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Abstract. We propose a new methodology for exploiting abstraction in
the context of model-checking. Our new technique uses abstract BDDs
as its underlying data structure. We show that this technique builds a
more refined model than traditional compiler-based methods proposed
by Clarke, Grumberg and Long. We also provide experimental results to
demonstrate the usefulness of our method. We have verified a pipelined
carry-save multiplier and a simple version of the PCI local bus protocol.
Our verification of the PCI bus revealed a subtle inconsistency in the
PCI standard. We believe this is an interesting result by itself.
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1 Introduction

Model-checking has attracted considerable attention because of existence of tools
that can automatically prove temporal properties about designs. However, the
state-explosion problem still remains a major hurdle in dealing with large sys-
tems. Most approaches for solving the state-explosion problem fall into two
major categories: efficient data-structures and state reduction techniques. Sym-
bolic model checking, which uses Binary Decision Diagrams(BDDs) [1,2,14] is
an example of the first approach. State reduction methods apply transforma-
tions to the system and model-check the transformed system instead of the
original system. Examples of such techniques are abstraction [6], symmetry re-
duction [4,7,10], and partial order reduction [8,15].

Among the state-reduction approaches mentioned above, manual abstraction
is the most widely used technique. However, this method is ad hoc and error-
prone. Furthermore, since different properties of large systems usually require
different abstraction techniques, manual abstraction is often difficult to use. For
this reason, property driven automatic abstraction techniques are desirable for
verifying actual hardware designs. Clarke, Grumberg and Long [6] have proposed
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a compiler-based abstraction technique. Their technique applies abstraction di-
rectly to variables during the compilation phase. It is automatic and efficient.

However, there are true ACTL properties which cannot be proved using their
techniques since the compiler-based abstraction introduces many spurious be-
haviors. In this paper, we propose an automatic post-compilation abstraction
technique using abstract BDDs (aBDDs) to avoid such problems. Our approach
is closely related to those discussed in [6] and [13]. The difference is that we ap-
ply abstraction after the partitioned transition relation for the system has been
constructed. The advantage of our approach is that we produce a more refined
model of the system than theirs. Therefore, we can prove more properties about
the system. Note that extraction of a partitioned transition relation is usually
possible even though model checking may not be feasible.

Intuitively, an abstract BDD collapses paths in a BDD that have the same
abstract value with respect to some abstraction function. They were originally
used to find errors in combinational circuits. In this paper, we show how they
can be used to provide a general framework for generating abstract models for
sequential circuit designs. Our methodology consists of the following steps:

– The user provides the abstraction function along with the partitioned transi-
tion relation of the system represented in terms of BDDs. The user generally
indicates how a particular variable should be abstracted.

– Next, the abstract BDDs corresponding to the transition relation are built.
The procedure for building the abstract BDDs will be described in detail
later in this paper.

– ACTL properties of the system are checked using the abstract BDDs deter-
mined by the transition relation.

We have modified SMV [14] in order to support our methodology. Notice that
once the user provides the abstraction function, the entire methodology is au-
tomatic. We have selected two different designs to demonstrate the power of
our approach. The first is a pipelined carry-save multiplier similar to the one
described in Hennessy and Patterson [9]. The second is the PCI Local Bus Pro-
tocol [16]. We show that our technique can be used to establish correctness of
certain key properties of these designs.

The paper is organized as follows. In Section 2, we provide a brief overview
of how abstraction is used in model checking. We also explain how abstract
BDDs are constructed. Section 3 provides a modified definition for abstract
BDDs that is more suitable for the purposes of this paper. Section 4 discusses
how abstract BDDs can be used to build an abstract model of a sequential
circuit. Experimental results are provided in Section 5 which demonstrate that
our method of using abstraction with model checking is superior to the one
described in [6]. Section 6 concludes with some directions for future research.

2 Background

Throughout this paper, we assume that there are n state variables x1, · · · , xn

with a domain D = {0, 1}k. The abstract state variables x̂1, x̂2, · · · , x̂n take
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values in an arbitrary domain A. For each xi there is a surjection hi : D → A,
which is the abstraction function for that variable. When it is clear from the
context, we will suppress the index and write the abstraction function simply as
h : D → A. The abstraction function h induces an equivalence relation ≡h on D
as follows:

(d1 ≡h d2) ↔ h(d1) = h(d2).

The set of all possible equivalence classes of D under the equivalence rela-
tion ≡h is denoted by [D]h and defined as: {[d]|d ∈ D}. Assume that we have a
function rep : [D]h → D that selects a unique representative from each equiv-
alence class [d]. In other words, for a 0-1 vector d ∈ D, rep([d]) is the unique
representative in the equivalence class of d. Moreover, the abstraction function h
generates an abstraction function H : D → D as follows:

H(d) = rep([d]).

We call H the generated abstraction function. From the definition of H it is
easy to see that H(rep([d])) = rep([d]). Notice that the image of D under the
function H is simply the set of representatives. The set of representatives will
be denoted by Img(H).

2.1 Abstraction for ACTL

Given a structure M = (S, S0, R), where S is the set of states, S0 ⊆ S is a set of
initial states, and R ⊆ S × S is the transition relation, we define the existential
abstraction Mh = (Sh, S0,h, Rh) as follows:

S0,h = ∃x1 · · ·xn[h(x1) = x̂1 ∧ · · · ∧ h(xn) = x̂n ∧ S0(x1, · · · , xn)]

Rh = ∃x1 · · ·xn∃x′
1 · · ·x′

n[h(x1) = x̂1∧· · ·∧h(x′
1) = x̂′

1∧· · ·∧R(x1, · · · , x′
1, · · ·)]

In [6], the authors define a relation �h between structures. For a structure M̃ =
(S̃, S̃0, R̃), if

1. S0,h implies S̃0 and
2. Rh implies R̃

then we say that M̃ approximates M(denoted by M �h M̃). Intuitively, if
M �h M̃ , then M̃ is more abstract than Mh, i.e., has more behaviors than Mh.

Since the number of states in the abstract structure Mh is usually much
smaller than the number of states in M , it is usually desirable to prove a
property on Mh instead of M . However, building Mh is often computationally
expensive. In [6], Clarke, Grumberg and Long define a practical transforma-
tion T which applies the existential abstraction operation directly to variables
at the innermost level of the formula. This transformation generates a new struc-
ture Mapp = (T (S), T (S0), T (R)) and M �h Mapp. As a simple example con-
sider a system M which is a composition of two systems M1 and M2, or in other
words M = M1‖M2. In this case Mapp is equal to M1,h‖M2,h. Note that the
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existential abstraction operation is applied to each process individually. Since T
is applied at the innermost level, abstraction can be performed before building
the BDDs for the transition relation. This abstraction technique is usually fast
and easy to implement. However, it has potential limitations in checking certain
properties. Since Mapp is a coarse abstraction, there exist many properties which
cannot be checked on Mapp but can still be verified using a finer approximation.
The following small example will highlight some of these problems.

A sensor-based traffic light example is shown in Figure 1. It includes two
finite state machines (FSMs), one for a traffic light and one for an automobile.
The traffic light Mt has four states {red, green1, green2, yellow}, and the auto-
mobile Ma also has four states {stop1, stop2, drive, slow}. Mt starts in the state
red, when it senses that the automobile has waited for some time (in state stop2),
it triggers a transition to state green1 which allows the automobiles to move. Ma

starts from state stop1 and transitions according to the states of Mt. The safety
property we want to prove is that when traffic light is red, the automobile should
either slow down or stop. The property given above can be written in ACTL as
follows:

φ ≡ AG[¬(Statet = red ∧ Statea = drive)]

The composed machine is shown in Figure 1(c). It is easy to see that the prop-
erty φ is true. Let us assume that we want to collapse states {green1, green2,
yellow} into one state go. If we use the transformation T , which applies ab-
straction before we compose Mt and Ma, property φ does not hold (the shaded
state in Figure 1(d)). On the other hand, if we apply this abstraction after com-
posing Mt and Ma, states (green2, drive) and (yellow, drive) are collapsed into
one state(Figure 1(c)), and the property φ still holds. Basically, by abstracting
the individual components and then composing we introduce too many spuri-
ous behaviors. Our methodology remedies this disadvantage by abstracting the
transition relation of the composed structure Mt‖Ma.

The methodology presented in this paper constructs an approximate struc-
ture M̃ which is more precise than the structure Mapp obtained by the technique
proposed in [6]. All the transitions in the abstract structure Mh are included in
both M̃ and Mapp. Note that the state sets of Mh, M̃ and Mapp are the same.
The relationship between M , Mh, M̃ and Mapp is shown in Figure 2. Roughly
speaking, M̃ is a more refined approximation of Mh than Mapp, or M̃ has less
extra behaviors than Mapp.

2.2 Abstract BDDs

In this subsection, we briefly review abstract BDDs. Additional information
about this data structure can be found in [11]. Intuitively, an abstract BDD
collapses paths in a BDD that have the same abstract value with respect to
some abstraction function. The concepts underlying abstract BDDs are most
easily explained using Binary Decision Trees (BDTs) but apply to BDDs as
well. A binary decision tree (BDT) is simply a BDD in which there is no graph
sharing.
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Fig. 1. Traffic light example
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Fig. 2. Relationship between different structures

Given a boolean function f : {0, 1}n → {0, 1} and its corresponding BDT Tf ,
let v denote the path from root to the node v at level k+1. It is easy to see that
the path is a 0-1 vector in the domain D = {0, 1}k, i.e. v ∈ D. As we described
before, an abstraction function h : D → A induces a generated abstraction
function H : D → D. Assume that w = rep([v]), then the path H(v) = w
ends at a node w, which is at the same level as v. Intuitively, in the abstraction
procedure, The BDT rooted at v is replaced by the BDT rooted at w. We call
node w the representative of node v. More formally, the abstract BDT H(f)
of Tf rooted at v is defined as

H(f)(v) = f(H(v)).

In [11], the authors show a procedure which can build the abstract BDD of a
function directly from the BDD of f instead of building the BDT of f . We also
prove the following formula

f = p ◦ q → H(f) = H(p) ◦ H(q)
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where ◦ is any logic operation. Notice that this means that the abstract BDD
for f can be built incrementally, i.e., we do not have to build the BDD for f and
then apply the abstraction function. Details can be found in [11].

The construction of an abstract BDD is illustrated by the following example.
Assume that we have a boolean function f(x1, x2, x3) = (x1∧¬x3)∨(x2∧x3) (see
Figure 3(a)). Consider the abstraction function h(x1, x2) = x1 + x2 (where “+”
is ordinary addition). The abstraction function h induces an equivalence rela
tion ≡h on 0-1 vectors of length 2. Note that vectors of length 2 terminate at
nodes of level 3. Therefore, we have B ≡h C since h(B) = h(C) = 1. Assume
that B is chosen as a representative, i.e. H(B) = H(C) = B. In other words, B
is a representative node. Then the directed graph after abstraction is shown
in Figure 3(b) and the final reduced BDD in Figure 3(c). Intuitively, the con-
struction maintains some “useful” minterms and ignores other “uninteresting”
minterms.

(a) BDT for f

DCBA

1X

0 1

2X

3X A

(b) Abstract BDT for f

C DB

1

0 1

X

2X

3X

(c) aBDD for f

3

X 2

X 1

0 1

X

Fig. 3. Abstract BDD for f

Notice that the BDD of a representative node remains unaltered under the
present definition. The non-representative nodes, however, are replaced by the
corresponding representative nodes. In this paper, we extend aBDDs by allowing
other operations on the nodes in an equivalence class. Details are described in
next section.

3 New Definition of Abstract BDDs

Next, we define a new kind of abstract BDD which is more suitable for the pur-
poses of this paper. The BDDs rooted at node v defines a boolean function f(v).
Recall that v is the path from the root to node v. The abstract BDD H(f)
corresponding to the boolean function f(v) is defined by the following equation:

H(f)(v) =
{∨

f(v′) v = H(v′)
0 otherwise
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Notice that if v is a representative node, then H(v) = v. Basically, the boolean
function corresponding to a representative node is the or of all the boolean
functions corresponding to the nodes in the same equivalence class. For non-
representative nodes, the boolean function is defined to be false or 0. We use
the example discussed previously to illustrate the new definition. Consider the
boolean function f(x1, x2, x3) = (x1 ∧ ¬x3) ∨ (x2 ∧ x3), B ≡h C and B is
the representative vector, so H(f)(B) = f(B) ∨ f(C) = 1 and H(f)(C) = 0
(Figure 4).

(a) Abstract BDT for f

DA CB

0 1

X

X 1

X 2

3

(b) Final Abstract BDD for f

1

X

X 1

X 2

3

0

Fig. 4. New Abstract BDD for f

The next lemma describes how the generated abstraction functionH interacts
with conjunction and disjunction.

Lemma 1. Let f, p, q : {0, 1}n → {0, 1} be boolean functions, and let H :D→D
be the generated abstraction function corresponding to the abstraction function
h : D → A. The following equations hold:

(f = p ∨ q) → (H(f) = H(p) ∨H(q))

(f = p ∧ q) → (H(f) → H(p) ∧H(q))

The proof of this lemma is similar to the proof of Lemma 1 in [11]. A formal
proof is provided in an appendix to this paper. The new definition of abstract
BDDs can easily be extended to deal with multiple abstraction functions. For
example, assume that we have m generated abstraction functions Hi : D → D
and a boolean function f : Dm → {0, 1}, the new abstract BDD of f can be
defined as

H(f)(x1, · · · , xn) =
{∨

f(y1, · · · , yn) x1 = H(y1), · · · , xn = H(yn)
0 otherwise

Vectors xi and yi belong to the domain D, and H(yi) = xi implies that xi is the
representative in the equivalence class of yi. It is easy to prove that Lemma 1
holds for multiple abstraction functions.
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Lemma 2. Given a boolean function f(x1, · · ·xn) and an abstraction function
H : D → D, the following formula holds

H(f) = ∃x1, · · · , xn[H(x1) = y1 ∧ · · ·H(xn) = yn ∧ f(x)]

Lemma 2 states that the aBDD H(f) of the boolean function f corresponds to
applying the existential abstraction operation to f (see the first paragraph in
Section 2.1).

4 Methodology Using Abstract BDDs

In this section, we will discuss how to use abstract BDDs to construct an abstract
Kripke structure. As we discussed in Section 2.1, Mh = (Sh, S0,h, Rh) is the
abstract Kripke structure corresponding to M = (S, S0, R) using the abstraction
function h : D → A. Next we define an abstract structureMH = (SH , S0,H , RH),
which we can construct using aBDDs. The structure MH is defined as follows:

– State set SH is the image of S under the generated abstraction function H.
– Initial set of states S0,H is the image of S0 under the function H. Notice
that if S0 is represented as a boolean function, then S0,H corresponds to the
aBDD H(S0) (see Lemma 2).

– Transition Relation RH is the image of R under the function H. Notice that
if R is represented as a boolean function, then RH corresponds to the aBDD
H(R) (see Lemma 2).

Lemma 3. Mh
∼= MH

Lemma 3 states that Mh and MH are isomorphic structures, i.e., there is a
bijection u : Sh → SH such that u(S0) = S0,H and u(Rh) = RH . Lemma 3 is
proved in the appendix.

In general, it is intractable to build directly the BDD for transition rela-
tion R. Instead, the transition relation is usually partitioned [2]. Suppose that
the transition relation R is partitioned into m clusters R1, · · · , Rm. Each clus-
ter Ri is the transition relation of the composition of some set of components
of the entire system. The transition relation R has one of the following forms
depending on the nature of the composition (synchronous or asynchronous):

R =
{

R1 ∨R2 ∨ · · · ∨Rm asynchronous
R1 ∧R2 ∧ · · · ∧Rm synchronous

The obvious way of applying abstraction is to distribute H over the cluster Ri.
Using Lemma 1, we have

H(R) = H(R1) ∨H(R2) ∨ · · · ∨ H(Rm) asynchronous
H(R) → H(R1) ∧H(R2) ∧ · · · ∧ H(Rm) synchronous

If we use partitioned transition relation, then the abstract structure M̃ which is
constructed is not isomorphic to Mh. But, because of the equations given above,
we have M � M̃ .
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If we apply H to the innermost components of the system, we build an
abstract structure Mapp,H . It is easy to prove that Mapp,H is isomorphic to
the structure Mapp. Recall that Mapp is the abstract structure built using the
techniques given in [6]. The technique presented in this section builds a more
refined model than Mapp,H which is isomorphic to Mapp. We emphasize this
point once again using a small example. Assume that we decide to abstract the
domain of state variable x to a single value ⊥. Intuitively, the actual value of x
is irrelevant for the property we are interested in. Suppose there are two state
variables y and z whose values in the next state depend on x in the following
way: y′ = x and z′ = ¬x. In the structure MappH , y′ and z′ will both become
free variables. If we combine the two transitions together as y′ = x∧z′ = ¬x and
then abstract x, the result will be y′ �= z′. Clearly the structure produced by the
second technique is more precise than MappH . Intuitively, in [6] the abstraction
is applied to every transition of each component and therefore can produce very
coarse models.

4.1 Building the Abstract Structure Mh

Recall that the transition relation of the abstract structure Mh is given by the
following formula:

Rh = ∃x1 · · ·xn∃x′
1 · · ·x′

n[h(x1) = x̂1∧· · ·∧h(x′
1) = x̂′

1∧· · ·∧R(x1, · · · , x′
1, · · ·)]

If we have BDDs encoding the transition relation R and the abstraction func-
tions hi, we could use standard traditional relational product technique to build
the abstract transition relation Rh. We call this straightforward approach the
traditional approach or method. Our new methodology has advantages over the
traditional approach. First, in the traditional method the BDD for the abstrac-
tion functions has to be constructed before applying the method. For many
abstraction functions, these BDDs are very hard to build. Second, in our expe-
rience a good variable ordering for an abstraction function might be different
from a good variable ordering for the transition relation of the system. Our ap-
proach using abstract BDDs does not suffer from these problems since we never
explicitly build the BDDs for the abstraction functions. Abstraction functions
are employed while building the abstract BDD corresponding to the transition
relation.

5 Experimental Results

In order to test our ideas we modified the model-checker SMV. In our implemen-
tation, the user gives an abstraction function for each variable of interest. Once
the user provides a system model and the abstraction functions, our method
is completely automatic. We consider two examples in this paper: a pipelined
multiplier design and the PCI local bus protocol.
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5.1 Verification of a Pipelined Multiplier

In [6], Clarke, Grumberg, and Long propose an approach based on the Chinese
Remainder Theorem for verifying sequential multipliers. The statement of the
Chinese Remainder Theorem can be found in most texts on elementary number
theory and will not be repeated here. Clarke, Grumberg, and Long use the
modulus function h(i) = i mod m for abstraction. They exploit the distributive
property of the modulus function over addition, subtraction, and multiplication.

((i mod m) + (j mod m)) mod m ≡ (i+ j) mod m

((i mod m)× (j mod m)) mod m ≡ (i× j) mod m

Let • represent the operation corresponding to the implementation. The goal
is to prove that • is actually multiplication ×, or, in other words, for all x and y
(within some finite range) x• y is equal to x× y. If the actual implementation of
the multiplier is composed of shift-add components, then the modulus function
will distribute over the • operation. Therefore, we have the following equation:

(x • y) mod m = [(x mod m) • (y mod m)] mod m

Using this property and the Chinese Remainder Theorem, Clarke, Grumberg,
and Long verify a sequential multiplier.
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Fig. 5. Carry-save-adder pipeline multiplier

Unfortunately, this approach may not work if the multiplier is not composed
of shift-add components. Suppose there is a mistake in the design of the mul-
tiplier, then there is no guarantee that the modulus operator will distribute
over the operation • (corresponding to the actual implementation). For exam-
ple, the mistake might scramble the inputs in some arbitrary way which breaks
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the distributive property of the • operation. In this case, the method proposed
by Clarke, Grumberg and Long is not complete and may miss some errors.
Therefore, before we apply the methodology in [6] it is necessary to check the
distributive property of the modulus function with respect to the • operator. In
other words, we must show that the following equation holds:

(x • y) mod m = [(x mod m) • (y mod m)] mod m

We illustrate our ideas by verifying a 16 × 16 pipelined multiplier which
uses carry-save adders (see Figure 5). Notice that the first stage consists of shift
operations and the last stage corresponds to the add operation. It easy to show
that the first and the last stages satisfy the distributive property. In fact, this
can be determined using classical equivalence checking methods. We will focus
our attention on the intermediate stages.

Notice that the Chinese Remainder Theorem implies that it is enough to
verify the multiplier by choosing m = 5, 7, 9, 11, 13, 16, 17, 19, 23 because of the
following equation:

5 ∗ 7 ∗ 9 ∗ 11 ∗ 13 ∗ 16 ∗ 17 ∗ 19 ∗ 23 = 5354228880> 232 = 4294967296.

Our technique works as follows:

– First verify that each pipelined stage satisfies the distributive property using
numbers in the set {5, 7, 9, 11, 13, 16, 17, 19, 23}). Formally, let •i correspond
to the operation of the i-th stage in the pipeline. We want to verify the
following equation for all m in the set {5, 7, 9, 11, 13, 16, 17, 19, 23} and 1 ≤
i ≤ 6:

(x •i y) mod m = (x mod m •i y mod m) mod m

If the equation given above is violated, we have found a error. Notice that
the equation given above can be checked by building the abstract BDD for
the transition relation corresponding to the i-th stage.

– Next, assume that all the pipelined stages satisfy the distributive property.
In this case, we can apply the method proposed by Clarke, Grumberg, and
Long because the entire design will also satisfy the distributive property.

In Figure 6 we give our experimental results for the first step. The row for
space usage corresponds to the largest amount of memory that is used during
verification.

modulus 5 7 9 11 13 16 17 19 23

time(s) 99 137 199 372 636 130 1497 2648 6977

space(MB) 7.7 12.8 21.5 51.7 92.5 9.2 210 231 430

Fig. 6. Experimental Results for various modulus
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5.2 The PCI Local Bus

This subsection briefly describes our results for the PCI local bus protocol. Dur-
ing verification, we found a potential error in the PCI bus protocol specification.
In particular, we discovered an inconsistency between the textual specification
and one of the state machines given in the PCI standard [16]. The precise nature
of the error will be explained later.

During model-checking, we used following abstraction functions on various
state variables:

– h(x) = ⊥, where ⊥ means constant;
– h(x) = if x �= 0 then 1 else 0;
– h(x) = if x > 1 then 1 else 0;

Incidentally, the bug we discovered was not found when we applied the techniques
proposed in [6].

We briefly describe the PCI local bus protocol. There are three types of de-
vices that can be connected to the PCI local bus: masters, targets, and bridges.
Masters can start transactions. Targets respond to transactions and bridges con-
nect buses. Masters and targets are controlled by a finite-state machine. We
considered a simple model which consists of one master, one target, and one bus
arbiter. The model includes different timers to meet the timing specification. The
master and target both include a lock machine to support exclusive read/write.
The master also has a data counter to remember the number of data phases.

In the verification, we applied different abstractions to some of the timers,
the lock machine and the data counter in the master. We also clustered the tran-
sition relations of the major state controllers in both master and the target. We
checked various properties dealing with handshaking, read/write transactions,
and timing in this simplified model. Next, we describe in detail the property
which demonstrates the inconsistency in the design. Description of all the prop-
erties that we checked is not given here because of space restrictions.

One of the textual requirements is that the target responds to every read/write
transaction issued by the master. This important property turns out to be false
for the state machine given in the standard when the master reads or writes a
single data value. The negation of this property can be expressed in ACTL as
follows:

AG(m.req ∧m.data cnt=1) → A[(m.req ∧ ¬t.ack)U(m.timeout)]) (∗)

where m.req corresponds to the master issuing a transaction; m.data cnt=1
means that the master requests one data value; t.ack means that the target
acknowledges the master’s request; and m.timeout means that the time the mas-
ter has allowed for the transaction has expired. If this ACTL formula is true in
the abstract model, it is also true in the concrete model. We verified that this
formula is true, so there must be an inconsistency in the standard.

The experimental results are shown in Figure 7. the first row in Figure 7
(Error) corresponds to the inconsistency we discovered. The remaining properties
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are not described here. The second and third columns show the running time
and maximum BDD nodes for the original version of SMV. The fourth and fifth
columns show the results obtained using our methodology. For some cases our
approach reduces the space needed for verification by a factor of 20.

Properties SMV SMV ABS
Time(s) # nodes Time(s) # nodes

Error 278 727K 65 33K

Property 1 20 164K 18 14K

Property 2 137 353K 30 66K

Property 3 99 436K 138 54K

Property 4 185 870K 40 36K

Property 5 67 352K 42 57K

Fig. 7. Experimental Results for Verifying PCI using Abstraction

6 Related Work and Directions for Future Research

In this paper, we propose a new technique for exploiting abstraction using ab-
stract BDDs. The work of Clarke, Grumberg, and Long [6] is closest to that
described here. The main advantage of our method is that we generate more
accurate abstractions than existing methods. Moreover, we do not need to build
BDDs for the abstraction functions.

A technique for verifying combinational multipliers is described in [12,17].
Their methods use residue BDDs which are a special case of abstract BDDs
(see [11]). However, the method proposed in [17] is not general and does not
readily extend to the problem of model-checking arbitrary systems. Errors have
been found in many other bus protocols by using model checking techniques [5].
By using our methodology, it should be possible to handle larger systems con-
sisting of multiple devices connected by buses and bus bridges.

We are pursuing several directions for future research. First, we intend to
try our techniques on larger designs. In fact, we are currently in the process
of verifying the entire PCI local bus protocol. We also want to find ways of
generating abstraction functions automatically. A methodology for refining the
abstraction functions automatically would also be extremely useful.
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A Proofs of the Lemmas

Proof of Lemma 1: Consider the binary decision trees of the functions f , p,
and q. Note that these trees are exactly the same for f , p and q except the
terminal nodes since all of the functions depend on the same set of variables.
So if we can prove that for any node v in the trees, f(v) = p(v) ∨ q(v) →
H(f)(v) = H(p)(v)∨H(q)(v) and f(v) = p(v)∧ q(v)) → H(f)((v) = H(p)(v)∧
H(q)(v), then the formula holds for the special case of the root. This implies
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that the formula holds for the original function. If v is a representative, from
the definition, H(f)(v) =

∨
H(v′)=v f(v′); Otherwise, H(f)(v) = 0. The same

formula holds when f is replaced by p and by q. If f = p ∨ q, when v is non-
representative, H(p)(v) ∨ H(q)(v) = 0 ∨ 0 = H(f)(v); otherwise, when v is a
representative,

H(f)(v) =
∨

H(v′)=v

(p(v′) ∨ q(v′)) = (
∨

H(v′)=v

p(v′) ∨ (
∨

H(v′)=v

q(v′))

In general, we have H(f) = H(p)∨H(q). On the other hand, If f = p∧q, when v
is a non-representative, it is easy to see thatH(p)(v)∧H(q)(v) = 0∧0 = H(f)(v);
when v is a representative, we have

H(f) =
∨

H(v′)=v

f(v′) =
∨

H(v′)=v

(p(v′) ∧ q(v′))

Likewise,
H(p)(v) ∧H(q)(v) =

∨
H(v′)=v

p(v′) ∧
∨

H(v′)=v

q(v′)

It is easy to see that
∨

H(v′)=v(p(v
′) ∧ q(v′)) implies

∨
H(v′)=v p(v′)∧∨

H(v′)=v q(v′). Consequently,H(f)(v) → H(p)(v)∧H(q)(v). In general,H(f) →
H(p) ∧H(q).

Proof of Lemma 3. Assume that I : A → img(H) is a function which is defined
as I(h(d)) = rep([d]). First, we will show that I is well-defined and that I is a
bijection. Second, using I we will build a bijection between the states of Mh

and MH .
From the definition, h(d1) = h(d2) implies that rep([d1]) = rep([d2]) which

in turn implies that I(h(d1)) = I(h(d2)). Therefore, I is a well defined function.
If d1 ∈ img(H), then there exists a d2 ∈ D, where d1 = rep([d2]). Moreover,
I(h(d2)) = rep(d2) = d1, so I is a surjection. On the other hand, if I(h(d1)) =
I(h(d2)), then rep([d1]) = rep(d2]) which implies that h(d1) = h(d2). Hence I is
an injection. Since I is injective and surjective, I is a bijection.

As defined before, S ⊆ Dn is the set of states of M ; Sh ⊆ An is the set
of states of Mh; and SH ⊆ img(H)n is the set of states of MH . We define a
mapping u : Sh → SH as follows:

u(< x̂1, · · · , x̂n >) = < I(x̂1), · · · , I(x̂n) >

where < x̂1, · · · , x̂n >∈ Sh and < I(x̂1), · · · , I(x̂n) >∈ SH . Next we will show
that u(S0,h) = S0,H and u(Rh) = RH , i.e., the bijection u preserves the initial
states and the transitions. Consider an arbitrary state < x̂1, · · · , x̂n >∈ S0,h

and an arbitrary transition (< x̂1, · · · , x̂n >,< x̂′
1, · · · , x̂′

n >) ∈ Rh Since <
x̂1, · · · , x̂n >∈ S0,h, there exists a state < x1, · · · , xn >∈ S such that h(xi) = x̂i

and < x1, · · · , xn >∈ S0. Since H(xi) = rep([xi]) = I(h(xi)) = I(x̂i), and S0,H

is the existential abstraction of S0, it follows that < I(x̂1), · · · , I(x̂n) > S0,H .
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The proof for the transition relation, is very similar. Therefore, u(S0,h) ⊆
S0,H and u(Rh) ⊆ RH . Since I is a bijection, the argument given above holds
in the reverse direction. Thus, u(S0,h) = S0,H and u(Rh) = RH This proves
that Mh

∼= MH .
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