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{hoff,kropf}@informatik.uni-tuebingen.de

Abstract. Boolean equivalence checking has turned out to be a powerful method
for verifying combinatorial circuits and has been widely accepted both in
academia and industry.
In this paper, we present a method for localizing and correcting errors in com-
binatorial circuits for which equivalence checking has failed. Our approach is
general and does not assume any error model. Thus, it allows the detection of
arbitrary design errors. Since our method is not structure-based, the produced re-
sults are independent of any structural similarities between the implementation
circuit and its specification. It can even be applied if the specification is given,
e.g., as a propositional formula, a BDD, or in form of a truth table.
Furthermore, we discuss two kinds of circuit abstractions and prove compatibility
with our rectification method. In combination with abstractions, we show that our
method can be used to rectify large circuits.
We have implemented our approach in the AC/3 equivalence checker and circuit
rectifier and evaluated it with the Berkeley benchmark circuits [6] and the
ISCAS85 benchmarks [7] to show its practical strength.

Keywords: Automatic error correction, design error diagnosis, equivalence
checking, formal methods

1 Introduction

In recent years, formal verification techniques [11] have become more and more so-
phisticated and for several application domains they have already found their way
into industrial environments. Boolean equivalence checking [13,4,16], mostly based on
BDDs [8,9], is unquestionably one of these techniques and is usually applied during the
optimization process to ensure that an optimized circuit still exhibits the same behavior
as the original “golden” design. When using BDDs for representing Boolean functions,
the verification task mainly consists of creating a BDD for the Boolean function of each
output signal. Then, due to the normal form property of BDDs, both signals implement
the same function if and only if they have the same BDD representation. Hence, equiv-
alence can be decided by simply comparing both BDDs.

A major requirement for successful application of formal methods in industrial en-
vironments is the ability of a verification tool to provide useful information even when
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the verification attempt fails. Then, the application domain of formal verification is no
longer restricted to proving correctness of a specific design, but it can also be used as a
debugging tool and therefore helps speeding up the whole design cycle.

If equivalence checking fails, most verification tools only allow the computation of
counterexamples in the form of combinations of input values for which the output of
the optimized circuit differ from its specification. Therefore, in many cases it remains
extremely hard to detect the error causing components. Counterexamples as produced
by most equivalence checkers can only serve as hints for debugging a circuit, while a
deeper understanding of the design is still needed.

In recent years, several approaches have been presented for extending equivalence
checkers with capabilities not only to compute counterexamples, but to locate and rec-
tify errors in the provided designs. The applicability of such a method is strongly influ-
enced by the following aspects:

– Which types of errors can be found ?
– Does the method scale to large circuits ?
– How many modifications in the original circuit are needed for correction ?
– Does the method perform well if both circuits are structurally different ?

Most earlier research [20,10,17,18,21,19] in the area of automatic error correction as-
sumes a concrete error model based on a classification of typical design errors going
back to Abadir et. al. [1]. Errors are divided into gate errors (missing gate, extra gate,
wrong logical connective) and line errors (missing line, extra line). Each gate is basi-
cally checked against these error classes and most approaches can only handle circuits
with exactly one error (single error assumption).

In [15] and [14], no error model is assumed. The method presented in [15] prop-
agates meta-variables through the circuit. Erroneous single gates are determined by
solving formulas in quantified propositional logic. However, the method is very time
consuming and needs to invoke a propositional prover.

In [14], the implementation circuit and the specification circuit are searched for
equivalent signal pairs and a back substitution algorithm is used for rectifying the cir-
cuit. The success of this method highly depends on structural similarities between the
implementation and the specification.

Incremental synthesis [3,5] is a field closely related to automatic error correction.
An old implementation, an old specification, and a new specification are given. The
goal is to create a new implementation fulfilling the new specification while reusing as
much of the old implementation as possible. In [5], structural similarities between the
new specification and the old specification are exploited to figure out subparts in the
old implementation that can be reused. The method is based on the structural analysis
technique in [2] and the method presented in [4] which uses a test generation strategy
to determine equivalent parts in two designs.

In this paper, we present a method for localizing and correcting errors in combina-
torial circuits based on Boolean decomposition and abstraction. The main contributions
of our approach can be summarized as follows:

– Unlike [20,10,17,18,21], our approach does not assume any error model. Thus,
arbitrary design errors can be detected.
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– Our method is not structure based. Only the abstract BDD representation of the
specification is considered. Thus, the success of our algorithm does not depend
on any structural similarity between the implementation and the specification. Our
technique can even be applied in scenarios where the specification is given as a
Boolean formula, a truth table, or directly in form of a BDD. This is in contrast to
structure based methods such as [14,3,5] that can only be applied if both circuits
are structurally similar.

– Circuit rectifications are computed in form of a BDD and then converted back to
a net-list description. This is in contrast to techniques such as [14,3,5] which ba-
sically modify a given design by putting the implementation and specification to-
gether and “rewiring” erroneous parts.

– Computed solutions are weighted by a cost function in order to find a minimal
solution – a solution that requires minimal number of modifications in the imple-
mentation.

– Our rectification procedure can be combined with circuit abstractions. In this paper,
we discuss two kinds of circuit abstractions which are compatible with our method.
We prove a correctness theorem showing how rectifications computed for abstract
circuits can be lifted to circuit corrections for the original unabstracted circuits.

– We have implemented the rectification and abstraction algorithms in the AC/3 [12]
equivalence checker and circuit rectifier and evaluated the method with the Berke-
ley benchmark circuits [6] and the ISCAS85 benchmarks [7]. Our experimental
results show that in combination with abstraction, our rectification method can be
applied to large designs.

This paper is organized as follows: In Section 2, we give a brief introduction to the
theoretical background and Section 3 defines the formalism how combinatorial circuits
are represented. Section 4 describes the rectification algorithm and Section 5 introduces
circuit abstractions. Section 6 addresses the problem of rectifying multiple output cir-
cuits. We close our paper with experimental results in Section 7 and a conclusion in
Section 8.

2 Preliminaries

In the following, f, g, h, . . . denote propositional formulas and X, Y, Z, . . . represent
propositional variables. We use the symbol ≡ to denote logical equivalence between
propositional formulas while = is used for expressing syntactical similarity.

The positive and negative cofactor of f , written as f |X and f |¬X , represent the
functions obtained from f where X is instantiated by the truth values 1 and 0, respec-
tively. A formula f is said to be independent of X , if f |X ≡ f |¬X .

f↓g represents some Boolean function that agrees with f for all valuations which
satisfy g. For all other valuations, f↓g is not defined and can be chosen freely.

Assume we are given three propositional formulas f ,g, and h. The pair (g, h) is
called a decomposition of f , if there exists a variable X in g with

f ≡ g[X ← h] (1)
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If formulas f , g, and variable X are given, the decomposition problem is to compute
a formula h satisfying (1).

Example 1. Consider f = (A ∧ B) ∨ A and g = A ∨ X . (g, A ∧ B) and (g, A) are
both decompositions of f since f ≡ g[X ← (A ∧B)] and f ≡ g[X ← A]. Assuming
g = C ∧ X , there exists no decomposition for f since there is no term h such that
f ≡ g[X ← h].

3 Representing Combinatorial Circuits with Circuit Graphs

For the rest of this paper, we will use circuit graphs for representing combinatorial
circuits. For a given circuit C, the corresponding circuit graph is constructed by intro-
ducing a new node vc for each logical gate c in C. Wires are translated into transitions
such that there is a transition from vc1 to vc2 iff some input of gate c1 is connected with
the output of gate c2. Formally, we define circuit graphs as follows:

Definition 1. A circuit graph F is a rooted, directed acyclic graph (V, l, e). V is a set
of nodes with |V | < ∞. The function l labels every inner node of V with a logical
connective and every leaf of V with a propositional variable. The edge-function e maps
every node of v ∈ V to an element (v1, . . . , vn) ∈ V n where n is the arity of l(v). The
root-node of F is denoted by root(F ).

To simplify notation, we define the following abbreviations:

l(F) := l(root(F))
ei(v) := i-th element of e(v), i ≥ 1
F i(v) := sub-graph of F with root-node ei(v)
F i := F i(root(F))

Definition 1 is slightly stronger than the usual definition of labeled graphs where edges
are represented by a relation E ⊂ V × V . Using an edge-function e as defined above,
multiple edges to the same successor node (Fig. 1 (a)) are possible. Furthermore, the
successor nodes are implicitly ordered (Fig. 1 (b,c)). These properties cannot be ex-
pressed by using a relational edge-representation.

In the following, we restrict the set of logical connectives to ¬ (negation), ∧ (con-
junction), ∨ (disjunction), → (logical implication), ↔ (logical equivalence), and ⊕
(exclusive-or). Every node v of a circuit-graph F induces a Boolean function fv by

fv =




l(v) if v is a leaf
¬fe1(v) if l(v) = ¬

fe1(v) l(v) fe2(v) if l(v) ∈ {∧,∨,→,↔,⊕}
To simplify notation we often identify a circuit graphF with its corresponding Boolean
function and write F instead of f root(F ) if it is clear from context.

We define two substitutions on circuit-graphs. Node substitutions replace a single
node v in a graph F by some other graph G (denoted by F [v ← G]) while variable
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Fig. 1. Graph a) is a circuit-graph where an edge appears twice. Graph b) and c) demon-
strate that an ordering on successors is necessary to distinguish the corresponding cir-
cuits.

substitutions replace every occurrence of some variable X by another graph G (denoted
by F [X ← G]). If σ is the name of the substitution, we also write σF instead of
F [v ← G] or F [X ← G], respectively.

Note that node substitutions as defined here only replace a single node in the circuit-
graph whereas variable substitutions replace all nodes that are labeled with the specified
variable.

Lemma 1. Let F ,G be two circuit-graphs. v is a node in F . Then, for all variable
substitutions σ,

σ (F [v ← G]) = (σF) [v ← σG] (2)

4 The Rectification Method

Let G be a combinatorial circuit represented as circuit graph. Further assume that G is
a single output circuit. F denotes some Boolean function represented either as another
combinatorial circuit (e.g., G could be the result of an optimization step applied to
F ), a propositional formula, a truth table, or directly as a BDD. Since we only use
the abstract BDD representation of F in our algorithm, the computed solutions are
totally independent of the structure of F . For the rest of this paper, we treat F as the
specification and G as the implementation.

Our goal is to modify the circuit-graph of G with a minimal number of changes such
that F ≡ G holds. Each such modification is called a rectification of G:

fig1.eps
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Definition 2. Let G be a circuit-graph and F some Boolean function with F �≡ G. v
denotes some node in the node-set of G. G is called F -rectifiable at v if there exists a
circuit-graphH such that

F ≡ G [v ← H] (3)

If F and v are clear from the context, we simply call G rectifiable.

The number of changes we have to apply to a given circuit is a crucial issue when
computing rectifications since we want to preserve as much of the circuit structure as
possible. In principle, we can always correct a wrong implementation by substituting
the whole circuit by a DNF-representation of the specification-formula. Obviously, this
is far away from what a designer would accept as circuit correction.

Our rectification procedure consists of two steps: the location of rectifiable sub-
graphs and the computation of circuit rectifications. For locating rectifiable sub-graphs
in G, we traverse the circuit-graph of G starting from the outputs. In our implementation,
we use a depth-first search strategy. For each node ξ, we determine if G can be rectified
at ξ. According to Definition 2, we have to check if there is a formula H such that
G[ξ ← H] is logically equivalent to the specification F . Replacing the sub-graph at ξ
by a newly introduced variable X , we can easily perform this test by checking if there
exists a term H such that (G[ξ ← X ],H) is a decomposition of F . For doing this, we
first create a BDD-representation for F and G[ξ ← X ]. Then, decomposability can be
decided with standard BDD operations according to the following lemma which is a
direct result from the theory of Boolean equations:

Lemma 2. Let f and g be two propositional formulas. X is a variable occurring in g.
Then, there exists a formula h with f ≡ g[X ← h] if and only if

f ∧ (g|¬X ↔ g|X) ≡ g ∧ (g|¬X ↔ g|X) (4)

Basically, Lemma 2 reflects the idea that we can find some h with f ≡ g[X ← h] iff f
and g agree on all valuations that are independent of X (expressed by g|¬X ↔ g|X ).

For computing circuit corrections, we first compute a formula H such that G[ξ ←
H] ≡ F . Again, this can be done by applying elementary BDD operations as the fol-
lowing lemma states:

Lemma 3. Assume f and g are decomposable in respect to variable X . Then,

f ≡ g [X ← [(g|X ↔ f) ∧ (g|X ⊕ g|¬X)]] (5)

In Lemma (5), the solution formula is obviously not unique. Here, the solution with
the smallest 1-set is being computed.

Using BDDs for representing Boolean functions, the application of Lemma 3 re-
turns a formula h which is also represented in form of a BDD. Thus, the BDD for h
first has to be converted back into a circuit-graphH before the rectification can be per-
formed. This conversion, however, directly influences the resulting graph structure. To
maximize the syntactical similarities between G and G[ξ ← H], we try to reuse as many
sub-graphs of G as possible. The heuristic implemented in AC/3 is to reuse the current
gate inputs or the set of inputs of the component containing ξ (when dealing with hier-
archical circuits). Assume G1, . . . ,Gn are the sub-graphs of G we want to reuse. Hence,
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Fig. 2. Reuse of sub-graphs. Variables G1, . . . , Gn denote newly introduced meta-
variables representing sub-graphs G1, . . . ,Gn, respectively.

our goal is to create a syntax-graphH for h containing G1, . . . ,Gn. To achieve this, we
construct a second BDD h′ as shown in Fig. 2. G1, . . . , Gn are newly introduced BDD
variables. Since for all m,

h↓G1∧...Gm−1
≡ Gmh↓G1∧...Gm−1∧Gm

∨ ¬Gmh↓G1∧...Gm−1∧¬Gm

≡ (Gmh↓G1∧...Gm−1∧Gm
∨ ¬Gmh↓G1∧...Gm−1∧¬Gm

)[Gm ← Gm]

the newly constructed BDD h′ in Fig. 2 is logical equivalent to h if we substi-
tute G1, . . . , Gn by the BDDs for G1, . . . ,Gn, respectively.

A crucial issue in the construction process is to check the possibility if h can be
exclusively constructed out of G1, . . . ,Gn and the logical connectives ∧, ∨, and ¬.
If h has this property, the sub-BDDs h↓f in Fig. 2 can always be simplified to 0 or 1.
Then, h′ only contains the meta-variables G1, . . . , Gn. This property becomes impor-
tant when dealing with hierarchical circuit descriptions. If we have located an erroneous
sub-component in a circuit, we first try to replace it by another component that does not
require changes in the component-interfaces. Thus, after computing a circuit correc-
tion h, we first try to convert h to a formula only involving the current component
inputs as sub-terms. Every solution that keeps the component-interfaces unchanged is
called hierarchy preserving.

5 Circuit Abstractions

Assume we are given some combinatorial circuit F represented as circuit graph. Any
circuitF ′ obtained fromF by replacing one or more inner nodes by leaves labeled with
newly introduced, so called abstraction variables, is called an abstraction of F . More
precisely, we define circuit abstractions as follows:

fig2.eps
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F ,G circuit modification for G�� abstraction
�� lift

F ′,G′ rectification
=⇒ circuit modification for G′

Fig. 3. Circuit-rectifications for abstracted circuits can be lifted to rectifications of the
original unabstracted circuits.

Definition 3. Let F ,F ′ be two circuit-graphs. F ′ is called an abstraction of F if there
exists a variable substitution σ with

F = σF ′ (6)

We now address the question how the rectification method presented in Section 4 can
benefit from using circuit abstractions. Assume we are given two combinatorial cir-
cuits F and G where F serves as the specification circuit, and G is supposed to be the
implementation. Both circuits are represented with circuit graphs. Further assume that
F = σF ′ and G = σG′ for some variable substitution σ, i.e., F ′ and G′ are abstractions
of F and G, respectively. Then, Theorem 1 guarantees that every F ′-rectification of
G′ can be lifted to an F -rectification of G (Fig. 3). As the experimental results in Sec-
tion 7 will show, this can dramatically reduce rectification time. Moreover, it becomes
possible to rectify much larger circuits. However, as every abstraction technique, our
approach has some drawbacks which will be discussed in detail in Section 5.2.

Theorem 1. Let σ be a variable substitution and F ,G,F ′,G′ be circuit-graphs with
F = σF ′ and G = σG′ Further assume that G′ is F ′-rectifiable at v, i.e., F ′ ≡ G′[v ←
H] for some circuit-graphH. Then, G is F -rectifiable at v with circuit-graph σH, i.e.,

F ≡ G[v ← σH] (7)

Proof. By the assumptions of Theorem 1, we get F ≡ σF ′ ≡ σ
(G′ [v ← H]

)
. Ap-

plying Lemma 1, we get σ
(G′ [v ← H]

) ≡ (
σG′) [v ← σH] and rewriting σG′ by G

finally proves F ≡ G [v ← σH].

5.1 Computing Abstractions

In this section, we examine two specific kinds of abstractions, i.e., structural abstrac-
tions ( S-abstractions) and logical abstractions ( L-abstractions). For computing S-
abstractions, we replace structurally identical sub-graphs in F and G by a newly in-
troduced abstraction variable. Similarly, L-abstractions prune away logically equiva-
lent circuit parts. Thus, L-abstractions are stronger than S-abstractions. However, S-
abstractions are often sufficient, especially when using the method after an optimization
step or within an incremental synthesis environment. Then, both circuits usually differ
in a very small part of the circuit, only.

Note that – strictly speaking – L-abstractions are not abstractions in the sense of
Definition 5. When we construct F ′ by substituting logically equivalent sub-graphs in
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F by a common abstraction variable, we cannot always guarantee the existence of a
variable substitution σ with F = σF ′ since F and σF ′ are usually not structurally
identical. However,F and σF ′ are logically equivalent. Thus, there always exists some
circuit graph F ′′ with σF ′ = F ′′ and F ′′ ≡ F . Since F serves as the specification
and is logically equivalent to F ′′, we can also use F ′′ as specification instead. Hence,
soundness of the abstraction method is not affected.

For computing abstractions for some specification circuit F and some implemen-
tation circuit G, we proceed as follows: In the first step, we determine nodes in F and
G that are going to be substituted by a common abstraction variable. In case of S-
abstractions, we use a hash-table for storing circuit-graphs. For each node, a hash table
index is created such that two nodes are mapped to the same index iff their sub-graphs
are structurally identical. The hash-table index can be computed in constant time. Thus,
index computation of the whole graph can be done linear in the number of graph nodes.
In case of L-abstractions, a BDD is computed for each node. Using the BDD reference
pointer as index, nodes have the same index if and only if their associated sub-graphs
are logically equivalent. For a circuit graph with n nodes, n BDDs have to be com-
puted. Since BDDs can grow exponentially, index computation may also take exponen-
tial time.

After computing indices for all graph-nodes, correlated nodes in F and G can now
be determined for both abstraction types by simply comparing their indices.

In the second step, all nodes with the same index are replaced by a common ab-
straction variable. For both abstraction types, this can be done in linear time.

When dealing with large circuits, we embed the procedure above in an iterated
abstraction algorithm. Using a threshold value τ , we only compute indices for graph
nodes having less than τ successor nodes or a BDD representation with less than τ BDD
nodes (depending on the computed abstraction type). After abstracting away correlated
sub-graphs, the complete abstraction process is repeated until a fix-point is reached.
Obviously, the computed results may differ depending on the threshold τ . The bigger
the threshold, the more equivalences are usually detected, but the more computation
time will be spent within the abstraction algorithm.

5.2 Drawbacks of the Abstraction Method

Performing automatic error correction on abstracted circuits can dramatically decrease
computation time and broaden the range of rectifiable circuits. However, it has some
drawbacks that are going to be discussed in this Section.

The first noteworthy property is that two equivalent circuits can become inequiv-
alent after abstractions have been computed (see Fig. 4 for an example). This may
cause the rectification algorithm to compute unnecessary changes for the implemen-
tation circuit. However, the correctness theorem proven in Section 1 guarantees that
both circuits remain equivalent after the modifications have been applied. To avoid un-
necessary changes to the implementation circuit, equivalence of both designs should be
decided beforehand (e.g. by the method presented in [4]).

Another aspect is that the erroneous part of the implementation circuit may be
pruned away when computing abstractions. Fig. 5 shows two circuits where the spec-
ification is shown on the left and the implementation on the right. Both circuits are
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not equivalent due to a missing NOT gate at the upper input of component C1. Both
abstraction types result in a circuit where the erroneous position has been abstracted
away. Therefore, in this example, all solutions computed for the abstract circuits will
rectify the implementation by modifying component C2. Hence, it is most likely that
more modifications are needed than necessary when rectifying the unabstracted cir-
cuits directly. However, the experimental results in Section 7 show that especially S-
abstractions are very robust in respect to this problem.

A third aspect worth mentioning is that the abstraction algorithm adds new inputs
(variables) to the circuit. As BDDs can grow exponentially in the number of variables,
this can in principle cause runtime to increase exponentially. Applied to a circuit with n
input variables, it is in theory possible that the abstraction algorithm creates a circuit
with up to 2(2n) input variables.

However, such an example had to be constructed explicitely and we have observed
this phenomenon for none of our example circuits in practice.

6 Rectifying Multiple-Output Circuits

For rectifying multiple output-circuits, there are two possibilities: The first possibility
is to rectify every output-signal separately and intersect the solution sets. Then, every
solution has to be tested if it also corrects the other signals. If yes, the solution fixes the
whole circuit, otherwise it has to be discarded. In practice, this approach finds correct
solutions for most multiple output circuits. However, this method is not complete in the

abstraction abstraction

Fig. 4. The two originally equivalent circuits become inequivalent after abstraction.
Both unabstracted circuits implement the function c = a ∨ b.

fig4_1.eps


Automatic Error Correction of Large Circuits 167

Correct circuit (specication) Faulty circuit (implementation)

abstraction abstraction

Fig. 5. In some cases, the erroneous position in the implementation circuit can be pruned
away which may lead to unnecessary complex solutions.

sense that it is possible that no rectification is computed that corrects all output signals,
even if such a solution exists.

In these cases, we first transform the implementation circuit to a single output circuit
as shown in Fig. 6. This transformation basically puts the (abstracted) specification
F and the (abstracted) implementation G together in one circuit and replaces the old
specification by logical true. IfF is not given as a circuit net-list, it has to be synthesized
to some net-list equivalent to F .

The transformation assures that whenever the newly created output is logically
equivalent to true, all output signals of F are equivalent to the outputs of G. Obvi-
ously, when applying the rectification algorithm to the newly constructed circuit, we
have to restrict the solution set to solutions modifying the circuit at nodes belonging to
the old implementation circuit.

7 Experimental Results

We have implemented our rectification and abstraction method presented in Section 4
and Section 5 in an equivalence checker and circuit rectifier called AC/3 [12].

Using AC/3, we have evaluated our abstraction method with various benchmark
examples, i.e., the Berkeley benchmark circuits [6], and the ISCAS85 benchmark cir-

fig5_1.eps
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1

Fig. 6. Transforming G from a multiple output circuit to a single output circuit. (here,
F and G have two output signals.)

cuits [7]. In each implementation circuit, we have induced a single error ranging from a
missing line, a wrong logical connective, to a missing or double inverter. Computation
time has been measured on a Sun Ultra 10 with 128 MB main memory and 300 MHz.

The experimental results for the Berkeley benchmark circuits are shown in the upper
half of Table 1 and 2. The first column contains the benchmark’s name and the second
column is the output signal to which the algorithm has been applied. Without abstrac-
tion, all Berkeley benchmark circuits can be rectified. Using structural abstraction, com-
putation time can be reduced drastically for all examples. In 13 out of 15 examples the
original error has been found so that the best solution (the solution which requires the
minimal number of changes in the implementation circuit) was identical to the best solu-
tion computed on the unabstracted circuits. Only for 2 circuits, S-abstraction produced
solutions that require more modifications in the implementation circuit. A drawback of
logical abstraction seems to be that they are less robust with respect to pruning away
the original error position which often results in unnecessary complex solutions (see
Section 5.2). However, for the Berkeley Benchmark circuits, in 11 out of 16 examples,
the optimal solution has been found.

The experimental results for the ISCAS85 benchmark circuits are shown in the
lower half of Table 1 and 2. Without abstraction, 5 out of 10 circuits can be pro-
cessed successfully. Using abstraction, we have been able to rectify all ISCAS85 cir-
cuits. Again, structural abstraction turned out to be more robust in respect to finding
the optimal solution. While L-abstraction didn’t find the optimal solution in 8 cases,
S-abstraction produced the optimal solution in 8 out of 10 examples.

fig6_1.eps
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circuit no. of no. of signal rectification no. of
name inputs gates name time solutions

The Berkeley Benchmark circuits (unabstracted)
x1dn 27 108 32 out 0.14 sec 10
x9dn 27 89 31 out 0.20 sec 8
x6dn 38 285 42 out 0.89 sec 51

jbp 36 397 87 out 0.58 sec 16
chkn 29 511 539 out 0.83 sec 4

signet 39 240 40 out 2.97 sec 3
in6 33 188 41 out 0.12 sec 9
in7 26 143 31 out 0.21 sec 26
in3 34 302 49 out 0.43 sec 7
in5 24 213 25 out 0.72 sec 47
in4 32 568 33 out 5.10 sec 90
cps 24 936 942 out 4.86 sec 27
bc0 21 952 927 out 8.21 sec 7

The ISCAS85 Benchmark circuits (unabstracted)
C432 36 160 1355 out 16.08 sec 4
C499 41 202 23 out 25.26 sec 12
C880 60 383 2899 out 0.01 sec 4

C1355 41 546 3882 out 215.78 sec 7
C1908 33 880 5361 out 509.44 sec 48
C2670 233 1193 432 out > 20 min —
C3540 50 1669 747 out > 20 min —
C5315 178 2307 7754 out > 20 min —
C6288 32 2406 6288 out > 20 min —
C7552 207 3512 420 out > 20 min —

Table 1. Rectification of the Berkeley benchmark circuits and the ISCAS85 benchmark
circuits without abstraction.

8 Summary

We have presented a method for localizing and correcting errors in combinatorial cir-
cuits. Unlike most other approaches, our method does not assume any error model.
Thus, arbitrary design errors can be found.

Our method is split into two parts: the location of erroneous sub-components and the
computation of circuit corrections. For both tasks, we have presented efficient solutions
based on Boolean decomposition.

Since our method is not structure based, our technique can even be applied in sce-
narios where the specification is given as a Boolean formula, a truth table, or directly
in form of a BDD. When computing circuit corrections, our approach tries to reuse
parts of the old circuit in order to minimize the number of modifications and therefore
to increase the quality of the computed solutions. Our method is powerful if the error
causing elements are concentrated in a comparably small sub-part of the circuit since
our algorithm tries to locate the smallest sub-component containing the erroneous parts.
This is obviously true, e.g., for all circuits fulfilling the single error assumption.
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Structural abstraction Logical abstraction
circuit abstraction rectification no. of abstraction rectification no. of
name time time solutions time time solutions

The Berkeley Benchmark Circuits:
Threshold τ = ∞ Threshold τ = ∞

x1dn 0.23 sec 0.01 sec 4 0.26 sec 0.01 sec 4
x9dn 0.25 sec < 0.01 sec 7 0.24 sec 0.01 sec 4
x6dn 0.84 sec 0.03 sec 4 0.82 sec 0.03 sec 4

jbp 1.09 sec 0.01 sec 4 1.09 sec 0.02 sec 4
chkn 1.55 sec 0.04 sec 4 1.63 sec 0.03 sec 4

signet 0.73 sec 0.02 sec 3 0.78 sec 0.02 sec 2
in6 0.48 sec 0.02 sec 2 0.5 sec 0.01 sec 2
in7 0.34 sec 0.02 sec 3 0.36 sec 0.02 sec 3
in3 0.79 sec < 0.01 sec 3 0.79 sec < 0.01 sec 3
in5 0.60 sec 0.02 sec 5 0.63 sec 0.02 sec 5
in4 1.72 sec 0.16 sec 16 1.79 sec 0.04 sec 8
cps 6.19 sec 0.89 sec 6 10.84 sec 0.02 sec 7
bc0 3.92 sec 0.02 sec 6 3.71 sec 0.02 sec 6

The ISCAS85 Benchmark Circuits:
Threshold τ = ∞ Threshold τ = 2000 (200 for C7552)

C432 0.44 sec 0.01 sec 4 0.82 sec 0.01 sec 4
C499 0.57 sec 0.01 sec 4 3.01 sec 0.02 sec 4
C880 6.09 sec 0.01 sec 4 8.11 sec 0.01 sec 4

C1355 1.84 sec 0.09 sec 7 8.15 sec 0.03 sec 5
C1908 2.35 sec 0.81 sec 13 9.22 sec 0.71 sec 10
C2670 4.78 sec 0.01 sec 10 14.57 sec 0.01 sec 9
C3540 5.51 sec 0.47 sec 12 18.13 sec 0.45 sec 10
C5315 11.53 sec 0.02 sec 7 22.93 sec 0.01 sec 6
C6288 15.74 sec 0.09 sec 30 74.28 sec 0.07 sec 28
C7552 20.74 sec 0.07 sec 11 24.02 sec 0.1 sec 5

Table 2. Rectification of the Berkeley benchmark circuits and the ISCAS85 benchmark
circuits using abstraction. All circuits can be rectified.

To be able to handle large circuits, we have combined the rectification method with
circuit abstractions. Two classes of abstractions have been examined: structural ab-
stractions and logical abstractions. Whereas structural abstractions prune away struc-
turally identical regions of a circuit, logical abstractions remove logically equivalent
parts. We have shown correctness of our method by proving that circuit rectifications
computed for abstract circuits can be lifted to circuit corrections for the original, unab-
stracted circuits.

We have implemented the presented methods in the AC/3 verification tool and eval-
uated it with the Berkeley benchmark circuits [6] and the ISCAS85 benchmarks [7]. In
combination with circuit abstractions, we have been able to rectify all ISCAS85 bench-
marks. The experimental results show that together with the abstraction techniques dis-



Automatic Error Correction of Large Circuits 171

cussed in this paper, our rectification approach is a powerful method for performing
automatic error correction of large circuits.

In future, we will extend the rectification method with capabilities to simultane-
ously rectify circuits at multiple positions. Furthermore, we are currently extending our
method to circuits containing tri-states and bus architectures.
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