Abstraction and Testing

Steve Schneider

Department of Computer Science, Royal Holloway University of London
Egham, Surrey, TW20 OEX, UK

Abstract. Restricted views of process behaviour result in a form of ab-
straction which is useful in the construction of specifications involving
fault-tolerance and atomicity. This paper presents an operational charac-
terisation of abstraction for refusable and non-refusable events in terms
of testing. This view is related to standard notions of testing, and is
given a new denotational characterisation encapsulated within the CSP
denotational semantics. It informs, reinforces and extends the traditional
denotational approach to abstraction.

1 Introduction

Abstraction arises in a system when some of its activity is not directly observable.
In such cases, the nature of the internal activity may only be indirectly inferred
from the visible behaviour of the process. A form of abstraction thus arises when
an observer only has a restricted view of the system. This situation may arise
for example in the context of fault-tolerant systems if an observer interacts with
the system on particular activities, but is unconcerned with the fault-tolerance
mechanisms, which may be considered as abstracted. It also arises in the context
of security, where a ‘low-level’ user should be prevented from achieving any
interaction with the more secret parts of the system. The terminology of this
paper and its underlying motivation is derived from this context.

Process algebraic approaches to abstraction generally provide some operators
to provide abstraction. In the context of CSP, which is the concern of this paper,
the hiding operator (often called the ‘abstraction’ operator) provides a mecha-
nism for removing particular events from the process’ interface and making them
internal. Events internalised in this way become urgent (non-refusable). How-
ever, Roscoe [Ros97] has observed that events in a process’ interface generally
fall into the two categories of refusable and non-refusable, and that both kinds of
event can be abstracted. This has led to a more sophisticated understanding of
abstraction, expressed within the CSP language and in terms of its denotational
semantics.

The aim of this paper is to provide an alternative understanding of abstrac-
tion, by taking an operational view in terms of testing. This will provide a more
direct definition of abstraction, independently of any particular process algebra,
and will thereby provide a more explicit and intuitive characterisation.

The main contribution is to generalise the process algebraic notion of ab-
straction in operational terms, and to provide an equivalent formulation within
the failures model for CSP.

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. I, LNCS 1708, pp. 738751, 1999.
© Springer-Verlag Berlin Heidelberg 1999

Abstraction and Testing 739

The structure of this paper is as follows: section 2] introduces the CSP nota-
tion; section [3] is concerned with the testing framework for equivalence of pro-
cesses; section Hlis concerned with denotational characterisations of the testing
viewpoint; sections B and [6 consider the application of this work to particular
areas. The paper concludes with a discussion. Proofs of the theorems may be
found in the full version of this paper [Sch99a] and are omitted here.

2 Notation

CSP is an abstract language designed to describe the communication patterns of
processes in terms of events that they may engage in. For a fuller introduction to
the language and the semantic models, the reader is referred to [Ros97 [Sch99h].

In CSP, systems are modelled in terms of the events that they can perform.
The set of all possible events (fixed at the beginning of the analysis) is denoted
X, Events may be atomic in structure or may consist of a number of distinct
components or fields. Examples of events used in this paper are I, and h,, which
are atomic events, and n.3 which is a compound event modelling the occurrence
of the message 3 along channel in.

Processes are the entities that are described by CSP expressions, and they
are described in terms of the possible events that they may engage in. The
process RUN 4 is repeatedly willing to engage in any event from the set A. The
process Chaos 4 is able to repeatedly engage in events from A, but might at any
time nondeterministically refuse to perform any. The process Stop is unable to
perform any events.

The prefixed process a — P is able initially to perform only a, and sub-
sequently to behave as P. The prefix choice process z : A — P(x) is initially
prepared to engage in any event from the set A. If an event z € A is chosen
by its environment then its subsequent behaviour is P(z). The output clv — P
is able initially to perform only c.v, the output of v on channel ¢, after which
it behaves as P. The input ¢?z : T — P(x) can accept any input z of type T
along channel ¢, following which it behaves as P(z). If the type T of the channel
is clear from the context then it may be elided from the input, which becomes
c?z — P(z). Its first event will be any event of the form c.t where ¢t € T'.

The process P O @ (pronounced ‘P external choice @’) is initially willing
to behave either as P or as @, with the choice resolved (by the process’ envi-
ronment) on performance of the first event. The process P M @ (pronounced ‘P
internal choice @’) can behave either as P or as @, and the environment of the
process has no control over which. The process P \ A behaves as P, but with
all of the events in A performed internally where they were previously external
events.

Processes may also be composed in parallel. If D is a set of events then the
process P |[D]| @ behaves as P and @ acting concurrently, with the requirement
that they have to synchronise on any event in the synchronisation set D; events
not in D may be performed by either process independently of the other. Inter-
leaving is a special form of parallel operator in which the two components do

740 Steve Schneider

not interact on any events: it is written P ||| @, and is equivalent to P |[[{}]| @.
There is also an indexed form | | ‘ o1 P;.
7

Processes may also be recursively defined by means of equational definitions.

The operational semantics of CSP processes defines, for any particular pro-
cess, which events the process can perform next, and the possible processes
that can be subsequently . For example, the process a — P can perform an
a event and reach the process P. This is written (a — P) -2 P. The process
(e — P)\ {a} can perform an internal event, denoted 7, and reach the process
P\ {a}. This is written (a — P) \ {a} —— (P \ {a}). For the full operational
semantics of CSP, see [Ros97, [Sch99b].

The traces of a process P, traces(P), is defined to be the set of finite sequences
of events from X' that P may possibly perform. Examples of traces include the
empty trace (), and (in.3, out.3, in.5) which is a possible trace of the recursive
process COPY = in?z : T — outlt — COPY. The set of infinite traces,
infinites(P), are the infinite sequences of events from X that P might possibly
perform.

The failures of a process P, failures(P), is defined to be the set of trace/refusal
pairs (¢r, X) that P can exhibit, where ¢r is a trace and X is a set of events that
P can refuse to participate in after some execution of the sequence of events
tr. Examples of failures include the empty failure ((), @), and the trace/refusal
pair ((in.3, out.3, in.5), {out.3, out.4}) which is a possible failure of COPY . The
divergences of a process P, divergences(P), are those traces which can lead to
P performing an infinite sequence of internal events. The FDI semantics of a
process P consists of the three sets of failures, divergences, and infinite traces
of P: FDI(P) = (failures(P), divergences(P), infinites(P)). All the denotational
models for CSP are covered in detail in [Ros97, [Sch99b|. In any such model a
process P is refined by another process @ (written P T @) if the semantics of
@ is contained in the semantics of P: anything that can be observed of @) can
also be observed of P.

The ‘after’ operator which gives the behaviour of a process P after a trace tr
is written as P / tr. It is a partial operator (since tr might not be a trace of P),
giving those failures, divergences, and infinite traces of P which are subsequent
to the performance of the events in t¢r.

A process P is deterministic if it is unable to refuse events that it can do:

(tr, X) € failures(P) A (tr ™ (a), @) € failures(P) = (tr, X U{a}) & failures(P)
If P is deterministic, then it must be deterministic at all times: P / tr is also

deterministic, for any trace tr of P.

3 Testing

Abstraction will be characterised in terms of the interfaces through which pro-
cesses (and tests) can interact, and in terms of distinguishing refusable from
non-refusable events.

Abstraction and Testing 741

We are interested in testing processes P by means of test processes T', which
can interact with P only through an interface L (where L stands for low-level
events). We are concerned with understanding when processes are equivalent on
such an interface. We will use the set H simply to denote all the events that are
not in the set L. These are the events that P might engage in but which the test
T has no access to. Thus the set of all events X' = LU H, where LN H = @.
There is no reason in principle why L and H should cover .

The set H is itself divided up into ‘refusable’ events HR and ‘non-refusable’
events HN , where ‘refusable’ is from the point of view of the environment of the
process P under test (i.e., whether the environment is in a position to refuse
them). For example, output events of P are generally non-refusable, whereas
input events are generally refusable, e.g. the environment can refuse to press a
key on the keyboard, but it cannot refuse to allow an event to appear on the
screen. A related view is to consider the set HN as those events whose occurrence
is entirely under the control of the process P, whereas HR consists of those events
which require cooperation from the environment. It should not be possible to
deduce anything about a high level process interacting with P from the fact that
a HN event must occur. Events that the system cannot refuse (such as inputs
in an I/O automaton) can be incorporated into the description of P. If e is such
an event, then it would be a requirement on P that e never appears in a refusal
set.

L is also divided up into the disjoint sets LR and LN.

Four subsets of X' are thus identified: HN, HR, LN and LR. These sets are
pairwise disjoint, and their union is Y.

This partitio of X will be characterised by a function p which indicates for
each event which set it is in:

p: X — {hn,hr, in,lr}
The relationship between p and the subsets of X' is that

HN, ={a | p(a) = hn}

HR, ={a | p(a) = hr}

LN, = {a| p(a) = In}

LR, ={a|p(a)=1Ir}
The sets H, L, HN, HR, LN and LR are dependent on the function p and so
will generally be subscripted with the p. In this paper, we follow the convention
that I, € LNy, . € LR,, h, € HN,, h, € HR,. This partition of an interface is
illustrated in Figure [

The testing relations will be defined with respect to a function p.
We now define the notion of a LN, test:

Definition 1. a LN, test T is a CSP process only able to_perform events from
L, U{w} which can never refuse any of the events in LN.

! strictly speaking not a partition, since some of the sets may be empty
2 After a success state (see later) has been reached, we will sometimes elide the re-
quirement to be unable to refuse LN, in tests given in some examples. This makes

742 Steve Schneider

HN, | 3 LN,

HR, | | LR,

Fig. 1. Partitioning P’s interface

This means that at any stage T should either have an internal transition (in-
dicating that it is not stable at that point), or else it should have a transition
for every event in LN,. The LN, test contains the special ‘success’ event w not
appearing in either H, or L,. The set of all LN, tests is denoted TESTLy, .

An execution of a process P is a finite or infinite sequence of transitions e as
follows:

0 I
€:P—1>P1—2>P2

where each step P; firg P;y1 is a step given by the operational semantics of
CSP. The first process expression is P. The states appearing in this execution,
states(e), are P, Pa, etc.

For example,

(a — Stop M b — Stop) — (b — Stop) L, Stop
is a finite execution. If P = ¢ — P is a recursively defined process, then
PTo(a—P) P Ts(a—P) " ...

is an infinite execution.
To test a process P with a test 1" and interface L, executions e of the process
(P|[Ly]| T) \ L, are considered. This arrangement is illustrated in Figure
An execution e is successful if and only if there is some process expression
P; € states(e) from which an w event is possible:

Definition 2.

e is successful < 3 P € states(e) ® P —

no difference in this paper since the part of an execution after success is irrelevant
for our purposes.

Abstraction and Testing 743

Fig. 2. Testing P

Different notions of testing are captured by different modalities of successful
testing [ANH84]: may testing is concerned with the possibility of successful exe-
cution, and must testing is concerned with the guarantee of successful execution.

It is a well-known result [Hen88| that standard may and must testing cor-
respond directly to the denotational semantics: two processes are may testing
equivalent precisely when they have the same trace semantics; and two processes
are must testing equivalent if and only if they have the same FDI semantics.

3.1 May Testing

The notion of may, testing can now be defined. For generality and consistency
of approach with must, testing introduced later, it is parametrised by the
partition function p. However, observe that it is independent of the way H,, and
L, are themselves partitioned into refusable and non-refusable events. Thus the
refusability or otherwise of high-level events is irrelevant to may testing.

Definition 3. If P is a process, and T is a LN, test, then P may, T if and
only if there is some successful execution e of (P|[Ly]| T) \ Ly

Observe that there will be some successful execution of (P |[L,]| T) \ Ly, if and
only if there is some successful execution of P |[Ly]| T. The events in L, are
hidden to make the definition similar to the definition for must, testing which
will come later.

A test T has access only to the events L, that P can perform, and not the
high-level events Hp,. In other words, T' can interact with P only on the events in
Ly, so the behaviour of T in the test will be independent of the events in H,, that
P performs. Furthermore, the non-refusable events LN, that P might perform
cannot be blocked by T (at least, not before an w success event), though the
subsequent behaviour of 7' might depend on which such events were performed.
The test thus allows its result to depend on the observation of events from LN,
even though T has no control over their occurrence.

Two processes will be defined to be may, testing equivalent if they may
pass exactly the same LN, tests:

Definition 4. P =nay, Q if and only if VT : TESTry, ® (P may, T <
Q may, T)

744 Steve Schneider

This means that if only events in L can be observed, then P and) should
be considered equivalent if any test which has access only to the events in L (a
particular view of the process), and does not block the events in LN,, cannot
tell the difference between P and Q.

The following relationship between this form of may,, testing and the stan-
dard de Nicola/Hennessy form of may testing [ANH84| makes it clear that this
is a generalisation, in that may testing is simply may,, —testing for a particular
partition pg.

If po is the partition that considers all events as low-level refusable events,
then all events will be visible to the testing process, which has no constraints on
being required to accept any of them. In this case LR,, = X', and Hp, and LNy,
are all @. It then turns out that may, testing is equivalent to the standard
notion of may testing. In this case, the testing process has access to all the
events that the processes under test can perform; and is able to block any of
them, which is exactly the situation in may testing. This is the most powerful
kind of test within this framework: the one which allows the most distinctions
to be made.

In fact, given any set of non-refusable events LN,,, any arbitrary CSP test T
can be converted to a LN, test 1" such that P may p I'= P may, T’ for any
process P. This is achieved by introducing the extra possibility ... 0 RUNpy, to
every state. No new successful executions are introduced, since whenever any of
these choices are taken then there is no possibility of reaching w; so any successful
execution of P|[L]| T' must correspond to a successful execution of P || T

This means that if two processes are equivalent under may testing for a
particular set L, then the precise nature of LN, and LR, are not relevant—they
will remain equivalent whatever the sets LN, and LR, happen to be, subject to
their union remaining L.

Hence may testing need only be parametrised by the set L, since the finer
distinctions made by LN, and LR, make no difference at the level of may
testing.

A straightforward consequence of the definitions is as follows:

Lemma 1. If P =nay, Q and Ly C L, then P =may, @

This lemma states that if some low-level events are promoted to become
high-level events, then any processes that were previously equivalent will remain
s0: testing processes have access to even less information. If two processes cannot
be distinguished by any tests which have access to L, then they will never be
distinguished by any tests which have access to a smaller set of events L, C Ly;
in fact this smaller set of tests is subsumed within the previous set of tests.

3.2 Must Testing

Must testing can be considered as the dual of may testing. In may testing, a
process may pass a test if there is some successful execution. In must testing, a
process must pass a test if every execution is successful. Since partial executions

Abstraction and Testing 745

might not reach a success state because the execution has not run for long
enough, attention is focused onto complete executiondd.

An execution e of a process P will be considered to be complete if P could be
unable to extend it. This will certainly be the case if e is infinite, but it will also
arise if e finishes in a stable state where only refusable events are possible—since
the process might be prevented from continuing its execution. However, if there
are any non-refusable events available, then the execution is not complete since
it is entirely within the process’ control to continue the execution.

Definition 5. An execution e is complete with respect to (a set of non-refusable
events) N if

1. e is infinite; or
2. e is finite, and the last state @ of e can perform neither internal transitions
nor transitions from N.

The point is to consider the execution as complete even if refusable events are
possible. Such executions could be complete executions if the process is placed
in a high-level environment (which the test cannot know about) in which such
events are blocked.

Must testing can now be defined:

Definition 6. If P is a process, and T is an LN, test, then P must, T if and
only if every complete execution (with respect to LNyUHN,) of (P |[L,]| T) \ L,
is successful.

Ezample 1. Let P; be the process:

Pr=h.—h,— 1l —1,— P
al.—1, — P

Define the test Ty = I, — RUN,;, O [, — [, — w — Stop. This will succeed
as long as the process under test firstly cannot perform [, before [, and secondly
is guaranteed to be able to accept [, and then provide I, .

Then P; must Ti. If its choice is in favour of ., then the complete execution
is successful. If its choice is in favour of the high-level event, then the complete
execution must include the second high-level event since this is not refusable,
and so progress to the low-level events and hence to the success state.

On the other hand, for the test T, = [, — w — Stop, we have that
—(P; must T3). The test does not provide I, and so no low-level interaction
between the process and the test is possible; the success state will not be reached.

Two processes will be must, testing equivalent if they must pass exactly
the same tests:

3 In the standard approach to testing, these executions are the mazimal ones since
they cannot be extended at all. In our setting they are not necessarily maximal,
since finite complete executions might be extendable with refusable events

746 Steve Schneider

Definition 7. P =4, @ if and only if VT : TESTrn, ® (P must, T &
@ must, T)

Ezxample 2. If

Py =hpy— hpa — bl — I, — P
al.— 1, — P

and

PSZhTZthZle*)ln*)PB
Nh, — 1. — 1, — Ps
al.—1, — Ps

then Py, Py, and Pz are all must, equivalent. A process which interacts with
them only on [, and [, will be unable to distinguish between them.

This means that two processes P and @) should be considered equivalent
(from the point of view of the interface information) if any test which has access
only to the events in L (a particular view of the process), and does not block
the events in LN, cannot tell the difference between P and Q.

If po is such that LR,, = X, and Hy, and LN, are all &, then must ,, testing
is equivalent to the standard notion of must testing. In this case, the testing
process has access to all the events that the processes under test can perform;
and is able to block any of them. This is the most powerful kind of test within
this framework: it allows the most distinctions to be made.

From the point of view of must testing, it makes a difference whether the
high-level events are refusable or not, since we are concerned with liveness and
progress. For example, h — [— Stop is must, equivalent to | — Stop if h is not
refusable, but the two processes are distinguishable if & is refusable. In that case
the first process might be blocked from performing the event h, and never reach
the stage where it offers the event /. This cannot happen for the second process.
One test which distinguishes these two processes is T =1 — w — RUN]|.

3.3 Changing Views

The notion of abstraction is bound up in the available views of a process as
given by the sets L and H, and also by the distinction between refusable and
non-refusable events within those sets. Varying the views on processes gives
different degrees of abstraction and varies the capability of an observer to tell
processes apart.

Views on a process might be varied by shifting the boundary between re-
fusable and non-refusable events, at high and low-levels; and by shifting the
boundary between levels for refusable and for non-refusable events.

Abstraction and Testing 747

hn

Ir

Fig. 3. The partial order < on the interface partition

Fig. 4. Moving events from LR to HR

As the boundaries are shifted and the partition function p changes, the equiv-
alence relation =pmust, changes accordingly. The four possible locations of an
event of P’s interface may be ordered as in Figure B] where higher positions for
events result in weaker equivalence relations: those more abstract relations which
identify more processes. Thus as previously observed, if all events are in LR,
then the equivalence is strongest, and in fact is equivalent to standard must
testing; and if all events are in HN,, (or in fact a combination of HN, and HR,)
then the equivalence is weakest, able only to identify the possibility of divergence
in a process.

Each order relation in Figure [Blis associated with a lemma which supports
the claim that transferring events from the lower to the higher set preserves
=must, - Bach edge in general corresponds to a strict weakening of =pmyst, :
new equivalences are introduced in each case. The resulting Lemma [2] collects
these results together: if p is pointwise weaker than p’, then must, equivalence
implies must,s equivalence.

For example, increasing HR at the expense of LR preserves must testing
equivalence. This scenario is illustrated in Figure @l

748 Steve Schneider

Lemma 2. If (Va : X.p(a) < p'(a)) then for any P and Q, if P =must, Q
then P Smust,/ Q.

If partition p is pointwise less than partition p’, then =mus, is stronger than

Emustp/ .
The relation p < p’ (defined pointwise) can also be characterised in terms of
the corresponding sets. In this case,

p<p < LR, C LR,
LR, U LN, € LR, ULN,
LR,UHR, C LR, U HR,
High-level non-refusable events are hidden from any interacting process, and

they are urgent, so they behave as hidden events. This is made explicit in the
following lemma:

Lemma 3. For any process P, P =must, (P \ HNp)

3.4 Examples
Ezxample 3.
h, — . — Stop Smust, l. — Stop

The non-refusability of the high-level event means that at the low level the I,
event is guaranteed to be offered.
In contrast, a refusable high-level event yields the following:

hy — 1. — Stop =must, (I — Stop) M Stop

At the low level, the event [. might never be offered, since the high-level event
could be refused in a complete execution. In this case, the low-level behaviour is
described by Stop. However, the high-level event could also be performed, and
so the possibility of the low-level event is also present.

Ezxample 4.
hn1 — b1 — Stop l-1 — Stop
O =must, ||
hno — Lo — Stop lo — Stop

hn2 — l,-l — StOp
O
hn1 — lo — Stop

—must,

In this example, the high-level events are non-refusable, and so one of them is
guaranteed to occur in a complete execution. However, the testing process has
no control over which will occur, and so the process is equivalent to one which
offers a nondeterministic choice between the two low-level events. An observer
who can engage only in low-level events cannot distinguish these three processes.

Observe that there is information flow from high to low in the two processes
that have high-level events: the identity of the low-level event that occurs allows
the identity of the preceding high-level event to be deduced.

Abstraction and Testing 749

4 Denotational Characterisations

It is useful to have a characterisation in terms of the denotational semantics for
when two processes are must,, equivalent, and when they are may, equivalent.
This allows model-checkers such as FDR to be deployed in analysing processes
for such equivalences.

4.1 May Equivalence

With regard to may testing, two processes will be considered equivalent with re-
gard to a particular low-level view if their trace sets are identical when projected
onto that view.

Theorem 1.

P =may, Q & traces(P \ Hy) = traces(Q \ Hp)

4.2 Must Equivalence

Encapsulating must testing equivalence in the most general case is not straight-
forward. There are two independent issues to be resolved: one concerning the
appropriate way to handle the high-level events; and the other concerning how
best to treat the low-level non-refusable events.

Lemma[3]indicates that non-refusable high-level events can simply be hidden.
high-level refusable events should also be removed from view, but in a way which
does not make them urgent (since they are not required to occur). This can be
achieved by running the process in parallel with a process which might block
such high-level events at any stage; and then hiding all the high-level events.
This is the approach taken in [GH97], by means of a ‘regulator’ process.

Case 1: LN = @ We will begin by considering the set of low-level non-refusable
events to be empty. As before, high-level urgent events can simply be hidden

Theorem 2. If LN = & then

P =nust, @ < FDI((P|[HR,]| Chaosgr,) \ Hp)
= FDI((Q|[HR,]| Chaosur,) \ Hp)

The construction (P |[HR,]| Chaosgr,) \ H, will be abbreviated abs,(P): an
abstracted view of P.

This gives us a low-level view of a process: the low-level view of P is simply
(absp(P)). This only has low-level events. Any two processes which exhibit this
low-level behaviour are indistinguishable through that view of the process.

750 Steve Schneider

Case 2: LN # o If the set of low-level non-refusable events is not empty, then
there are some constraints on the low-level behaviour of the tests.

To begin with, we will consider the situation where there are no high-level
events at all: every event is low-level, some are refusable and some are not.

Any finite complete execution must end up in a state in which all LN events
are impossible for the process. This must correspond to a failure (¢, X) of the
process for which LN C X. The events in LN which were performed should
appear in the trace, since they were accessible to the tests. This corresponds
to treating the events as urgent but visible, which is not an aspect of standard
CSP, but which has been analysed in the context of timed CSP [DJS92]. The
failures of such a process will be given as the urgent failures (with respect to
LN), defined as

ufailuresyy (P) = {(tr, X) € failures(P) | LN C X}

Such a set does not meet the standard axioms for CSP, as Example[d illustrates.
In fact, it turns out that it need not meet any of the axioms pertaining to
failures: it is not necessarily prefix-closed on traces, subset closed on refusals, or
even non-empty, and events need not extend either a trace or a refusal set.

Ezample 5. If H = &, LN = {in}, and LR = {lr}, then

ufailurespy (Ir — In — Stop) = {((), {In}), ({Ir,In), {in}), ({(Ir,In),{ln,lr})}

This set is neither prefix-closed on traces, subset closed on refusals, and on the
behaviour with the empty trace the event Ir can extend neither the trace (by
itself) or the refusal.

A recursive process that is always willing to perform events from LN, such
as P = In — P, has an empty urgent failure set. However, it is guaranteed to
have infinite traces corresponding to the sequences of events from LN that it
must be able to perform.

Along with the divergences and infinite traces, the urgent failures set does char-
acterise must testing equivalence with regard to non-refusable low-level events:

Theorem 3. If H = & then

P =nust, @ < ufailurespy(P) = ufailures,y(Q)
A divergences(P) = divergences(Q)
A infinites(P) = infinites(Q)

We will refer to this triple of semantic sets of P (with respect to the partition
p) as UDI,(P).

A new CSP operator sticky; y (P) can be defined which provides a context
for characterising urgent failures: FDI(sticky,y (P)) = FDI(sticky;n (Q)) if
and only P and @ have the same urgent failures, divergences, and traces.

Abstraction and Testing 751

The sticky operator masks non-urgent failures on a set LN by introducing as
many refusals as possible whenever an event from LN is possible. In particular,
whenever an event [from LN is possible, then it introduces the possibility that
all other events should be refused, and that [is the only possible event. This
has a similar effect to making the events in LN urgent, since it is the process
P itself (and not its environment) that chooses the event to be performed. In
order to be consistent with the axioms of the FDI model, such events cannot be
forced to occur (since the process might be in an uncooperative environment),
but once P has selected an event, it will then refuse all other events.

It is defined denotationally as follows:

divergences(sticky; y (P)) = divergences(P)
infinites(sticky; y (P)) = infinites(P)
failures(sticky y (P)) = failures(P)

U{(tr,X) | (tr ™ 1, 2) € failures(P)
ANl eLNALEX)

Observe that sticky; y (P) has the same traces as P. It is only additional refusals
that are introduced into the failure set.

In the most general case, we arrive at the following characterisation of must
equivalence:

Theorem 4.

P =nus, Q < stickypy (abs,(P)) = stickyyy (absy(Q))

Note that this theorem also covers the case where LN = &, since in that case
sticky; ;y simply has no effect.

Observe that sticky;y (abs,(P)) = absy(sticky; x (P)). The order in which
the abstractions are performed is irrelevant.

Observe also that Theorem Bl given above can be characterised in this form:

Theorem 5. If H = & then
P =nust, @ < stickyy (P) = sticky,y (Q)

More about sticky Different processes might map to the same result under
sticky; v . For example, P, = Iny — Stop O Iny — Stop and Py = Iny — Stop M
Ing — Stop have different refusals, yet sticky; (P1) and sticky; y (P2) have the
same refusals. Hence from Theorem Blthey are equivalent under must testing.

This new operator can also be given an operational semantics, which may
provide an alternative understanding of its behaviour. The process sticky; y (P)
will have all the transitions that P has together with a few extra ones introduced
to allow events from LN to be ‘selected’. Two rules define its operational seman-
tics:

P p

sticky, v (P) —= sticky,y (P')

752 Steve Schneider

P p

[a € LN]
sticky; vy (P) —— (a — sticky;y (P))

The transitions that are introduced by means of the second rule correspond to
the additional failures that are introduced to sticky;y (P).

If the events in LN are hidden, it makes no difference whether they are
abstracted by means of the sticky operator first:

P\ LN = (sticky,y (P)) \ LN

The operational semantics for sticky point the way to a definition in terms
of the standard CSP operators. This can be achieved as follows: firstly, let f,;4
and g be event renaming functions such that fy4(a) = (old, a) for all a € X,
and g(old,a) = g(new,a) = a for all a € ¥, with g leaving events not of the
form (a, new) or (a, old) unchanged. Define the process Rpy as follows:

Rpy = (old, a) : f(LN) — (new, a) — Ry
O (old, a) : (f(£) \ f(LN)) — Ry
This process allows all events of the form (old, a), but whenever the event a is in

LN, then it must perform the event (new, a) before any further events. sticky
can then be defined as follows:

stickyy (P) = g((f(P) [[f(Z)]| Rew) \ f(LN))

Any sticky event a € LN of P is performed internally in this process (as (old, a)),
but P is prevented from any further progress by Rpy until (new,a) occurs
(which appears in the overall process as the original sticky event a because of
the renaming g). Non-sticky events are performed as expected.

4.3 Congruence

The equivalences considered in this paper are not congruences in general, which is
perhaps why they are not generally considered in the literature on testing. This
fact is unsurprising, since operators can influence the behaviour of a process
through its abstracted interface, and if processes differ there then they may be
affected differently.

Ezxample 6.
hy1r — 1 — Stop =must, b2 — 1 — Stop
but
Stop [hr1]| bpr — | — Stop Emust, Stop |[he1]| hre — | — Stop

since the processes behave differently on the abstracted event hry, they can
behave differently when placed in parallel with a process that interacts with
them on that event.

Abstraction and Testing 753

Another unsurprising example concerns the event renaming where f(h1) =

L, f(hr2) = hpa, and f(1) = [. In this case

f(hr1 — 1 — Stop) Emust, f(hra — | — Stop)

Finally, an event renaming that renames a high-level refusable event to a
high-level non-refusable event, but does not map high to low or low to high:
f(hr1) = hp1, f(hr2) = hea, and f(1) = [. In this case

f(hrl - l - Stop) /Emustp f(h’(‘2 - l - Stop)

The left hand process cannot refuse [at the low level, whereas the right hand
process can.

The first two examples also illustrate may equivalences that are not preserved;
the last example does preserve may equivalence.

However, many of the operators do preserve both equivalences. Prefixing,
sequential composition (provided v is low-level), all forms of choice, and hiding
certainly do so. Parallel composition does so, provided all synchronisations are at
the low level: thus interleaving preserves equivalence, as does the operator |[A]
provided A C L. Event renaming f(P) preserves =must, provided the partitions
are respected: so p(f(a)) = p(a) for all events a is required for =nus, . With
=may, , We require simply that high-level events do not become low-level, so
a € H= f(a) € H is sufficient to guarantee preservation of equality.

5 Non-interference

Non-interference properties are generally considered in the context of a given
system. The requirement is that even if an agent knows exactly how the system
works, there is no information flow across particular boundaries concerned with
particular activity on that system. In other words, the options available to the
low-level user should not divulge any information about the high-level users’
activity. High-level users’ activity is concerned with events in HR; the set HN
consists of those high-level events entirely within the control of the system.
Knowing that the system will perform an event of HN does not leak information
about high-level activity, since the high-level user is unable to prevent it.

Information flow from high to low will be prevented if P’s low-level possi-
bilities at any stage are dependent entirely on P’s previous low-level behaviour,
and not in terms of any high-level behaviour. This would seem to indicate that
if two sequences of events have been performed, which appear the same on the
low level, then the resulting processes should be equivalent.

This characterisation can be made in various ways. It has traditionally been
made denotationally, and this has led to some difficulties to its relationship with
refinement. If e is an execution of a process P, then Lirace,(e) is the sequence
of low-level (in the sense of the partition p) events in e.

Operationally, lack of information flow in P from high to low level might be
characterised as follows:

754 Steve Schneider
Definition 8. A process P is interference-free with respect to p if

P = P' N\ P = P" A Ltrace,(e') = Ltracey(e") = P’ =pyst, P”

where Ltrace,(e) is the sequence of low-level (in the sense of the partition p)
events in e. If the low-level views of two executions are the same, then the
resulting processes must be indistinguishable.

In this case, we can say that P is interference-free on p. This is a very strong
definition: it excludes nondeterministic processes, even those that can perform
no high-level events, such as P = [,y — Stop M l,.2 — Stop: the distinguishable
processes .1 — Stop and [, — Stop are both reachable via the empty trace.

This operational definition is attractive in one sense, since it considers indi-
vidually all possible processes resulting from the execution, rather than consid-
ering them all together (where the acceptable behaviour of some can mask the
unacceptable behaviour of others), as is the case with the denotational ‘after’
operator.

This definition has the difficulty that it is dependent on the precise nature
of the operational semantics for a process, and two processes that are equivalent
(under must testing for example) might be treated differently by the definition.
This means that it cannot be characterised denotationally, and that in general
its truth or falsity is not determined from the denotational semantics.

Divergence To take an extreme example, the process which has one state and is
only able to perform internal actions to that one state may be defined recursively
as follows: | = 1. It is must equivalent to 1. M LEAK, where LEAK is a process
which takes in messages on a high-level channel, and immediately communicates
them on a low-level channel: LEAK = ing?xz — out'v — LEAK. Yet L meets
the definition, whereas 1. M LEAK does not.

The desire to have no information flow preserved by refinement has led to
some difficulties with regard to this example. If 1 is seen as a process which
does not provide information flow, but it can be refined by LEAK, then it is
patently clear that any definition of security with respect to information flow is
either going to fail on L or else will not be preserved by refinement.

Divergence-Free Processes If the process is divergence-free, then the situ-
ation is rather better. In this case, the definition will hold of precisely those
processes whose low-level behaviour is deterministic: that is, those processes P
for which abs, (P) is deterministic. This coincides with Roscoe’s characterisation
of non-interference.

Theorem 6. If P is divergence-free, then P is interference-free on p if and only
if absp(P) is deterministic.

Observe that this theorem holds even if LN # &, despite the fact that tests
cannot directly detect refusals of events in LN. This means that two processes

Abstraction and Testing 755

might be indistinguishable under testing, yet the definition of non-interference
applies differently to them. For example, consider the two processes:

Pi=h =y — P1Ohy — by — Py
P2:h:{hl,hQ}_)l:{lnlal’HQ}_)PQ

If LN = {l,1, a2}, then these two processes are indistinguishable at the low
level. Any low-level test must always be ready to accept all events in LN, and
so is able to make distinctions only on the basis of traces—and P; and P, have
the same low-level traces.

On the other hand, it is clear that P; allows interference whereas Py does
not, and in fact P fails the definition given above whereas Py meets it: abs,(P1)
is non-deterministic whereas abs,(P2) is deterministic.

This example also illustrates the point that interference-freedom is concerned
with particular processes that are given. The aim in interference-freedom is not to
distinguish P; from Ps, but rather to make deductions about high-level activity
from the visible low-level activity in a given process.

6 Atomicity and Fault-Tolerance

Atomicity is a feature of particular kinds of specification, where the desired
behaviour is characterised in terms of the occurrence or availability of a single
event.

Typically in analysing fault tolerance, faults are modelled by the occurrence
of special fault events. These might appear at certain points of a process’ de-
scription, indicating that the fault can occur at that stage during the process’
execution. They will then be modelled as refusable events—the environment
might perform them when the process makes them ‘available’, but is not obliged
to do so. (Generally in fact the system would be modelled so they are always
available.)

The low-level activity need not be deterministic, so this is different from
consideration of information flow properties.

For example, a one-place buffer that can lose its contents on the occurrence
of a particular fault might be described as follows:

FBUFF = in?z — out!ls — FBUFF
O power_blip — FBUFF

O power_blip — FBUFF

On the other hand, fault recovery will generally be modelled as non-refusable
events: the fault recovery mechanism is under the control of the process itself,
and should not be blocked by the environment.

As a primitive example, a system might undergo a fault between input and
output, from which it must recover before performing output. This could be
modelled, extremely crudely, as

FT =in?x — out!lx — Stop
O fault — recover — out!x — Stop

756 Steve Schneider

The requirement on the system might be that, when the fault recovery mecha-
nisms are out of the view of the user, then this system should look like a simple
buffer taking an input to an output.

In other words, the requirement on the system is that it is a refinement under
must, testing of

SPEC = in?z — out!x — Stop

Here we have p(fault) = hr and p(recover) = hn.

Then SPEC' Cmyst, F1H .

If p(fault) = hn, then any complete execution would not be able to finish if
a fault was possible—this is tantamount to relying on the fault to occur. In this
case, SPEC =t FT again holds, but so too does the equivalence

mn?x — fault — recover — out!x — Stop Zmust, FT

which relies on fault to occur in order to guarantee output.
Conversely, if p(recover) = hr then recovery can be blocked. In this case
correct behaviour cannot be guaranteed, and in fact

FT =nqust, in?x — (Stop N out!z — Stop)

The approach to fault-tolerant modelling suggested by this example is to
treat fault events as high-level refusable events HR, to treat system recovery
mechanisms as high-level non-refusable events HN, and to treat the normal part
of the system, which the user interacts with, in terms of low-level events (either
refusable or non-refusable as appropriate).

7 Summary

This paper has been concerned with providing a more explicit approach to the
kind of abstraction that is achieved when processes are viewed through particular
interfaces, and where their events can be considered as refusable or not refusable
by the environment of the process. The results have reinforced the denotational
approach, provided a more explicit explanation and justification, and indeed
have extended that approach by considering a more general categorisation of
events.

This form of abstraction has been analysed for both may and must testing
with respect to a division p of the interface of the process, and the variation in
the relations as p varies has also been analysed: as less control over events is
provided to the testing environment (either through removal from the interface,
or through non-refusability), the equivalence relations become weaker.

The may testing equivalence and refinement relations turn out to be relatively
straightforward to characterise in denotational terms, and are indeed equivalent
to the denotational approaches which have been traditionally taken.

4 in other words, VT : TESTLNP e SPEC must, T = FT must, T

Abstraction and Testing 757

Must testing equivalence and refinement have also resulted in the expected
equivalences as far as high-level, and refusable low-level events are concerned;
but the relations when low-level non-refusable events are permitted have not
been previously considered. Theorem Ml provides a complete characterisation of
this equivalence.

This approach to abstraction has been used in what appears to be an ex-
tremely strong operational characterisation of non-interference (or interference-
freedom) which turns out to be equivalent to a previous denotational character-
isation on non-divergent processes]RWW94]. We have also considered its place
in the specification of fault-tolerant systems, and in the characterisation of spec-
ifications that make use of atomicity.

Acknowledgements I am grateful to Peter Ryan, Irfan Zakkiudin for discus-
sion and comments on earlier forms of this work, to the anonymous referees for
their detailed comments, and to Bill Roscoe for pointing out the CSP character-
isation of sticky .

Support for this work was provided by DERA.

References

[DJS92] J Davies, D Jackson, and S Schneider. Making things happen in Timed
CSP. In Formal Techniques for Real-Time and Fault-Tolerant Systems,
volume 573 of Lecture Notes in Computer Science. Springer Verlag, 1992.

[ANH84] R de Nicola and M Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34(1), 1984.

[GH97] M Goldsmith and J Hulance. Application of CSP and FDR to safety-critical
systems: Investigation of refinement properties of fault tolerance and pro-
totype implementation of analysis techniques. DERA project report, 1997.

[Hen88] M Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

[Ros97] A W Roscoe. The Theory and Practice of Concurrency. Prentice-Hall,
1997.

[RWWO94] A W Roscoe, J C P Woodcock, and L Wulf. Non-interference through
determinism. In European Symposium on Research in Computer Security,
volume 875 of Lecture Notes in Computer Science. Springer Verlag, 1994.

[Sch99a] S A Schneider. Abstraction and testing. Technical Report TR-99-02, Royal
Holloway, 1999.

[Sch99b] S A Schuneider. Concurrent and real-time systems: the CSP approach. John
Wiley, 1999. to appear.

	Introduction
	Notation
	Testing
	May Testing
	Must Testing
	Changing Views
	Examples

	Denotational Characterisations
	May Equivalence
	Must Equivalence
	Congruence

	Non-interference
	Atomicity and Fault-Tolerance
	Summary

