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Abstract. Detecting faults in specifications can help reduce the cost
and risk of software development because incorrect implementation can
be prevented early. This goal can be achieved by verifying the consis-
tency and validity of specifications. In this paper we put forward speci-
fication testing as a practical technique for verification and validation of
formal specifications. Our approach is to derive proof obligations from a
specification and then test them, in order to detect faults leading to the
violation of consistency or validity of the specification. We describe proof
obligations for various consistency properties of a specification, and sug-
gest the use of five strategies for testing them. We provide a method for
testing implicit specifications by evaluation rather than by prototyping,
and criteria for interpreting the meaning of test results.

1 Introduction

It is desirable and important to detect faults in a specification (for requirements
or design) before it is implemented, in order to reduce the cost and risk of soft-
ware development [1, 2]. Faults may arise if the consistency of the specification
is violated or the user requirements are misrepresented by the specification. A
specification is consistent if there exists a computational model for its implemen-
tation. A specification is valid if it expresses the user requirements satisfactorily.

To support verification and validation of formal specifications, we suggest spec-
ification testing as a practical technique. Our target is to deal with implicit
or nonprocedural specifications, possibly involving pre and postconditions like
those in VDM [3] or Z [4]. Such a specification is often not executable, but can
often be evaluated for a given input and output. In addition, we also expect to
deal with the complex constructs composed of implicit formal specifications for
components. Our approach is to combine the ideas of formal proof and program
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testing. The principle of this combination is that formal proof obligations indi-
cate what to verify for what purpose, whereas testing offers the idea of using
test cases to check proof obligations.

1.1 Specification Testing

By specification testing, we mean presentation of inputs and outputs to a specifi-
cation, and evaluation to obtain a result—usually a truth value. As the postcon-
dition of an implicit operation usually describes the relation between its inputs
and outputs, an evaluation of the postcondition needs both inputs and outputs.
This is slightly different from program testing, as discussed in detail later in
this section. Our concrete approach to testing is to derive a proof obligation
expressing the consistency property of the testing target (e.g., invariant, oper-
ation, composition of operations), and then test the proof obligation with test
cases—selected inputs and outputs. The proof obligation is a necessary prereq-
uisite for the testing target to be consistent in terms of the semantics of the
formal specification language in which the target is written. For this reason, the
proof obligation is usually derived based on the semantics of the testing target.

Similar to conventional program testing [5], testing a specification also consists
of three steps: (1) test case generation; (2) evaluation of proof obligations that
are logical expressions derived from the specification; and (3) analysis of test
results, as illustrated in Figure 1. Two methods for generating test cases can be
used. One is to produce test cases based on the proof obligations derived from
the specification. This is similar to structural testing for programs where test
cases are based on examination of program structure. In this method, there is
no need to provide expected test results, because the meaning of the testing is
interpreted based on the established criteria (which is mainly for checking consis-
tency). Another method is based on informal user requirements. This is similar
to functional testing for programs, where test cases are based on a functional
description of the program. In this method, expected test results are required, in
order to check whether or not the specification expresses satisfactorily the user
requirements. An evaluation of a logical expression is a process of computing
the expression with a test case to yield true or false. Analysis of test results
determines the nature of the test, and possibly indicates the existence of faults
in the specification.

To test an entire specification, unit testing and integration testing can be con-
ducted for different objectives. Unit testing aims to detect faults in each compo-
nent which can be an invariant, operation or object; whereas integration testing
tries to uncover faults occurring in the integration of operations (e.g., functional
compositions by control constructs or message communications), and to check
whether the required services are specified satisfactorily.

When testing an operation (which can be a method for object-oriented specifica-
tion language like Object-Z [6]), it is necessary to treat the state variables before
and after the operation, for example, ←−x and x in VDM [3]; x and x′ in Z [4], as
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Fig. 1. The process of specification testing

inputs and outputs of the operation, respectively. This will allow an evaluation
of the postcondition of the operation and a verification of whether the change
of the state by this operation is satisfactory in both its consistency and validity.

Specification testing has two major differences from program testing. To test the
specification of an operation, for example, we need test cases for both input and
output variables, whereas we need only for input variables to run the program in
program testing (although we need to supply the expected results for test results
analysis). Another difference is that testing a specification involves evaluation
of logical expressions but does not involve running any program, which allows
the system to be tested before its implementation, whereas testing a program
entails running the program.

1.2 Related Work

Specification testing is much less researched than program testing, and only a
few reports are in the literature. Testing implicit formal specifications is espe-
cially not well studied. In contrast to this situation, specification-based testing
for programs has attracted much more attention from the research community.

An early and important work on testing formal specifications was done by Kem-
merer [2]. He argued that testing specifications early in the software life cycle
to discover whether a formal specification has a satisfiable implementation and
whether the specification satisfies its critical and desired functional requirements
can help ensure the reliability of systems and reduce cost. Kemmerer proposed
two approaches to testing nonprocedural formal specifications, and applied them
to specifications written in the Ina Jo language. One is by prototyping, that is,
transforming a nonprocedural specification into a procedural form and then us-
ing the latter as a rapid prototype for testing. The other approach is by symbolic
execution, that is, performing a symbolic execution of the sequence of operations
and checking the resultant symbolic values to see if they define the desired set
of resultant states.

Recent work on testing object-oriented formal specifications was undertaken by
Chen and Liu [7]. We suggested using specification testing as an alternative to



Verifying Consistency and Validity of Formal Specifications by Testing 899

theorem proving in order to verify whether the required properties are satisfied
by the specification for finite test cases. However, the proposed technique was
applied only to specification components (e.g., invariants, methods), not to their
integration. No well-defined criteria for test case generation were given either.

Specification-based testing is another area of research related to specification
testing [8, 9, 10]. Although related to each other, specification testing and spec-
ification-based testing are different in a number of ways. First, their targets are
different. The former aims to test the specification itself, whereas the latter aims
to test the program that implements the specification. Second, the former tries
to detect faults in requirements and design, whereas the latter attempts to find
faults in the program which may lead to violation of the specification. Third, test
cases are not necessarily generated based on the structure of the specification for
the former, whereas for the latter test cases are generated based on the structure
of the specification. Finally, testing specifications involves evaluation of logical
expressions, whereas specification-based testing entails running the program.

1.3 Contributions

We make three major contributions in this paper. Firstly, we suggest a new ap-
proach to testing implicit formal specification by evaluation of proof obligations
derived from the specification. Secondly, we suggest the use of five strategies
for testing logical expressions, which can be applied to test proof obligations for
consistency and specifications themselves for validity. Finally, we provide criteria
for interpreting the meaning of a test result to determine whether or not a fault
is found by the test.

We apply the proposed approach to SOFL (Structured Object-based Formal
Language), and describe proof obligations for verifying consistency properties
of the SOFL constructs: invariants, condition processes (similar to VDM oper-
ations), condition data flow diagrams which integrate condition processes, and
decompositions of condition processes.

We choose SOFL to apply the proposed technique, because SOFL integrates the
advantages of classical data flow diagrams, Petri nets, and VDM-SL, and has
begun to be applied to real projects [11, 12, 13]. Due to this feature, the technique
applied to SOFL specifications in this paper can also be applied to commonly
used data flow diagrams, Petri nets and model-oriented formal specifications,
such as VDM, Z, and B-method [14]. For the sake of space, no introduction to
SOFL is given in this paper. The reader who is interested in the details of SOFL
can refer to the author’s previous publications [11, 15, 12].

The remainder of this paper is organized as follows. Section 2 describes strategies
for testing logical expressions in general which can be applied to test proof
obligations. Section 3 discusses unit testing, including testing of specification
invariants and condition processes. Section 4 focuses on integration testing to
show how to test condition data flow diagrams. Section 5 addresses the issue
of verifying decomposition of condition processes. Finally, in section 6 we give
conclusions and outline future research.
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2 Testing Logical Expressions

As described previously, the fundamental step in testing a specification is to
test the logical expressions that represent the proof obligations derived from the
specification. In this section we discuss strategies for testing logical expressions.

Definition 2.1 Let P (x1, x2, . . . , xn) be a logical expression containing free
variables x1, x2, . . . , xn. A test case for P is a group of values v1, v2, . . . , vn bound
to x1, x2, . . . , xn, respectively, and a test set for P is a non-empty set of test cases.

Note that a test set for P can be a single test case as well.

Definition 2.2 Let P be a logical expression. A test suite for P is a set of pairs
{(T 1

c , E1
r ), (T 2

c , E2
r ), . . ., (T m

c , Em
r )} where T i

c (i = 1...m) are test cases and Ei
r

are expected results corresponding to test cases T i
c .

As testing a logical expression involves evaluation of the expression to either
true or false, each Ei

r in fact is a truth value.

Definition 2.3 Let P be a logical expression and Td a test set for P . A test of
P is a set of evaluations of P with all the test cases in the test set Td.

Definition 2.4 Let P be a logical expression and Ts a test suite for P . A test
report of P can be one of the two forms. One is a set of triplets {(T 1

c , E1
r , A1

r),
(T 2

c , E2
r , A2

r), . . ., (T m
c , Em

r , Am
r )} where T i

c (i = 1...m) are test cases; Ei
r and

Ai
r are expected and actual results corresponding to test cases T i

c , respectively.
Another form is a set of pairs {(T 1

c , A1
r), (T

2
c , A2

r), . . . , (T
m
c , Am

r )}.
For example, suppose P ≡ x > 0 ∧ x < 10/y, where ≡ means “is defined
syntactically as”; x and y denote a real number and an integer, respectively,
then

(1) (x = 2.0, y = 5) is a test case for P .

(2) {(x = −1.0, y = 4), (x = 1.0, y = 0), (x = 1.5, y = 2)} is a test set for P .

(3)
x y Er

-1.0 4 false
1.0 0 true
1.5 2 true

shows a test suite for P .

(4)
x y Er P

-1.0 4 false false
1.0 0 true *
1.5 2 true true

shows a test report of P , where * is a logical value, representing “undefined”.
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For convenience, it is assumed that logical expressions under discussion are in
disjunctive normal form (DNF). The primary intent is that each clause in each
logical expression is tested independently.

We suggest five strategies for testing logical expressions with different objectives,
each imposing a different constraint on selection of test cases.

Let P ≡ P1∨P2∨· · ·∨Pn be a disjunctive normal form and Pi ≡ Q1
i∧Q2

i∧· · ·∧Qm
i

be a conjunction of relational expressions Qj
i which are atomic components,

where i = 1...n and j = 1...m. We treat a quantified expression as an atomic log-
ical expression (the same level as a relational expression) in Pi. When generating
a test case for a universal quantifier, for example ∀x∈nat ·x+1 > x, we generate
a finite subset of the infinite natural number type nat, say {0, 1, ..., 1000}, to
replace nat in this quantified expression. Let Td be a test set for P .

Strategy 1 Evaluate P with Td to true and false, respectively.

This strategy is illustrated by table 1.

Table 1. Strategy 1

P

true

false

Strategy 2 Evaluate Pi with Td for every i = 1...n to true and false, respec-
tively.

Table 2 explains this strategy.

Table 2. Strategy 2

P1 P2 P3 ... Pn

true ? ? ... ?

false ? ? ... ?

? true ? ... ?

? false ? ... ?

. . . ... .

. . . ... .

. . . ... .

? ? ? ... true

? ? ? ... false

where ? denotes either true or false.
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Although it is possible to test the cases of each disjunct Pi being true and false
respectively by using this strategy, we cannot guarantee that each disjunct be
evaluated to true while every other disjunct to false. To overcome this weakness,
a strengthened strategy is given as follows.

Strategy 3 Evaluate Pi with Td to true while all P1, . . . , Pi−1, Pi+1, . . . , Pn to
false, and to false while all P1, . . . , Pi−1, Pi+1, . . . , Pn to true, respectively.

This strategy is illustrated by table 3.

However, for some logical expressions, for example, x > 0∨x > 3, it is impossible
to directly apply this strategy because when x > 3 evaluates to true, there is
no way to evaluate x > 0 to false. In this case, either the logical expression (or
the corresponding specification) needs to be modified or Strategy 2 needs to
be applied.

Table 3. Strategy 3

P1 P2 P3 ... Pn

true false false ... false

false true false ... false

false false true ... false

. . . ... .

. . . ... .

. . . ... .

false false false ... true

Strategy 4 When evaluating Pi to true with Td, evaluate every Qj
i to true.

When evaluating Pi to false, evaluate Qj
i to false for every j = 1...m, respec-

tively.

This strategy is for testing a disjunct of P which is a conjunction of sub-
expressions. Table 4 illustrates this strategy.

Table 4. Strategy 4

Q1 Q2 Q3 ... Qm

true true true ... true

false ? ? ... ?

? false ? ... ?

. . . ... .

. . . ... .

. . . ... .

? ? ? ... false
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Strategy 5 When evaluating Pi to true with Td, evaluate every Qj
i to true.

When evaluating Pi to false, evaluate Qj
i to false while all Q1

i , . . . , Q
j−1
i , Qj+1

i ,
. . ., Qn

i to true.

This strategy imposes a stronger restriction on evaluation of conjuncts than
previous one. It is illustrated by table 5.

By convention in program testing, a successful test means that a fault is detected
by the test, whereas a failed test means that no fault is detected by the test. We
also follow this convention in this paper.

Table 5. Strategy 5

Q1 Q2 Q3 ... Qn

true true true ... true

false true true ... true

true false true ... true

true true false ... true

. . . ... .

. . . ... .

. . . ... .

true true true ... false

3 Unit Testing

Unit testing includes testing of invariants and condition processes.

3.1 Testing Invariants

For brevity, our discussion focuses on invariants which involve only a single
bound variable. The same testing method can be easily extended to invariants
containing multiple bound variables.

Let an invariant Inv be

forall[x inset D | P (x)]

where D can be a basic type (e.g., integers, natural numbers) or a constructed
type. For the meaning of SOFL operators occurring in this paper, see Appendix
A.

The invariant describes a property of all the elements of the type D which is
expected to be sustained throughout the entire system. To enable the invariant
to serve this purpose, it is necessary to ensure that the invariant is defined
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consistently and as desired. This can be tested by applying any of the Strategy
1 to 3.

Consistency Testing Consistency testing aims to check whether an invariant
satisfies the required proof obligation or not. To this end, we need to give a
precise meaning of the proof obligation for an invariant.

Definition 3.1 Let D = R (D is a type identifier declared as the type R) and
inv = forall[x inset D | P (x)] be an invariant of D (actually both the declara-
tion and the invariant define the type D). The proof obligation for ensuring its
consistency is:

∃r∈R · P (x).

In other words, as long as we find a value of the type R that satisfies the property
P , we will have demonstrated that the invariant inv is consistent. However, if
none of the test cases in a test set of such kind satisfies the property P , we
cannot assert that the invariant is inconsistent because of the limitation of test
set, although it may weaken the belief that the invariant is consistent.

For example, let the type Customer be defined as

Customer = composed of
id: int
name: string
end.

where int denotes integers.

Its invariant Inv be

forall[x inset Customer | x.id >= 0010 and x.id < 1000 and len(x.name) <= 15].

Testing this invariant can be done by testing its proof obligation:

∃r∈R · r.id >= 0010 and r.id < 1000 and len(r.name) <= 15,

where
R ≡ composed of

id: int
name: string
end.

To this end, we need to generate test cases for the bound variable r in the proof
obligation that are values of the type R.

A test report containing five test cases generated by applying Strategy 1 is
given in table 6.
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Table 6. A test report for the proof obligation

r Proof obligation

(0000, “Mark”) false

(0001, “John”) false

(0011, “Mike”) true

(0350, “Chris”) true

(0023, “Ginny”) true

Obviously this test is a failed test because the property given in the proof obli-
gation evaluates to true on three test cases (although only one is sufficient for
our purpose). By definition this invariant is consistent.

Validity Testing Validity testing of an invariant is intended to verify the prop-
erty defined by the invariant against the user or designer requirements. This can
be done by evaluating directly the invariant itself rather than its proof obliga-
tion. When generating a test set, the expected test results must be supplied for
test result analysis, that is, a complete test suite must be produced. The test
suite may be generated on the basis of informal user requirements, it may also
be produced based on the structure of the invariant using any of Strategy 1 to
3 given in section 2.

Consider the same invariant Inv as an example. A test report containing five
test cases is given in table 7.

Table 7. A test report for invariant Inv

x Expected results Inv

(0000, “Mark”) false false

(0001, “John”) false false

(1999, “Sue”) true false

(0011, “Mike”) true true

(0350, “Chris”) true true

As the expected test result for the third test case (i.e., true) is different from the
actual test result false, this test is a successful test by definition, indicating the
existence of a fault in the invariant (assuming there is no error in the expected
result). The fault might be x.id < 1000 as the intended invariant may be

forall[x inset Customer | x.id >= 0010 and x.id < 10000 and len(x.name) <= 15].
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3.2 Testing Condition Processes

A condition process in SOFL is like an operation in VDM [3]. To test a condition
process, we need to generate test cases for the input parameters, output parame-
ters, and external variables before and after a firing (execution) of the condition
process. Similar to testing an invariant, two aspects of a condition process can
be tested, consistency and validity.

Consistency The goal of consistency testing is to check whether a condition
process satisfies its proof obligation using test cases. For brevity, our discussion
is limited to the condition processes that involve only one external variable.

Let CP be condition process, represented concisely as

CP : [I, O, E, pre, post]

where I is the set of input parameters; O is the set of output parameters; E
is the set of external variables occurring in pre and/or post (e.g., data stores
connecting to this condition process can be such variables); pre and post are the
pre and postconditions of condition process CP .

Note that in the postcondition, we use ~x and x, for example, to represent the
values of external variable x before and after a firing of the condition process,
respectively.

The proof obligation for condition process CP is

∀~x∈Σ • pre(I, ~x)⇒ ∃x∈Σ • post(I, x, ~x, O) (1)

It means that for every initial value of the external variable ~x in the state
Σ, if it, together with all the values bound to input parameters, satisfies the
precondition, there must exist a final value for the external variable x such that
it, together with its initial value and all the values bound to input and output
parameters, satisfies the postcondition. For brevity, we call all the values bound
to input parameters, read only state variables, and decorated external variables
(e.g. ~x) inputs and all the values bound to output parameters and write and
read state variables outputs.

For convenience, we represent a (single) test case as a pair of sets < Iv, Ov >,
where Iv is input and Ov output. For example, < {2, 3, 4}, {20, 32} > can be
a test case for a condition process with three input parameters and two output
parameters.

Definition 3.2 Let Td = {T1, T2, . . . , Tn} be a test set and Ti =< Ii
v, Oi

v > for
i = 1...n. If for every Ii

v satisfying the precondition there exists an Oj
v (j = 1...n)

in Td such that the proof obligation 1 evaluates to true, we say the test with Td

is a failed test for CP . Otherwise, the test is a non-confident test.

It is worth noting that in evaluating the pre and postconditions it must take into
account that the values of all the variables satisfy the invariants of their associ-



Verifying Consistency and Validity of Formal Specifications by Testing 907

ated types. In other words, by saying that the values of all the variables satisfy
the pre or postcondition we mean that they satisfy both the pre or postcondition
and the invariants of their associated types.

If the proof obligation is discharged by the test, namely the proof obligation
evaluates to the expected truth values on the test set used for the test, the test
will be a failed test because no fault is detected by this test. A non-confident test
indicates a doubt whether the testing target (e.g., condition process) satisfies the
required proof obligation. However, this does not necessarily imply that a fault
exists in the target, as the test set, in particular the values bound to output
variables, may not be selected appropriately.

For example, a condition process Search is given below. It takes an integer greater
than or equal to five and checks whether it occurs in a given sequence. If the
integer is found, its position in the sequence, a natural number, is supplied as
the result; otherwise, zero is provided as the result.

c-process Search(x: int) index: nat
ext rd list: seq of int
pre x >= 5 and elems(list) <> { }
post exists[i inset inds(list) | list[i] = x and index = i] or

x notin elems(list) and index = 0
end-process

To test this condition process, we need to produce a set of test cases for the
input parameter x, the external variable list, and the output parameter index.
By taking Strategy 1, we produce a test report given in table 8.

Table 8. A test report for Search

x list index prd1 prd2 pod1 pod2 prec postc spec

5 [0, 8] 0 true true false true true true true

5 [0, 8] 2 true true false false true false false

15 [ ] 2 true false false false false false true

6 [0, 2, 6] 3 true true true false true true true

where
prd1 ≡ x >= 5,
prd2 ≡ elems(list) <> { },
prec ≡ x >= 5 and elems(list) <> { },
pod1 ≡ exists[i inset inds(list) | list[i] = x and index = i],
pod2 ≡ x notin elems(list) and index = 0,

postc ≡ exists[i inset inds(list) | list[i] = x and index = i] or
x notin elems(list) and index = 0,

spec ≡ prec ⇒ postc.
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In this test the two groups of inputs (5, [0, 8]) and (6, [0, 2, 6]) satisfy the
precondition prec, respectively, and there exist the outputs 0 and 3 such that
the proof obligation spec evaluates to true, respectively. By definition this is
a failed test for Search. Note that we do not consider the input (15, [ ]) as it
does not satify the precondition, nor the test case ((5, [0, 8]), 2) because of the
existence of test case ((5, [0, 8]), 0).

It is evident that the more quality tests are conducted, the more evidence they
provide as to the satisfiability of the condition process.

Validity Validity testing for a condition process aims at verifying the consis-
tency between the specified functionality of the condition process and the desired
functionality required by either the user or designer.

When carrying out a validity testing, we need to produce both test cases and the
expected results. If the actual test results are the same as the expected results,
the test is a failed test, namely no fault is detected by the test. Otherwise, it is
a successful test.

Table 9 shows a failed test for condition process Search. Er represents the ex-
pected results.

Table 9. A validation test for Search

x list index Er prd1 prd2 pod1 pod2 prec postc spec

5 [0, 8] 0 true true true false true true true true

5 [0, 8] 2 false true true false false true false false

15 [ ] 2 true true false false false false false true

6 [0, 2, 6] 3 true true true true false true true true

4 Integration Testing

A condition data flow diagram (CDFD) integrates condition processes by data
flows and/or data stores. A sensible strategy for integration testing is to test
every construct occurring in the CDFD in order to cover all the possible paths,
where a path is a sequence of data flows from a starting condition process to a
terminating condition process. A starting condition process is a condition process
whose input data flows are not outputs of any other condition process in the same
CDFD. It can also be a source (i.e., a condition process without any input data
flow). A terminating condition process is a condition process whose output data
flows are not inputs to any other condition process in the same CDFD. It can
also be a sink (i.e., a condition process without any output data flow).
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Our approach to testing a construct is to derive its proof obligation for ensuring
the consistency and then test the proof obligation.

4.1 Testing Sequential Constructs

Figure 2(a) shows a sequential construct in a CDFD. We call this a sequential
construct in the sense that only after firings of condition processes A1, A2, . . . , An,
is a firing of condition process B possible. If condition processes A1, A2, . . . , An,
and B are specified consistently, they must guarantee that when xi satisfy the
postcondition of Ai (i = 1...n) under the constraint of its precondition, they will
satisfy the precondition of B.

A1

A2

x1

x2
B

x

B1

B2

Bn

Bn+1

(c)

y

(b)

C(x)
yes

B
x

C(x)

yes

no

B1

B2

(a)

.

.

.

.

.

.

x

xn

An

c1(x)

cn(x)

.

c2(x)

..
. ..

Fig. 2. The Constructs in CDFDs

Formally, this proof obligation is expressed as:

(preA1 ∧postA1(x1))∧ (preA2 ∧postA2(x2))∧· · · ∧ (preAn ∧postAn(xn))⇒ preB

(2)

where each postAi(xi) is the sub-logical expression of the postcondition postAi

which contains variable xi (i = 1...n). For example, let postA1 ≡ x1 > a and
x1 < 10 or x1 > a + 10 or y < a, where a is an input to A1 constrained by its
precondition preA1 , then postA1(x1) ≡ x1 > a and x1 < 10 or x1 > a + 10.

In comparison with testing of invariants and condition processes, testing this
proof obligation is more effective in detecting faults. That is, we can definitely
determine whether a test is a successful or failed test.
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Definition 4.1 Let Td = {T1, T2, . . . , Tn} be a test set for the proof obligation 2.
If every single evaluation of this expression with each Ti (i = 1...n) satisfies the
condition that when (preA1 ∧ postA1(x1))∧ (preA2 ∧ postA2(x2))∧ · · ·∧ (preAn ∧
postAn(xn)) evaluates to true, preB also evaluates to true, then the test with Td

is a failed test. Otherwise, if there exists any Ti such that preB evaluates to false
whereas (preA1 ∧postA1(x1))∧ (preA2 ∧postA2(x2))∧· · · ∧ (preAn ∧postAn(xn))
evaluates to true, the test with Td is a successful test.

This definition provides a precise rule for determining whether or not a fault is
detected by a test. For the sake of space, we do not give further illustration of
this kind of testing by examples.

4.2 Testing Conditional Constructs

There are three kinds of conditional constructs in SOFL: IF-THEN, IF-THEN-
ELSE and CASE, as given in Figure 2(b) and (c). As testing of these constructs
share the same nature as for sequential constructs, we try to keep the discussion
as brief as necessary.

IF-THEN The construct of this kind is illustrated by the graphical represen-
tation on the left hand side in Figure 2(b). Its proof obligation is:

pre ∧ post(x) ∧ C(x)⇒ preB (3)

where pre is the precondition of the preceding condition process; post(x) is the
sub-logical expression of its postcondition which contains variable x; and preB

is the precondition of the condition process B.

The rule for determining a successful test or failed test for sequential constructs
given in Definition 4.1 can be applied to testing expression 3 if substituting
pre∧post(x)∧C(x) for (preA1∧postA1(x1))∧(preA2∧postA2(x2))∧· · ·∧(preAn∧
postAn(xn)).

IF-THEN-ELSE This construct is illustrated by the graphical representation
on the right hand side in Figure 2(b). Its proof obligation is

pre ∧ post(x) ∧C(x)⇒ preB1 (4)

pre ∧ post(x) ∧ ¬C(x)⇒ preB2 (5)

Testing this proof obligation can be performed by testing expressions 4 and 5
respectively with the same method used for IF-THEN constructs.
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CASE A CASE construct represents a multiple selection which is depicted by
Figure 2(c). Its proof obligation is

pre ∧ post(x) ∧Ci(x)⇒ preBi (6)

pre ∧ post(x) ∧ ¬(C1(x) ∨ · · · ∨ Cn(x))⇒ preBn+1 (7)

where i = 1...n.

If x satisfies condition Ci(x), the precondition of the associated condition pro-
cess Bi needs to be assured by the conjunction pre ∧ post(x) ∧ Ci(x) so that
the condition process Bi can be fired correctly. If x does not satisfy any of
C1(x), . . . , Cn(x), the precondition of condition process Bn+1 must be assured
for firing Bn+1 correctly.

Again, testing this proof obligation can be performed by testing expressions 6
and 7 respectively with the same method used for IF-THEN constructs.

5 Testing Decompositions

A complete SOFL specification is a structured hierarchy of CDFDs, in which a
condition process at one level may be decomposed into a CDFD at a lower level.
The decomposition of a condition process defines how its inputs are transformed
to its outputs in detail. While it needs to implement the specified functions of the
high level condition process, the decomposition may also provide some additional
functions under the constraint of the high level condition process specification
in a strict refinement manner. That is, the decomposition must be a refinement
of the high level condition process.

The rules for operational refinement have been well studied by researchers in the
field [16, 3]. Those rules can also be applied to the decomposition of condition
processes in SOFL.

Suppose a condition process OP is decomposed into a CDFD G. Let preOP

and postOP denote the pre and postconditions of OP , respectively. Let preG

and postG represent the pre and postconditions of G, respectively. The proof
obligation for the decomposition

preOP ⇒ preG (8)

preOP ∧ postG ⇒ postOP (9)

must be satisfied by OP and G.
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Fig. 3. An illustration of decomposition

A method for testing this proof obligation is that the same inputs generated for
testing condition process A are used to test G. To keep the description concise,
we only use a simple example to illustrate this method. Let condition process A
in Figure 3(a) is decomposed into the CDFD, named G, in Figure 3(b). As G
is a diagram, not a single condition process, when testing it we must first carry
out unit testing for each condition process occurring in G, starting with the
condition process A1 and ending up with both A3 and A4, and then carry out
integration testing to ensure the consistency between the condition processes.
An essential idea we need to bear in mind in such a test is that A must share the
same inputs in the test cases with A1 and share the same outputs with A3 and
A4. In analysis of the test results, certain conditions must be checked to decide
whether a fault exists or not. Let Td be a test set for A. Then these conditions
are

preA ⇒ preA1

preA ∧ postA1 ⇒ preA2 ∧ preA3

preA2 ∧ postA2 ⇒ preA4

(preA3 ∧ postA3) ∧ (preA4 ∧ postA4)⇒ postA

6 Conclusions and Future Research

This paper has proposed specification testing as a method for verifying and vali-
dating formal specifications, in order to help reduce the cost and risk of software
development. The target is to deal with implicit or nonprocedural specifications
and their integrations. The method is based on the combination of the ideas
of formal proof and program testing. When testing a specification, the logical
expressions which represent proof obligations for consistency are derived from
the specification, and then the expressions are tested. Different criteria can be
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used to determine whether a test is a successful test, failed test, or non-confident
test, depending on what the logical expressions represent. We have presented five
strategies for testing logical expressions, which serve as guidelines for test case
generation. We have also described how this testing method can be applied to
SOFL to verify the consistency of specification components (e.g., invariants, con-
dition processes), condition data flow diagrams (CDFDs), and decompositions of
condition processes. Furthermore, validation of formal specifications by testing
is also discussed.

Several important issues remain for our ongoing and future research. We are
interested in investigating concrete and effective techniques for test case gen-
eration. To this end, we plan to conduct a relatively large scale case study of
testing the specification for a “University Information System” which was devel-
oped using SOFL at Hiroshima City University. Another area of investigation is
automatic test case generation. Furthermore, it is our belief that an effective tool
support is crucial to the application of the technique for testing specification put
forward in this paper. The author has been working with a research student on
the construction of such a tool, and will continue to improve the tool in the near
future.
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Appendix A

SOFL operators Equivalent VDM-SL operators

forall[x inset D | P(x)] ∀x ∈ D • P (x)
exists[x inset D | P(x)] ∃x ∈ D • P (x)
notin /∈
inset ∈
and ∧
or ∨


	Introduction
	Specification Testing
	Related Work
	Contributions

	Testing Logical Expressions
	Unit Testing
	Testing Invariants
	Testing Condition Processes

	Integration Testing
	Testing Sequential Constructs
	Testing Conditional Constructs

	Testing Decompositions
	Conclusions and Future Research

