(S) =⇒ v := v′)
where v = Var(S), v′ are fresh variables, trm(S) = [S](v = v) (it is [[S]](true)),
and prdv(S) = ¬[S](v′ 6= v). So, it suffices to define a substitution by giving
its trm and prd, with the requirement: ¬ trm(S) ⇒ prdv(S), where S is the
newly defined substitution and v = Var(S) (see [Du97, Du99]; see also property
6.4.1, page 297 of the B-Book). For instance, for the parallel operator2, we have:
trm(S‖T ) = trm(S) ∧ trm(T ), and prdv,w(S‖T ) = (trm(S) ∧ trm(T ) ⇒ prdv(S) ∧
prdw(T )), where v = Var(S) and w = Var(T ) are disjoint sets of variables.

5 Refinement in the B-Method

In this section, we describe the notion of refinement, as defined in the B-Book,
and we relate it to the results of Section 3.

5.1 Refinement Component and Proof Obligations.

A refinement component is defined as a differential to be added to a component.
A refinement component can have proper variables which are linked to variables
of the refined component by a gluing invariant. Moreover, refined operations
must be stated on the new variables.

machine
M1

variables
v1

invariant
L1

initialisation
U1

operations
op =

pre
P1

then
S1

end
end

refinement
R2

refines
M1

variables
v2

invariant
L2

initialisation
U2

operations
op =

pre
P2

then
S2

end
end

machine
M2

variables
v2

invariant
∃v1.(L1 ∧ L2)

initialisation
U2

operations
op =

pre
P2 ∧
∃v1.(L1 ∧ L2 ∧ P1)

then
S2

end
end

Fig. 4. Refinement R2 of M1, seen as an independent machine M2.

2 We use the definition of [Du97].
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The proof obligations for machine M1 of Fig. 4 are:

1. Initialisation: [U1]L1

2. Operation op: L1 ∧ P1 ⇒ [S1]L1

The proof obligations for refinement R2 of Fig. 4 are, provided that there are no
common variables (B-Book, p. 530):

1. Initialisation: [U2]¬[U1]¬L2

2. Operation op: L1 ∧ L2 ∧ P1 ⇒ P2 ∧ [S2]¬[S1]¬L2

In the most general case, there is a chain of refinements M1, R2, . . . , Rn to be
considered. The proof obligation for an operation of Rn is, provided that M1

and its refinements have no common variables:

L1 ∧ L2 ∧ . . . ∧ Ln ∧ P1 ∧ . . . ∧ Pn−1 ⇒ Pn ∧ [Sn]¬[Sn−1]¬Ln .

5.2 Refinement in B and Data Refinement

In the B-Book, the theory of refinement is presented in a set-transformer fashion.
Then sufficient conditions of previous subsections are established. To do that,
Abrial introduces a “substitution” W (the quotation marks come from the B-
Book, pages 513 and 517): let a and c be the sets of abstract and concrete
variables, supposed distinct, with corresponding sets of values Da, Dc, and let
R be a total relation from Dc to Da (i.e ∀c∃a ·R(c, a)); then str(W )(q) = R[q],
for all q ⊆ Dc (in fact, Abrial defines W in a context of “external” variables,
then drops them, page 519 ; we decided to directly present W without those
variables).

W is not a true substitution, because initial and final state spaces are distinct.
But it corresponds to a command [[W ]] ∈ Mtrana→c: [[W ]](Q) = ∀c · (R ⇒ Q)
for all Q ∈ Predc. So, [[W ]] is the right adjoint of the command α ∈ Mtranc→a:
α(Q) = ∃a · (R ∧ Q), for all Q ∈ Preda. Hence, refinement in B is forward
data refinement, and its presentation in the B-Book follows the third of the four
equivalent formulations: S ≤α T ⇔ S; αr ≤ αr; T .

Page 528, Property 11.2.5 shows that data refinement through an invariant
implies forward data refinement. So, the proof obligations of the B-Method cor-
respond to data refinement through an invariant. They are simpler, because it
is assumed that the refined component is already proved (see Property 11.2.3,
page 526 of the B-Book).

5.3 A Data Refinement Inexpressible in the B-Method

The example of Fig. 5 is taken from [GM93].
In machine M1, variable I2 determines how many times the operation incr is

active (in [GM93], I2 is called a prophecy variable). Machine M1 is data refined
by machine M2, through the command α:

α(Q) = ∀I2 · ((B2 = true ⇒ I2 = 0) ∧ I1 + I2 ≤ 10 ⇒ Q)
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machine
M1

variables
I1, I2

invariant
I1 ∈ 0..10 ∧ I2 ∈ 0..10

initialisation
I1 := 0 || I2 :∈ 0..10

operations
incr =

if
I2 6= 0

then
I1, I2 := I1 + 1, I2 − 1

end
end

machine
M2

variables
I1, B2

invariant
I1 ∈ 0..10 ∧ B2 ∈ BOOL

initialisation
I1 := 0 || B2 :∈ BOOL

operations
incr =

choice
if

B2 = false ∧ I1 < 10
then

I1 := I1 + 1
end

or
B2 := true

end
end

Fig. 5. A backward data refinement.

This is a backward data refinement ([Wri94]): the non-deterministic choice in
the initialisation of I2 in M1 is made later in M2 (it is done in the operation
incr).

This data refinement cannot be established in the B-Method, where only
forward data refinement is allowed.

6 The sees Primitive

In this section, we exhibit an example of an incorrect B software system, where
all components are locally correct. The problem relies upon a misuse of the
composition primitives imports and sees. We show that those primitives can
cause aliasings between variables. Unsoundness of the construction can be de-
termined at the command interpretation level. Then, we exhibit an architectural
condition, ensuring global correctness.

First, the semantics of imports and sees primitives of the B-Method are
reminded :

– The imports primitive links implementations to abstract machines, and is
used to build the state of a machine on to the state of imported machines.
This primitive does not introduce sharing, so it allows to build a layered
software.
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– The sees primitive allows the sharing of an abstract machine. This primitive
can be used in a machine, a refinement or an implementation. Variables
of a seen machine can only be consulted, and must not be modified by
the seeing components. Notice that a sees primitive must be preserved in
a development: if a machine is seen at a given level, it must be seen in
subsequent refinements.

In [PR98], we exhibited an architectural condition, ensuring global correctness
of a B software system, when sees occurrences are only in implementations. We
extend this work, dealing with sees occurrences at all levels.

6.1 An Example

The example given in Fig. 7 exhibits an architecture (Fig. 6) which is incorrect, in
the sense that local proofs of correctness do not guarantee global correctness (this
example was accepted by Atelier B [AtB], up to version 3.2: proof obligations
discharged and architecture not rejected). Note that the conclusion is identical
if machines A2 and A3 are seen by the implementation of A1 instead of being
imported.

A1/AI1

A3

@
@
@R

i

A2/AI2

�
�
�	

i

A4

@
@
@R

i �
�
�	

s

Fig. 6. Architecture of the example.

All machines and implementations are locally correct. But, the effective code
of the operation Op1 (Fig. 8) can be built by replacement, as defined for the
meaning of the operation call (B-Book page 314-316 and 556), and extended for
passing through a chain of refinements in [PR98]. In this case, the substitution
reduces to rr := false, what is obviously incorrect.

6.2 An Aliasing Problem

In this subsection, we go back to monotonicity through ≤α, as explained in
Section 2. We show that the lack of global correctness of a B software system
using sees primitive occurs because monotonicity cannot be applied.

Let C〈X〉 be a command, built by using X and some monotonic (through≤α)
command constructors, where X is a variable denoting an unknown command.
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machine
A1

operations
rr ← Op1 = rr := true

end

implementation
AI1

refines
A1

imports
A2, A3

operations
rr ← Op1 =

var V1, V2 in
V1 ← Val3 ; Op2 ;
V2 ← Val3 ;
rr := bool(V1=V2)

end
end

machine
A2

operations
Op2 = skip

end

machine
A3

sees
A4

operations
rr ← Val3 = rr ← Val4

end

implementation
AI2

refines
A2

imports
A4

operations
Op2 = Mod4

end

machine
A4

variables
X4

invariant
X4 ∈ 0..1

initialisation
X4 := 0

operations
rr ← Val4 = rr := X4 ;
Mod4 = X4 := 1 - X4

end

Fig. 7. A complete example
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rr ← Op1 =
var V1, V2 in

V1 := X4 ; X4 := 1-X4 ; V2 := X4 ;
rr := bool(V1=V2)

end

Fig. 8. Code of the Op1 operation

We assume that X ∈ Mtrana→a and that C ranges over variables g, distinct
from a, so C〈X〉 ∈ Mtrana,g→a,g. Hence X must be extended to Xg to be used
in C. For instance, C〈X〉 = [1/g]; Xg, so that C〈X〉(Q) = Xg(Q)[1/g].

Let S ∈ Mtrana→a, T ∈ Mtranc→c and α ∈ Mtranc→a be commands, such
that a, c, g are distinct and S ≤α T holds. Obviously, Sg ≤αg Tg, so, by mono-
tonicity: C〈S〉 ≤αg C〈T 〉.

Now, let S ∈ Mtrana→a, T ∈ Mtranc,g→c,g and α ∈ Mtranc,g→a be com-
mands, such that S ≤α T . For instance, S = skip, T = [2/g], and α = [c/a]. In
this case, there is no refinement relation between the extended predicate trans-
formers: Sg 6≤αg Tg, and monotonicity cannot be applied3. As counterexample,
we have: C〈S〉 = [1/g]; skip = [1/g], and C〈T 〉 = [1/g]; [2/g] = [2/g].

Σa - ΣaS

Σc, g - Σc, gT

6
α

6
α

Σa, g - Σa, g
C〈S〉

Σc, g - Σc, g
C〈T 〉

6
?

6
?

Fig. 9. An aliasing problem: concrete variable g occurs in the context C〈X〉.

So the problem clearly comes from an aliasing between the variables of the
using context of a command and the concrete variables of its refinement (see
Fig.9).

We can now explain the example in the light of this analysis: in implemen-
tation AI1, the operation Op2 of machine A2 is used in the context X4, because
AI1 imports A3, which sees A4 (where X4 is defined). In the implementation AI2,
the concrete variable is X4, because AI2 imports A4; hence, an alias occurs.

Prohibiting this aliasing phenomenon by rejecting every aliasing architecture
would be a too drastic solution. Such an architecture is globally correct if we
can ensure that, when an aliasing phenomenon appears, the refined operation
does not modify the global variables. In terms of commands: let S ∈ Mtrana→a,
3 In [PR98], monotonicity was mistakenly applied.
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T ∈ Mtranc,g→c,g and α ∈ Mtranc,g→a be commands, such that S ≤α T . Let
C〈X〉 ∈ Mtrana,g→a,g be a command constructor.

If for all Q ∈ Predg and for all d ∈ Dg, T (Q[d/g]) = T (Q)[d/g],
then Sg ≤αg Tg, so C〈S〉 ≤αg C〈T 〉.

Applying this condition to the B-Method can be done either by a fine analysis of
operations, or by simply ensuring, by architectural restrictions, that the refined
operations cannot modify global variables. In the following, we investigate the
latter approach.

6.3 Dependency Relations

Definition 4.

1. C1 s M2 iff the component C1 (a machine, a refinement or an implementa-
tion) sees the machine M2.

2. M1 sees M2 iff the implementation of M1 sees the machine M2.
3. M1 imports M2 iff the implementation of M1 imports the machine M2.
4. M1 uses M2 iff the implementation of M1 sees or imports M2:

uses = sees ∪ imports .
5. M1 depends on M2 iff the implementation of M1 is built by using M2:

depends on = uses+.
6. M1 can consult M2 iff the implementation of M1 can consult the variables of

the code of M2:
can consult = (uses∗; sees).

7. M1 can alter M2 iff the implementation of M1 can modify the variables of
the code of M2:

can alter = (uses∗; imports).

Relational notation is the one of the B-Method: transitive closure (+), reflexive
and transitive closure (∗) and composition (;).

6.4 Framework Hypotheses

Our analysis is based on the following assumptions, stated in the B-Book:

1. The dependency graph has no cycle: depends on ∩ id = ∅, where id is the
identity relation.

2. If a machine M sees a machine N , refinements of M must see N : s ⊆ sees.
3. A machine is imported only once: imports−1 is a (partial) function.
4. An implementation cannot see and import the same machine:

sees ∩ imports = ∅.
5. Variables of two distinct components (at clause variables) are distinct. So

common variables in components can only occur when a sees primitive is
used. Moreover, in a refinement chain, a variable cannot disappear, then
reappear at a lower level.

6. If a component C sees a machine N , variables of N cannot be referenced in
the invariant of C, and only consulting operations of N can be called in C.
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6.5 Ensuring Monotonicity

Let M1 be an abstract machine, and let I1 be its implementation.

1. Assume I1 imports a machine M2. Since a machine can be imported only
once, variables of M2 cannot be modified elsewhere: this case is safe.

2. Assume I1 sees M2 (this case covers the case when M1 sees M2). To ensure
that variables of M2 are not modified elsewhere, it suffices to have:

can alter ∩ sees = ∅.
3. A similar analysis can be done when M2 is indirectly seen by I1. For example,

I1 sees or imports a machine M3, which sees M2 (a longer chain of sees
between M3 and M2 may be allowed). In this case, I1 may call an operation
of M3 which consults a variable of M2. To ensure that the variable cannot
be modified elsewhere:

can alter ∩ (uses ; sees+) = ∅.
4. These two cases are treated by the condition:

can alter ∩ ((imports ; sees+) ∪ (sees+)) = ∅.
5. This condition is too restrictive in the special case where global correctness

is a consequence of local correctness: when the modification of the variable
is explicit in the operation. For example, I1 imports M3 which sees M1 (the
chain of sees may be longer), and I1 also imports M1. In this case, local
proof obligations cannot be satisfied. So it suffices to consider:

(uses ; can alter ) ∩ ((imports ; sees+) ∪ (sees+)) = ∅.
6. We now analyse the fact that variables of a seen machine cannot appear in

the invariant of the seeing component. For example, in the architecture of
Fig. 10, machine B4 is only seen in the implementation BI3 of B3. Variables
of B3 are necessarily independent of variables of B4, so they cannot be
modified by an operation of B2. So the condition becomes:

(uses ; can alter ) ∩ ((imports ; s+) ∪ (sees ; s∗) = ∅.

B1/BI1

B3/BI3

@
@
@R

s

B2/BI2

�
�
�	

i

B4

@
@
@R

i �
�
�	

s

Fig. 10. A correct architecture (sees are only in implementations).

So the sufficient architectural condition ensuring global correctness is:

(uses; can alter) ∩ ((imports ; s+) ∪ (sees ; s∗)) = ∅
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6.6 Simplifying Architectural Condition

Architectural condition can be reduced, if we use the following hypothesis, which
is not stated in the B-Book:

If a machine M is indirectly seen through a chain of sees primitives
from a component C, possibly via an imports primitive, then M must
be directly in the scope of a sees or imports primitive in C.

Using dependency relations, this hypothesis becomes:

1. For a machine or a refinement: s+ ⊆ s ,
2. For an implementation: s+ ⊆ s ∪ imports ,
3. imports ; s+ ⊆ sees ∪ imports .

This hypothesis is consistent with the non-transitivity of the sees primitive. It
imposes that each variable which can appear in a proof obligation of a component
C is in the direct scope of its definition. With this hypothesis, architectural
condition can be simplified, because chains of sees primitives no more need to
be considered. We have:

1. imports ; s+ ⊆ sees ∪ imports .
2. sees ; s∗ = sees∪sees ; s+ ⊆ sees ; s∪sees ; imports ⊆ sees ∪ imports ∪sees ; im-

ports.
3. So architectural condition is ensured by:

(uses ; can alter) ∩ (sees ∪ imports ∪ sees ; imports) = ∅.
4. Because a machine is imported only once, (uses; can alter) ∩ (imports ∪

sees ; imports) = ∅, so condition becomes: (uses ; can alter) ∩ sees = ∅.
5. Because can alter = imports ∪ (uses; can alter) and imports ∩ sees = ∅

(an implementation cannot see and import the same machine), we have:
(uses ; can alter) ∩ sees = can alter ∩ sees .

In consequence, architectural condition becomes:

can alter ∩ sees = ∅

7 Conclusion

We have studied the B-Method in the light of the refinement calculus. The main
results are:

1. an explanation of the proof obligations of a B-refinement in terms of standard
refinement (this is Theorem 1);

2. an explanation of the sees problem ([PR98]) in terms of abusive use of
monotonicity, in presence of aliasing;

3. a sufficient architectural condition ensuring global correctness of a B-software.
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An immediate perspective would be the definition of a sharing primitive, allow-
ing several machines to see and modify the same machine. To be useful, variables
of shared machines should be allowed in invariants of sharing components, so we
should enforce the architectural condition. It is probable that this architectural
condition would be too restrictive, so a fine analysis of operations would be nec-
essary, to precisely know where the variables are modified.

We think that our kind of investigation is useful for studying evolution of
the B-Method, because known results of refinement calculus can be directly
applied, and current research can be a food for thought. The following list is not
exhaustive:

1. New substitution constructors could be defined, using the results of [BB98]
(the authors note that the B parallel operator ‖ is equivalent to their derived
product, for conjunctive commands). In [BPR96], we introduced a ⊗ opera-
tor, extending ‖ when variables are shared; it looks like the fusion operator
of [BB98].

2. Object-oriented extension could be studied, in the light of [MS97].
3. A current research in B is its application to distributed systems ([AM98]).

A comparative study with action systems ([BK83], referenced in [AM98])
would be useful. This work has already begun ([BuW96], [WS96]).

Acknowledgment

We thank Pierre Berlioux for his careful reading of Section 3 and for useful
suggestions.

References

[Abr96] J-R. Abrial, The B-Book, Cambridge University Press, 1996.
[AM98] J-R. Abrial, L. Mussat, Introducing Dynamic Constraints in B, In Second

B International Conference, D. Bert editor, LNCS 1393, 83–128, Springer,
1998.

[AtB] Steria Méditerranée, Le Langage B. Manuel de référence version 1.5 , S.A.V.
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