
Bunches for Object-Oriented, Concurrent,
and Real-Time Specification

Richard F. Paige1 and Eric C.R. Hehner2

1 Dept. of Computer Science, York University, Canada
paige@cs.yorku.ca

2 Dept. of Computer Science, University of Toronto, Canada
hehner@cs.utoronto.ca

Abstract. We show how a collection of object-oriented concepts can be directly
expressed in predicative programming [6]. We demonstrate how these features
can be used in cooperation with the existing real-time and concurrency features of
predicative programming in several examples, thus providing a simple integration
of object-orientation, real-time, and concurrency.

1 Introduction

Formal methods—like Object-Z [3], VDM++ [7], and others—have been developed
for rigorously specifying and proving properties about object-oriented (OO) systems.
Similarly, methods have been developed for specifying and reasoning about real-time
and concurrent systems, e.g., CSP, CCS, and the various real-time refinement calculi.
There has been much recent interest in integrating these different paradigms. Work on
combining CSP and Object-Z [13], Timed CSP and Object-Z (TCOZ) [8], VDM++
(which integrates VDM with concepts from Ada and process algebras), has aimed at
producing notations that combine OO, concurrent, and real-time features.

The thesis of this paper is that integrating notations is not necessary to be able to
write specifications that combine OO, real-time, and concurrency. We justify this claim
by showing how predicative programming [6] and its type system can be used, without
modification, for specifying and reasoning about simple OO systems. This would not
be a particularly novel contribution by itself. However, predicative programming cur-
rently provides a wealth of support for real-time, concurrency, and communication. By
showing how the method can also be used for OO, we can immediately begin to use
OO with real-time, concurrency, and communication techniques.

Our aim in this paper is to introduce predicative programming and to show how
it can be used without modification to specify and reason about a collection of OO
concepts in cooperation with its existing real-time and concurrent features. We do not
intend to extend or generalize existing OO theories, e.g., those from [1]. Instead, we
show how to use predicative notation to specify a core collection of object-oriented
techniques, like classes, inheritance, redefinition, and dynamic binding, and show how
these features can be used with concurrency and real-time.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. I, LNCS 1708, pp. 530–550, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Bunches for Object-Oriented, Concurrent, and Real-Time Specification 531

1.1 The Paper

We commence with an overview of predicative programming [6]. We summarize the
predicative type system, which is based on bunches [5], and which will be used to spec-
ify OO concepts. We then show how to specify classes and class interfaces, single and
multiple inheritance, and explain how to deal with redefinition of feature semantics un-
der inheritance. Section 4 contains examples that demonstrate the techniques, including
examples that integrate OO and real-time, as well as OO and concurrency. Finally, in
Section 5, we discuss limitations, and suggest directions for future work.

2 Predicative Programming

Predicative programming [6] is a program design calculus in which programs are speci-
fications. In this approach, programs and specifications are predicates on pre- and post-
state (as in Z, final values of variables are annotated with a prime; initial values of
variables are undecorated). The weakest predicate specification is > (“true”), and the
strongest specification is ⊥ (“false”). Refinement is just boolean implication.

Definition 1. A specification P on prestate σ and poststate σ′ is refined by a specifica-
tion Q if ∀σ, σ′ · (P ⇐ Q).

The refinement relation enjoys various properties that allow specifications to be
refined by parts, steps, and cases. As well, specifications can be combined using the
familiar operators of boolean theory, along with all the usual program combinators, as
well as combinators for parallelism and communication through channels.

Predicative programming can be used to specify objects and classes. To do so, we
need to introduce the predicative notation for types, namely bunches.

2.1 Bunches and Types

Bunches were introduced in [5], and are used in [6] as a type system. They are applied in
[11] in formalizing selected static diagrams of UML. A bunch is a collection of values,
and can be written as in this example: 2, 3, 5. A bunch consisting of a single element
is identical to the element. Some bunches are worth naming, such as null (the empty
bunch), nat (the natural numbers), int (the integers), real (the bunch of reals), char (the
bunch of characters) and so on. More interesting bunches can be written with the aid of
the solution quantifier §, pronounced “those”, as in the example §i : int · i2 = 4. The
colon, :, is the subbunch operator; in general, A : B is a boolean expression saying that
A is a subbunch of B. For example,

2 : nat nat : int

We use the asymmetric notation m, ..n for §i : int ·m ≤ i < n.
Bunches can be used as the contents of sets, as in

{2, 3, 5} {§i : int · i2 = 4}

532 Richard F. Paige and Eric C.R. Hehner

though we might choose not to write § in the latter example. Bunches can also be used
as a type system, as in the declaration var x : nat (perhaps with restrictions for easy
implementation). Any bunch, including the empty bunch null, can be used as a type.
For example, the declaration var x : 1 says that x can take on one value, 1.

Bunches can also be used in arithmetic expressions, where the arithmetic operators
distribute over bunch union (comma):

nat = 0, nat + 1

We write functions in a standard way, as in the example λ n : nat · n + 1. Function
application is by juxtaposing the function name and its arguments, e.g., f x. The domain
of a function is obtained by the ∆ operator. If the function body does not use its variable,
we may write just the domain and body with an arrow between. For example, 2 → 3 is
a function that maps 2 to 3, which we could have written λ n : 2 · 3 with n unused.

When the domain of a function is an initial segment of the natural numbers, we
sometimes use a list notation, as in [3; 5; 2; 5]. The empty list is [nil] (nil without
square parentheses is the empty string). We also use the asymmetric notation [m; ..n] for
a list of integers starting with m and ending before n. List length is #, and catenation is
+ (raised plus). A list of characters, such as “abc” can be written within quotes.

All functions we use in this paper apply to elements, and thus application of a func-
tion f distributes over bunch union, i.e.,

f null = null f (A, B) = f A, f B

A union of functions applied to an argument gives the union of the results, i.e., (f , g) x =
fx, gx. A function f is included in a function g according to the function inclusion law.

(f : g) = ((∆g : ∆f) ∧ (∀ x : ∆g · fx : gx))

Thus we can prove (f : A → B) = ((A : ∆f) ∧ (∀ a : A · fa : B)). Using inclusion both
ways round, we find function equality is as usual.

(f = g) = ((∆f = ∆g) ∧ (∀ x : ∆f · fx = gx))

list T consists of all lists with items of type T. By defining list as list = λ T : ∆list ·
0, ..#(list T) → T, list T can be used as a type.

The selective union f | g of functions f and g is a function that behaves like f when
applied to an argument in the domain of f , and otherwise behaves like g. It is similar to
Z’s function extension.

∆(f | g) = ∆f , ∆g

(f | g)x = if x : ∆f then f x else g x

One of the uses of selective union is to write a selective list update. For example, if
L = [2; 5; 3; 4] then 2 → 6 | L = [2; 5; 6; 4]. Another use is to create a record
structure. Define PERSON as follows.

PERSON = “name” → list char | “age” → nat

Bunches for Object-Oriented, Concurrent, and Real-Time Specification 533

Declare variable p of type PERSON and assign p as follows.

p := “name” → “Smith” | “age” → 33

We can access the name field of p by dereferencing: p“name”.

2.2 Functional Refinement

A refinement relation can also be applied to functions. A function P is refined by a func-
tion S if and only if all results that are satisfactory according to S are also satisfactory
according to P. Formally, this is just bunch inclusion, S : P. When writing refinements,
we prefer to write the problem, P, on the left, and the solution, S, on the right. Thus, we
write P :· S (informally read as “P is refined by S”), which means S : P.

2.3 Real-Time and Concurrency

Predicative programming is well-suited to specifying and reasoning about real-time,
concurrent, and communicating systems. To talk about time, a time variable t is used;
the theory need not be changed at all. The interpretation of t as time is justified by
how it is used. t is used as the initial time (where execution starts), and t′ for final time
(where execution ends). To allow for nontermination, the domain of time is a number
system extended with an infinite number∞. The number system can be naturals, reals,
et cetera. The following example says that the final value of variable h should be the in-
dex of the first occurrence of x in list L, and that any program satisfying the specification
must provide an execution time that is linear in the length of L.

(¬ x : L(0, ..h′) ∧ (Lh′ = x ∨ h′ = #L)) ∧ t′ ≤ t + #L

Predicative programming includes notations for concurrent specification and for com-
munication. We will not use the communication notations explicitly herein, but we will
use concurrency; we direct the reader to [6] for details on communication.

The independent composition operator ‖ applied to specifications P and Q is de-
fined so that P ‖ Q (pronounced “P parallel Q”) is satisfied by a machine that behaves
according to P and at the same time, in parallel, according to Q. The formal meaning
of ‖ is as follows. Let the variables used by P and Q be denoted by σ (σ may be any
number of variables, but it does not include t).

P ‖ Q = ∃σP, σQ, tP, tQ ·
P[σP/σ′, tP/t′] ∧ Q[σQ, tQ/σ′, t′] ∧
(σP = σ ⇒ σ′ = σQ) ∧ (σQ = σ ⇒ σ′ = σP) ∧ t′ = max tP tQ

(P[a/b] means “substitute a for b in P”.) Informally, if P leaves a variable unchanged,
then Q determines the final value, while if Q leaves a value unchanged, P determines
its final value. If both processes change the value, then the final value is undetermined
(unless the processes agree on the final value).

We define ‖i:0,..k P(i) to be P(0) ‖ . . . ‖ P(k − 1) for any specification P on i.

534 Richard F. Paige and Eric C.R. Hehner

3 Using Bunches for Object-Oriented Concepts

We now outline how bunches and predicative notation can be used to specify a core
collection of OO concepts, including classes, objects, features, inheritance, and redefi-
nition of feature semantics. Our intent is not to present a new OO theory; rather, it is a
step towards being able to use OO, real-time, and concurrency together.

3.1 Specifying Classes and Objects

Several different definitions of the notion of a class have been presented in the literature.
The definition of a class that we use is adapted from [9].

Definition 2. A class is an abstract data type equipped with a possibly partial be-
havioural specification.

A class consists of a number of features, which are attributes (representing state) or
routines (representing computations). Routines may be further subdivided into func-
tions (which return a value) and procedures (which can change state). No routine is
both function and procedure. A class specification has three parts:

– a class interface, which declares all the attributes and functions of the class and
gives their signatures (our convention is that class interface names end in Int).

– a class definition, which defines all the functions (our convention is that class defi-
nitions will always be in upper case).

– zero or more procedure definitions.

A separation of a class into interface and definition is useful, because it lets us define
inheritance in terms of each (the concepts coincide when the interface possesses no
functions). Note that our notion of interface is more general than that in Java, since
we allow attributes in an interface, and the definition of some, but not necessarily all,
functions. In this last respect, our notion of interface is closer to the Eiffel concept of
deferred class [9].

We illustrate these mechanisms with a simple example: a stack of integers. The stack
has one attribute, contents, which is a list of integers. It also has three routines, push,
pop, and top. The interface specification of the stack, StackInt, declares the attributes
and functions, and gives their signatures.

StackInt = “contents”→ list int | “top” → int

A specific behavior is required for the parameterless function top. The definition of top
is given in terms of contents, and is specified in the class definition STACK. (In the
definition, recall that s“top” is the record dereference syntax.)

STACK = §s : StackInt · s“top” = s“contents”(#s“contents”− 1) (1)

STACK is the bunch of all elements of StackInt that satisfy the definition of top: top is
the last element of the list contents. (We could, in fact, write a generic STACK class, by
replacing the int type for elements by a generic parameter T.)

For procedures we use a different approach, which is described in Section 3.2. In
the interim, we turn to objects, which are instances of classes.

Bunches for Object-Oriented, Concurrent, and Real-Time Specification 535

Definition 3. An object is a variable with a class definition for its type.

To declare an object of class STACK, we can write var s : STACK, and can access
the contents field of object s by dereferencing s, written s“contents”. A dereferenced
field may be any function or attribute. To assign a value to field contents, we just carry
out a record field assignment, written either as s“contents” := value, or (as a selective
union), as s := “contents” → value | s. This approach does not support any notion of
information hiding; visibility of features is enforced only by specifier discipline.

3.2 Specifying Procedures

The formalization of classes is sufficient for specifying attributes and functions of
classes, but is insufficient for capturing procedures, i.e., routines that change the state
of an invoking object.

Each procedure of a class is a predicative function that takes an instance of the class
as argument, and returns a changed, new instance of the class. Suppose f is to be a
procedure of class C. We define a (possibly nondeterministic) function f : C → C. To
use f applied to an object c of class C, we write c.f which is sugar for the assignment
c := f (c). The syntax c.f allows specifiers to use procedures in a syntax similar to
what is found in languages like C++ or Java. This function does not have side effects;
it maintains the command/query separation suggested in [9].

Returning to the stack example, the procedure pop would be specified as

pop = λ s : STACK · “contents”→ s“contents”[0; ..#s“contents”− 1] | s

The method to push integer x to a STACK s is

push = λ s : STACK · λ x : int · “contents” → s“contents”+[x] | s

push can be used by writing s.push(x), which is sugar for s := push s x. After a push
or a pop has been applied to a stack s, the value of function s“top” will have changed.
The definition of s“top” will not change, only its value.

3.3 Implementation

The preceding formalization of classes and objects is straightforward to structurally
transform into an object-oriented programming language, e.g., Eiffel. A class definition
T can be transformed into an Eiffel class T. Attributes are transformed into objects that
are features of the class; for example, array contents of class STACK could be mapped
to an instance of class ARRAY in Eiffel. Function definitions are transformed into bodies
of functions in Eiffel; for example, the function definition of top, given in equation (1),
can be easily transliterated into the following Eiffel function of class STACK.

top : INTEGER is do
result := current.contents.item(contents.upper-1)

end

536 Richard F. Paige and Eric C.R. Hehner

References to the bound variable s in (1) are replaced with references to the current
object, current, in the Eiffel program. In general, a simple transliteration of predica-
tive specification to Eiffel program will not be possible, thus refinement may have to
take place beforehand.

Functions on objects in predicative notation can be transliterated into procedures of
a class; explicit reference in the function to the object that is passed as an argument
can be replaced by explicit reference to the current object. For example, push could be
transliterated into the following Eiffel procedure (append is a feature of class ARRAY).

push(x:INTEGER) is do
current.contents.append(x)

end

3.4 Single and Multiple Inheritance

We now give a brief overview of inheritance in predicative programming. There are
many different definitions and types of inheritance, e.g., see [1, 9]. The definition we use
in this paper is one of subtyping: if a (child) class B inherits from a (parent) class C, then
B can be used everywhere C can be used. We take this approach predominantly because
we want to ensure behavioral compatibility between classes related by inheritance.

It is straightforward to determine if a class definition B is derived from class defini-
tion C. Since each class is just a type, we can apply bunch inclusion notation directly.

Rule 1 [Inheritance Relation] Class B inherits from class C if B : C.

This rule is valid if there are functions in the class definitions; we just apply func-
tion inclusion. When applying function inclusion, we must take care with function do-
mains and ranges: functions are anti-monotonic in their domains, and monotonic in
their ranges (see Section 2.1: function inclusion).

We also need to show how to build one class from another using inheritance. Sin-
gle class inheritance is expressed in predicative notation by merging the definition or
interface of the parent class with any new features that the child class will provide; this
produces a definition or interface for the child class.

Definition 4. Let C be a class definition or interface. If class B singly inherits C, then

B = “b1” → T1 | . . . | “bi” → Ti | . . . | “bk” → Tk | C

where the bj are attribute names and T1 through Tk are bunches.

By definition, B : C, because every value satisfactory to B is also satisfactory to C.
In other words, class C includes all its extensions. This last fact is an artifact of the
axiomatic definition of bunches in [6].

The names of attributes and functions of C and b1, .., bk can coincide. If bi is also
the name of an attribute of C, then the attribute in C will be replaced by new attribute
bi in B. In order to maintain the subbunch relation of Rule 1, constraints must be placed
on the types of the replacements. If a bi overrides an attribute in C, then the type of the

Bunches for Object-Oriented, Concurrent, and Real-Time Specification 537

new attribute must be a subbunch of the original. This is the contravariant rule [9]. A
discussion of the limitations and advantages of contravariance is in [9].

An implication of using selective union to specify inheritance is that in class hi-
erarchies, the order in which features appear in class definitions or interfaces matters.
Consider B, above: if C had appeared before all the new features bi, then the features
in C could override the new features – which is probably not what the specifier in-
tended. To get around this complication, we follow the convention that, when using
single inheritance, the parent class will always appear last in the child class interface
or definition. Most OO programming languages enforce this by syntactic means. (We
discuss the effect ordering of parent classes will have on multiple inheritance shortly).

Procedures of a parent class are inherited by a child class in the following sense. If
there is a procedure f : C → C, and class B inherits from C, then f can be applied to
objects of class B, and type correctness is guaranteed on the use of f , because B : C.
Therefore, f can be specialized for the methods of class B. New procedures can also be
added to child classes. However, arbitrary procedure addition is not possible, because
new procedures may falsify constraints specified in a parent class. Thus a new non-
vacuous procedure h (i.e., a procedure that does not map everything to the empty bunch)
of child class C that inherits from parent B must guarantee, for all c : C, that h(c) : B.

3.4.1 Overriding and Redefinition We have defined inheritance in terms of selective
union, which allows us to override features of a parent class in a child class. In partic-
ular, it lets us give different definitions to functions in child classes than are present
in parent classes; this allows us to specify a kind of redefinition. In a class definition,
functions can always be redefined (as is the case with Java and Eiffel, but not C++).

Let C be a class definition with function f : T, and possibly some more attributes.
Let BInt inherit from C. By construction, BInt : C. Redefine function f in the class
definition B as follows.

B = §b : BInt · (b“f” = body)

where body is a subbunch of T. Function f in B can therefore have a definition body
different from that given to f in the definition of C. There are constraints on the redef-
inition body: a definition for f is inherited from C, say P. In the class definition for B,
function f is being further constrained. Thus, the new constraint that b“f” = body is
effectively being conjoined with the original constraint P from class C. Thus, whatever
new definition of f is provided must not contradict the original definition. That is, the
specification

b“f” = P ∧ b“f” = body

must be satisfiable; this can be ensured by making body a refinement of the original
definition P. This is akin to the correctness constraints on redefinition in Eiffel [9].

Procedure redefinition can be simulated by overloading procedure names; each in-
stance of the procedure is defined on a different class in a hierarchy. The types of ar-
guments to the procedure dictate the instance of the procedure that is to be used. New
procedures must satisfy the constraints of the parent class.

538 Richard F. Paige and Eric C.R. Hehner

Redefinition allows us to support a form of dynamic binding of functions, where
the instance of a function that is used in a call is dependent on the dynamic type of an
object, rather than its static type. Suppose we have a class A with feature f , and class B
inherits from A and redefines f . Declare a list of instances of A, and an instance of B,
and set element 3 of a to reference b.

var a : list A · var b : B · “3” → b | a

The static type of a(3) is A; its dynamic type is B. A call to a(3)“f” will use the B
version of f .

3.4.2 Multiple Inheritance Multiple inheritance allows a child class to have more
than one parent. It has been suggested as being useful in describing the complex class
relationships that occur in domain modeling, as well as for building reusable object-
oriented libraries. In predicative programming, we can easily adopt the simple yet pow-
erful Eiffel approach to multiple inheritance. We summarize some details here.

Multiple inheritance, in predicative programming, takes two or more parent class
definitions or interfaces, and produces a child class definition or interface (to simplify
the discussion, we will refer only to ‘parent’ and ‘child’ classes, which we allow to
mean class definitions or class interfaces). We first provide a preliminary definition of
multiple inheritance, and then touch on its limitations.

Definition 5. Let C1, .., Ck be classes. If B multiply inherits from C1, .., Ck then

B = C1 | C2 | . . . | Ck

B can also add new features and these new features can override attributes or functions
in any of C1, .., Ck. The restriction on overriding is that the types of the overriding
features must be subtypes of the original features.

3.4.3 Name Clashes Suppose that the name of a feature is declared in two or more
parents, and the parents are multiply inherited. Should there be one or two occurrences
of the shared name in the derived class? Following [9], we can treat this problem syn-
tactically, and use one of two mechanisms to resolve name clashes.

1. Order the base classes in the definition of the derived class, so as to override those
features that we do not want in the derived class. In this way, we can select the
reoccurring feature that we want to inherit in the derived class.
Unlike multiple inheritance in some languages, in predicative programming the
order in which base classes are multiply inherited does matter, and we can use this
to our advantage to resolve name clashes.

2. Apply a renaming to all the commonly named features of the base classes in order
to eliminate name clashes. This approach can be used in Eiffel [9]. An example
is shown in Fig. 1: attribute a is common to both C1 and C2. If we need two
occurrences of the attribute in the derived class D, we rename the occurrences of a
in the definition of D.

Bunches for Object-Oriented, Concurrent, and Real-Time Specification 539

C1 C2

a:A a:B

D

aC1 : A
aC2 : B

rename a to aC1 rename a to aC2

Fig.1. Renaming to avoid name clashes

Renaming in predicative notation is just substitution. The definition of class D,
from Fig. 1 would be D = C1[aC1/a] | C2[aC2/a], where aC1 and aC2 are fresh
names of features. D can add new attributes and functions as necessary. We place
one restriction on the names of new features like aC1: they cannot take on any of
the names that are being changed.
If we rename features to avoid clashes in a child, the child is no longer (provably)
a subtype of its parents. The proof rule for inheritance involving multiple parents
and renaming is therefore slightly more complex.

Rule 2 [Multiple Inheritance Relation] Let D inherit from both classes C1 and
C2, and suppose name a is shared between C1 and C2. D is derived from C1 if
there exists a substitution [a/aC1] such that D[a/aC1] : C1 (and similarly for C2).

Feature renaming must also be applied to the procedures of C1 and C2 that are
inherited by D. If a method f : C1 → C1 uses the attribute a : A and a : B is an
attribute of class C2, then class D must have a new procedure, say Df : D → D,
with definition

Df = f [aC1/a]

Multiple inheritance can be expressed and used in predicative notation, but it is not
always convenient to use the renaming facility to avoid its problems: the specifier must
keep track of all the renamings. For large OO specifications, this will be impractical.
Automated support for keeping track of renamings, e.g., as provided by a compiler, is
essential for this solution to be feasible.

3.4.4 Repeated Inheritance If a class is a descendent of another through two or
more paths, then repeated inheritance has occurred. Under repeated inheritance in bunch
notation, a function or attribute from a common ancestor will yield a single method or
attribute if it is inherited under a single name (this matches the notion of virtual base
class in C++). If a renaming is applied to one or more features, a derived class can
have two or more instances of a feature; [9] gives examples of when this is useful.
The solution that we applied for resolving name clashes can also be used in resolving
repeated inheritance (as is the case with Eiffel).

540 Richard F. Paige and Eric C.R. Hehner

4 Examples

We present several examples of specifying OO systems, as well as combining use of
OO and real-time (via a specification of the gas burner) and OO and concurrency (in a
specification of a solution to the dining philosopher’s problem).

4.1 Sequences and Queues

Our first example simply aims at illustrating the main concepts of the previous sections.
We define a SEQUENCE class, and derive a QUEUE class from it. A sequence consists
of the following features: a list contents of data elements; an add procedure, which
puts an element x at position i of the sequence; a delete procedure, which removes
the element at position i of the sequence; a get function, which returns the element at
position i, or −∞ if there is no element at i; and, an empty function. We first provide
a class interface, SeqInt, where the sequence is to contain integers. SeqInt declares the
attributes plus the signatures of index and empty.

SeqInt = “contents” → list int

| “get” → (nat → int) | “empty” → bool

This interface has two functions, get and empty, which we now define.

SEQUENCE = §s : SeqInt ·
s“empty” = (#s“contents” = 0) ∧
s“get” = (λ i : nat · if i < #s“contents” then s“contents”(i) else −∞)

We next specify the method add. If an addition at index i occurs where an entry exists,
the entry at index i is overwritten with x; otherwise, catenation occurs.

add = λ s : SEQUENCE · λ i : nat · λ x : int ·
if 0 ≤ i < #s“contents” then “contents” → (i → x | s“contents”) | s

else “contents” → (s“contents”+[x]) | s

The delete method is defined as follows: to remove an entry that exists, all following
entries are shifted left by one; otherwise, the sequence is returned unchanged.

delete = λ s : SEQUENCE · λ i : nat ·
if (0 ≤ i < #s“contents”) then

“contents” → (s“contents”[0; ..i]+s“contents”[i + 1; ..#s“contents”]) | s

else s

The then branch of the delete method can be refined using standard predicative tech-
niques. The ability to use standard refinement in developing programs is one benefit
of using predicative programming in specifying object-oriented systems. To refine the
then branch, we introduce a new recursive function, shift, which takes three arguments:

Bunches for Object-Oriented, Concurrent, and Real-Time Specification 541

a sequence s, a pivot element i (everything to the right of i is shifted left one index), and
a counter j. It is recursively defined as follows.

shift = λ s : SEQUENCE · λ i, j : nat ·
if j ≥ #s“contents”− 1 then [nil]
else if j = i then [s“contents”(i + 1)]+shift s i (j + 2)

else [s“contents”(j)]+shift s i (j + 1)

Using the functional refinement laws from [6], it is straightforward to prove that

delete :· λ s : SEQUENCE · λ i : nat · if 0 ≤ i < #s“contents” then shift s i 0 else s

The refined specification is implementable in any language that supports lists and re-
cursion.

SEQUENCE can now be used in constructing a QUEUE class. QUEUE is like a
SEQUENCE, except it is used in FIFO order. We derive a QUEUE class from SE-
QUENCE, adding a new state attribute called cursor, which is an index to the front of
the QUEUE, and a new function called head, which gives the element at the head of the
queue. First we specify the interface of the new class.

QueueInt = “cursor” → 0 | “head” → int | SEQUENCE

To define the function head, we give a class definition for QUEUE.

QUEUE = §q : QueueInt · q“head” = q“get” q“cursor”

head is the value stored in the contents attribute, in entry cursor. It follows immediately
that QUEUE : SEQUENCE (since SEQUENCE includes all its extensions), and so
QUEUE is derived from SEQUENCE.

We now specify the procedures of QUEUE; in doing so, we specialize procedures of
SEQUENCE. There are two: enqueue, which adds an element to the rear of the QUEUE,
and dequeue, which removes the front-most element of the QUEUE. To enqueue an
element, we carry out an add in the last position in the sequence. enqueue changes only
those parts of the queue q that are affected by add.

enqueue = λ q : QUEUE · λ x : int · add q (#q“contents”) x | q

add returns a SEQUENCE, which is part of a QUEUE. The selective union in the body
of enqueue therefore overrides the SEQUENCE fields of q, while not changing the parts
of q that are only defined in QUEUE.

To dequeue an element, we delete the element at position cursor.

dequeue = λ q : QUEUE · delete q (q“cursor”) | q

4.2 Quadrilaterals

The quadrilaterals example is described in [15]; it is used to compare several different
object-oriented methods based on Z. The example requires specifying different sorts of
quadrilaterals which may be used in a drawing system.

542 Richard F. Paige and Eric C.R. Hehner

The shapes of interest in the system are: a quadrilateral, the general four-sided
figure; a parallelogram, a quadrilateral that has parallel opposite sides; a rhombus, a
parallelogram with identical-length sides; a rectangle, which is a parallelogram with
perpendicular sides; and, a square, which is both a rectangle and a rhombus.

We assume the existence of a class VECTOR. The usual vector operations, such
as addition, are available. VECTOR also has a zero. The edges of a four-sided figure
are defined first as a list, EdgesInt = (0, ..4) → VECTOR. Then, a class definition is
provided, ensuring that the edges form a closed figure.

EDGES = §e : EdgesInt · (e0 + e1 + e2 + e3 = 0)

A quadrilateral class consists of edges and a position vector, the latter intended to be
used in drawing the quadrilateral on the screen. The class definition of QUAD is

QUAD = “edges” → EDGES | “pos” → VECTOR

The class hierarchy in the quadrilateral system is depicted in Fig. 2, using BON nota-
tion. Each ellipse represents a class in the system, while directed edges indicate inher-
itance relationships. Inheritance will be defined predominantly on interfaces (though
there are many other ways to use inheritance to specify this system).

QUAD

ParInt

RhomInt RectInt

SquareInt

Fig.2. The class hierarchy

We construct the classes in the system by inheritance. In the process, we add a func-
tion angle to each class, where angle is the angle between edge 0 and 1. The hierarchy
is described by first specifying class interfaces. Then, class definitions are provided,
which give further details on constraints specific to each class.

ParInt = “angle” → real | QUAD

RhomInt = ParInt

RectInt = ParInt

SquareInt = RhomInt | RectInt

Renaming of attributes from ParInt in SquareInt and RhomInt does not have to be done,
since we need only one occurrence of each of ParInt’s attributes. In SquareInt, it is

Bunches for Object-Oriented, Concurrent, and Real-Time Specification 543

expressed that a square is both a rectangle and a rhombus. However, since both RectInt
and RhomInt have the same class interface, their merge simplifies to ParInt.

The derivation hierarchy states that a parallelogram is a quadrilateral, a rhombus is
a parallelogram, et cetera. But there are extra constraints associated with these special-
case quadrilaterals—e.g., that a rectangle is a parallelogram with perpendicular sides.
These constraints can be placed in the class definitions.

SQUARE = §s : SquareInt · IsSquare(s“edges”)∧ s“angle” = π/2
RECTANGLE = §r : RectInt · IsRect(r“edges”) ∧ r“angle” = π/2

RHOMBUS = §r : RhomInt · IsRhom(r“edges”)∧ r“angle” = cos−1(. . .)
PARALLELOGRAM = §p : ParInt · IsPar(p“edges”) ∧ p“angle” = cos−1(. . .)

We omit the full definitions of the angle methods of RHOMBUS and PARALLELOGRAM
(they are in [15]). IsRect is true if and only if the list of edges forms a rectangle (· in the
body of IsRect is dot product.)

IsRect = λ e : EDGES · (e0 · e1 = 0 ∧ e0 + e2 = 0)

The predicates IsSquare, IsPar, and IsRhom are similar. We next define a procedure to
translate a quadrilateral’s position by a vector.

TranslateQuad = λ q : QUAD · λ v : VECTOR · “pos” → q“pos” + v | q

To build a translation procedure on rhombi, for example, we specialize TranslateQuad.

TranslateRhom = λ r : RHOMBUS · λ v : VECTOR · TranslateQuad r v | r

The generic quadrilateral initialization method is as follows. It can be reused in the
initializers of the other classes.

InitQuad = λ q : QUAD · λ e : EDGES · λ v : VECTOR · “edges” → e | “pos” → v | q

4.3 A real-Time Example: Gas Burner

The gas burner problem has been treated by many researchers [14]. The problem is
to specify the control of a gas burner. The inputs of the burner come from a sensor, a
thermometer, and a thermostat. The inputs are:

– a real temp, indicating the actual temperature,
– a real desired, indicating the desired temperature,
– a boolean flame, indicating whether there is a flame.

The outputs of the burner are

– gas, which is set to on if the gas is on, or to off if the gas is off,
– spark, which maintains the gas and causes a spark for the purposes of ignition.

544 Richard F. Paige and Eric C.R. Hehner

Heat is wanted when the actual temperature falls ε below the desired temperature, and
is not wanted when the actual temperature rises ε above the desired temperature. ε is
small enough to be unnoticeable, but large enough to prevent rapid oscillation.

To obtain heat, the spark should be applied to the gas for at least 1 second (to give
it a chance to ignite and to allow the flame to become stable). A safety regulation states
that the gas must not remain on and unlit for more than 3 seconds. Another regulation
states that when the gas is shut off, it must not be turned on again for at least 20 seconds
to allow any accumulated gas to clear. And finally, the gas burner must respond to its
inputs within 1 second.

We formulate an object-oriented, real-time specification. Thus, we will need to talk
about time. As discussed in Section 2.3, to talk about time, global time variables are in-
troduced and are manipulated. In a pure OO specification, there are no global variables.
In order to talk about real-time, we therefore formulate a simple class definition, TIME,
which will be used to represent the passage of time over the lifetime of an object. TIME
has one attribute, t, of type real.

TIME = “t” → real

(TIME can be used to introduce a local clock. To introduce a system clock, TIME can
be inherited by the root class in our system, from which computation will begin.) We
also specify, implicitly, a function addtime, which will be used to describe a nondeter-
ministic increase in time. addtime takes three real numbers r1, r2, r3, as parameters, and
satisfies the following property.

r1 + r2 ≤ addtime r1 r2 r3 ≤ r1 + r3

The similar specification takeone, which takes one real number r1 as a parameter, will
be used to specify a nondeterministic increase in time of at most one second.

r1 < takeone r1 < r1 + 1

The gas burner will be specified as a class. We begin by specifying its interface, giving
the names of the attributes and functions local to the class.

BurnerInt = “temp” → real | “desired” → real |
“flame” → bool | “spark” → bool | “gas” → status |
“cold” → bool | “hot” → bool | TIME

In its interface, the burner inherits from TIME. The bunch status is status = on, off .
Now, we can define the functions of the class.

BURNER = §b : BurnerInt ·
b“cold” = (b“temp” < b“desired”− ε) ∧
b“hot” = (b“temp” ≥ b“desired” + ε ∧ b“flame”)

This completes the specification of the burner’s attributes and functions. Now we spec-
ify its procedures.

gas on = λ b : BURNER · “gas” → on | b

gas off = λ b : BURNER · “gas” → off | b

Bunches for Object-Oriented, Concurrent, and Real-Time Specification 545

gas on and gas off are used to turn the gas on or off, on request. The next two proce-
dures, ignite and cutoff , are responsible for igniting the spark of the burner (leaving it
on for between 1 and 3 seconds) and for turning the spark off.

ignite = λ b : BURNER · “spark” → > | “t” → (addtime b“t” 1 3) | b

cutoff = λ b : BURNER · “spark” → ⊥ | b

Finally, the procedure wait causes the burner to wait for 20 to 21 seconds.

wait = λ b : BURNER · “t” → (addtime b“t” 20 21) | b

The behaviour of the burner system can now be specified as two procedures, too hot
and too cold. too cold tests if the temperature is too cold; if it is, the gas is turned
on, and the spark is ignited for at most three seconds, then it is cut off, and the test is
repeated; if it is not too cold, one unit of time is taken, and then the test is repeated.

too cold = λ b : BURNER ·
if b“cold” then

too hot cutoff ignite gas on b

else too cold (“t” → takeone b“t” | b)

too hot is as follows. If the temperature is too hot, then the gas is shut off and the burner
waits for 20 to 21 seconds; then the temperature is tested. If it is not too hot, then one
unit of time is taken, and then the test is repeated.

too hot = λ b : BURNER ·
if b“hot” then

too cold wait gas off b

else too hot (“t” → takeone b“t” | b)

The OO specification of the gas burner is then

var b : BURNER · b.too hot ∨ b.too cold

4.4 A Concurrent Example: Dining Philosophers

As a final example, we formulate a simple concurrent and object-oriented specifica-
tion of the dining philosophers synchronization problem. We assume that we have five
philosophers who are either thinking, eating, or hungry. The philosophers are sitting
at a circular table which is laid with only five chopsticks, placed between neighbour-
ing philosophers. From time to time, philosophers get hungry and try to pick up the
two nearest chopsticks. A philosopher can pick up one chopstick at a time, and cannot
pick up a chopstick in the hand of a neighbour. When a hungry philosopher has both
his chopsticks at the same time, he eats without releasing the chopsticks. When he is
finished eating, he puts down both chopsticks and starts to think again.

546 Richard F. Paige and Eric C.R. Hehner

We commence by assuming that we have a class called SEMAPHORE, used to rep-
resent the standard synchronization tool. This class has two procedures, semwait and
semsignal. We also assume that we have used SEMAPHORE to specify a class called
CONDITION, which specifies condition constructs for critical regions. This class has
a queue, for waiting processes, associated with it as well as two procedures: csignal,
which resumes exactly one suspended process, and cwait, which makes the invoking
process wait until another invokes csignal. Formulations of both semaphores and con-
dition constructs can be found in [12]. We will use these classes to specify the mutual
exclusion required in the dining philosophers problem, via a monitor.

A monitor allows safe, effective sharing of objects among several concurrent pro-
cesses. Monitors assure mutual exclusion; only one process at a time can be active
within the monitor. A monitor is a class, consisting of two semaphores, mutex (used to
orchestrate entrance to and exit from the monitor) and next (on which signaling pro-
cesses may suspend themselves), and a counter next count, which keeps track of the
number of waiting processes. It also has two procedures, enter and leave, used by a
process to enter and leave the monitor. Here is the class definition.

MONITOR = “mutex” → SEMAPHORE | “next” → SEMAPHORE | “next count” → int

The enter procedure calls semwait on the mutex semaphore.

enter = λ m : MONITOR · “mutex” → (semwait m“mutex”) | m

Similarly, procedure leave exits the invoking process from the monitor. If the number
of waiting processes is 0, semsignal is called on mutex, and the invoking process leaves
the monitor; otherwise, semsignal is called on next.

leave = λ m : MONITOR ·
if m“next count” > 0 then “next” → (semsignal m“next”) | m

else “mutex” → (semsignal m“mutex”) | m

We next specify a philosopher as a class definition, PHIL. This class has two attributes,
state (recording whether the philosopher is thinking, hungry, or eating), and self , which
is a condition construct used for synchronization (it is used to delay a philosopher when
he is hungry but unable to obtain the needed chopsticks).

PHIL = “state” → Status | “self” → CONDITION

(The bunch Status is thinking, hungry, eating.) The procedures for PHIL are used to
change the state of an invoking object to one of hungry or thinking.

sethungry = λ p : PHIL · “state” → hungry | p

setthinking = λ p : PHIL · “state” → thinking | p

A philosopher uses the eat procedure to move to the eating state. A move to the eating
state requires a call to the csignal procedure of class CONDITION, which resumes a
suspended process. Thus, a call p.eat (where p is a philosopher) changes the philoso-
pher’s state to eating, and calls the csignal procedure of the philosopher’s self attribute.

eat = λ p : PHIL · “self” → (csignal p“self”) | “state” → eating | p

Bunches for Object-Oriented, Concurrent, and Real-Time Specification 547

The dining philosophers system is specified as a class, DINING, which is a MONITOR
extended with a list of five philosophers (we use the short-hand [5 ∗ PHIL] for a list of
five philosophers).

DINING = “phils” → [5 ∗ PHIL] | MONITOR

The DINING system has several procedures. The first procedure we specify, test, takes
a number k in the range 0 ≤ k ≤ 4, moves philosopher k to eating status if possible,
and signals that change in philosopher status to the system. A philosopher can move
to eating only if he can obtain both the chopsticks to his sides and he is hungry. We
view this procedure as private; it will only be used by other procedures in the dining
philosopher system, and is not an entry procedure of the monitor.

test = λ d : DINING · λ k : 0, ..5 ·
if (d“phils”(k− 1 mod 5)“state” 6= eating ∧ d“phils”(k)“state” = hungry∧

d“phils”(k + 1 mod 5)“state” 6= eating)
then

“phils” → k → (eat d“phils”(k)) | d

else d

(Informally, this specification reads “if I am hungry, and my neighbours aren’t eating,
then I will eat, otherwise, I won’t change.”)

The procedure putdown is used when the philosopher is finished eating. The proce-
dure puts philosopher i into a thinking state (i.e., the chopsticks are dropped). Then, the
test procedure is applied to both of the neighbours of philosopher i, to see if they can
start to eat.

putdown = λ d : DINING · λ i : 0, ..5 ·
test

(test (“phils” → i → setthinking d“phils”(i) | d) (i− 1 mod 5))
(i + 1 mod 5)

The first argument of the inner-most test call sets philosopher i to thinking; test is then
applied to the neighbours: philosopher i − 1 mod 5, then philosopher i + 1 mod 5.
However, this specification of putdown ignores synchronization issues. In order for a
call to putdown to synchronize with the actions of all other philosophers, putdown must
be embedded in synchronization primitives; that is, the process must enter the monitor,
then it may execute, and then it leaves the monitor. This is expressed in the procedure
entry putdown.

entry putdown = λ d : DINING · λ i : 0, ..5 · leave (putdown (enter d | d) i) | d

The procedure pickup sets a philosopher to hungry, then attempts to pickup the
chopsticks. If the attempt succeeds, he eats, but if he cannot pickup the chopsticks, he
suspends himself by a call to the wait procedure of class DINING.

pickup = λ d : DINING · λ i : 0, ..5 ·
wait (test (“phils” → i → sethungry d“phils”(i) | d) i) i

548 Richard F. Paige and Eric C.R. Hehner

The first argument to test sets philosopher i to hungry, then tests him. Either this call
succeeds and the philosopher eats, or it returns and he waits. wait is as follows. If
philosopher i is eating, it does nothing. Otherwise (if the philosopher is thinking or
hungry) it calls cwait on the philosopher, delaying him.

wait = λ d : DINING · λ i : 0, ..5 ·
if (d“phils”(i)“state” = eating) then d

else “phils” → i → “self” → (cwait d“phils”(i)“self”) | d

As was the case with putdown, the specification of pickup ignores synchronization.
Thus, we must extend pickup with synchronization details, i.e., make it an entry proce-
dure of the monitor. This is expressed in procedure entry pickup.

entry pickup = λ d : DINING · λ i : 0, ..5 · leave (pickup (enter d | d) i) | d

The initialization of the DINING class will be to set all philosophers to the thinking
state, and to initialize the monitor (which amounts to initializing the semaphores).

init = λ d : DINING · “phils” → 0 → setthinking d“phils”(0) |
“phils” → 1 → setthinking d“phils”(1) |
“phils” → 2 → setthinking d“phils”(2) |
“phils” → 3 → setthinking d“phils”(3) |
“phils” → 4 → setthinking d“phils”(4) |
“mutex” → 1 | “next” → 0 | d

The dining philosophers system can then be specified as follows. We first declare an
object, d, of type DINING. The object must be initialized, and then it will enter an
indefinite concurrent iteration.

var d : DINING · d.init. iterate

where

iterate = (‖i:0,..5 d.entry pickup(i). Eat. d.entry putdown(i)). iterate

The procedure Eat performs the activity of eating the food; we leave it unspecified.
This specification will not allow deadlock, nor will it allow two neighbours to eat si-
multaneously. However, it is possible for a philosopher to starve to death. We leave the
amendment of this as an exercise for the reader.

5 Discussion and Conclusions

That the predicative programming notation can be used to directly specify many key
object-oriented concepts is not surprising, since the notation is sufficient to model any
form of computation. Without having to change the notation, we can express key object

Bunches for Object-Oriented, Concurrent, and Real-Time Specification 549

concepts and still make use of the standard predicative method and all its features, such
as timing, concurrency, and refinement.

Part of the reason for the simplicity of specifying object-oriented concepts is due
to the bunch notation for types. In the predicative notation, all types are based upon a
bunch representation, including lists and records. Because of this, classes and functions
can be developed from bunch notation, and therefore object instantiation can be given
its usual interpretation as variable declaration. This differs from the approach in [4],
where objects are specified in terms of their effect on a global system state. Further-
more, inheritance can be given an interpretation akin to that which is available in many
programming languages. The interpretation, as selective union, is easy to implement in
any programming language that has lists, arrays, or records (overriding of a field can be
implemented as assignment to the field of a record instance).

The formalization of OO concepts is not without limitations. Visibility and export
of features is left entirely up to the discipline of the specifier; there is no equivalent to
C++’s public or private notation, nor Eiffel’s export clause. Further, it might be
useful to be able to include procedures within a class definition (though see Utting [16],
who argues that non-encapsulation of procedures is useful), but it is not possible within
the existing type system of predicative programming. Encapsulation of procedures is
left informal, based on the signatures of the features. However, procedures can be spec-
ified, and are associated with objects and classes by type rules: procedures associated
with a class are only (consistently) applicable to objects of that class or of a child class.
Misusing procedures results in unsatisfiable specifications.

A key benefit of using predicative programming to specify and reason about object-
oriented systems, is that all existing predicative theory applies immediately to such
specifications. This implies that we can specify and reason about key object-oriented
concepts, as well as the real-time, interactive, concurrent, and timing characteristics
of systems, using one notation and method, as the examples in Section 4 showed. A
heterogeneous notation, in the sense of [10, 13], does not have to be created in order to
integrate the concepts of OO, real-time, and concurrency.

In the future, we intend to work on improving and extending the object-oriented
theory, and will formulate examples that combine use of OO and predicative program-
ming’s communication features.

Acknowledgements. We thank the reviewers for their very detailed comments. We
thank NSERC for support.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects, Springer-Verlag, 1996.
[2] A. Bunkenburg and J. Morris. Formal Bunch Theory. Draft.
[3] R. Duke, G. Rose, and G. Smith. Object-Z: A Specification Language advocated for the

description of standards. Computer Standards and Interfaces 17(5), 1995.
[4] A. Hall. Specifying and Interpreting Class Hierarchies in Z. In Proc. Eighth Z User Meet-

ing, Workshops in Computing Series, Springer-Verlag, 1994.
[5] E.C.R. Hehner. Bunch Theory: A Simple Set Theory for Computer Science. Information

Processing Letters 12(1), 1981.

550 Richard F. Paige and Eric C.R. Hehner

[6] E.C.R. Hehner. A Practical Theory of Programming, Springer-Verlag, 1993.
[7] K. Lano. Formal Object-Oriented Development, Springer-Verlag, 1995.
[8] B. Mahony and J.S. Dong. Blending Object-Z and Timed CSP: an introduction to TCOZ.

In Proc. ICSE ’98, IEEE Press, 1998.
[9] B. Meyer. Object-Oriented Software Construction, Second Edition, Prentice-Hall, 1997.

[10] R.F. Paige. Heterogeneous Notations for Pure Formal Method Integration. Formal Aspects
of Computing 10(3):233-242, June 1999.

[11] R.F. Paige. Integrating a Program Design Calculus and UML. To appear in The Computer
Journal, 1999.

[12] A. Silberschatz and P. Galvin. Operating System Concepts 5e, Addison-Wesley, 1997.
[13] G. Smith. A Semantic Integration of Object-Z and CSP. In Proc. FME’97, LNCS 1313,

Springer-Verlag, 1997.
[14] E.V. Sorenson, A.P. Ravn, and H. Rischel. Control Program for a gas burner, Technical

Report ID/DTH EVS2, Computer Science Department, Technical University of Denmark,
Lyngby, Denmark, 1989.

[15] S. Stepney, R. Barden, and D. Cooper. Object-Orientation in Z, Springer-Verlag, 1992.
[16] M. Utting. An Object-Oriented Refinement Calculus with Modular Reasoning. PhD Disser-

tation, University of New South Wales, October 1992.

	Introduction
	The Paper

	Predicative Programming
	Bunches and Types
	Functional Refinement
	Real-Time and Concurrency

	Using Bunches for Object-Oriented Concepts
	Specifying Classes and Objects
	Specifying Procedures
	Implementation
	Single and Multiple Inheritance
	Overriding and Redefinition
	Multiple Inheritance
	Name Clashes
	Repeated Inheritance

	Examples
	Sequences and Queues
	Quadrilaterals
	A real-Time Example: Gas Burner
	A Concurrent Example: Dining Philosophers

	Discussion and Conclusions

