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Abstract. Symbolic model checking is an increasingly popular debug-
ging tool based on Binary Decision Diagrams (BDDs). The size of the di-
agrams, however, often prevents its application to large designs. The lack
of flexibility of the conventional breadth-first approach to state search
is often responsible for the excessive growth of the BDDs. In this pa-
per we show that the use of hints to guide the exploration of the state
space may result in orders-of-magnitude reductions in time and space
requirements. We apply hints to invariant checking. The hints address
the problems posed by difficult image computations, and are effective in
both proving and refuting invariants. We show that good hints can often
be found with the help of simple heuristics by someone who understands
the circuit well enough to devise simulation stimuli or verification prop-
erties for it. We present an algorithm for guided traversal and discuss its
efficient implementation.

1 Introduction

Great strides have been made in the application of formal methods to the verifi-
cation of hardware The most successful technique so far has been model check-
ing [19]. Model checking exhaustively explores the state space of a system to
ascertain whether it satisfies a property expressed in some temporal logic.

Given the exponential growth of the number of states with the number of
state variables, several techniques have been devised to turn model checking into
a practical approach to verification. The most fundamental technique is abstrac-
tion: Verification is attempted on a simplified model of the system, which is
meant to preserve the features related to the property of interest [11,16]. Com-
positional verification [1,21,15] in particular applies abstraction to hierarchically
defined systems so that the environment of each subsystem is summarized by
the properties that it guarantees.

Abstraction and compositional verification can be used to reduce the cost of
model checking experiments. The modeling effort required of the user, however,
grows with the degree of abstraction. Other techniques are therefore needed to
increase the intrinsic efficiency of the state exploration. Explicit model checkers
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use clever hashing schemes and external storage. Implicit model checkers, on the
other hand, rely on Binary Decision Diagrams (BDDs) [5] to represent very large
sets of states and transitions. BDD-based model checkers can sometimes analyze
models with over 5000 state variables without resorting to abstraction. In other
cases, however, even models with 40 state variables prove intractable. This large
variability is ultimately due to the fact that only functions with high degrees of
regularity possess compact BDDs. In many instances, however, the occurrence
of large BDDs in model checking experiments is an artifact of the specific state
search strategy and can be avoided. The analysis of the conditions that cause
the occurrence of large BDDs during the exploration of the state space, and the
description of a strategy to prevent those conditions are the topics of this paper.

Our discussion will focus on the form of model checking known as invariant
checking, which consists of proving that a given predicate holds in all reachable
states of a system. This form of verification is the most commonly applied in
practice. We aid invariant checking by guiding reachability analysis with hints.
Hints specifically address the computational bottlenecks in reachability analysis,
attempting to avoid the memory explosion problem (due to large BDDs) and
accelerate reachability analysis. Hints may depend on the property to be verified,
but they are successful at speeding up the proof as well as the refutation of
invariants.

Hints are applied by constraining the transition relation of the system to
be verified. They specify possible values for (subsets of) the primary inputs and
state variables. The constrained traversal of the state space proceeds much faster
than the standard breadth-first search (BFS), because the traversal with hints
is designed to produce smaller BDDs. Once all states reachable following the
hints have been visited, the system is unconstrained and reachability analysis
proceeds on the original system. Given enough resources, the algorithm will
therefore search all reachable states, unless a state that violates the invariant
is found. In model checking, constraints sometimes arise from assumptions on
the environment. Consequently, these constraints need to be validated on the
environment. In our algorithm, since hints are eventually lifted, they leave no
proof obligations.

Hints are reminiscent of simulation stimuli, but the distinguishing feature of
our application is that the state space is exhaustively explored. Simulation is
a partial exploration of the state space and can only disprove invariants—both
concrete and symbolic simulation suffer this limitation. Using hints is similar to
applying stimuli to the system, but temporarily. Moreover, hints are designed to
make symbolic computations with BDDs easier, whereas simulation stimuli are
only chosen to exercise the circuit with respect to a property.

It has been observed in the reachability analysis of many systems that the
BDDs at completion are smaller than the intermediate ones. The BFS curve of
Fig. 2 illustrates this phenomenon for the traversal of the circuit Vsa (described
in Section 6). The constrained traversal sidesteps the intermediate size explo-
sion. When the hints are removed, the unconstrained traversal is expected to be
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past the intermediate size explosion. Our algorithm also takes advantage of the
information gathered in the constrained traversal.

Some invariants can be checked directly by induction (if the predicate holds
in all initial states and in all successors of the states where it holds). In gen-
eral, however, proving invariants entails performing reachability analysis. Our
algorithm is designed to benefit the most general case. It is compatible with ab-
straction techniques like localization reduction [16], which is particularly useful
when the invariants describe local properties of the system.

The algorithmic core of BDD-based invariant checking is the computation
of least fixpoints. Our guided search approach is applicable in general to least
fixpoint computations and hence to a wider class of verification procedures, like
those of [14,3]. The rest of this paper is organized as follows. In Section 2 we dis-
cuss background material and define notation. In Section 3 we discuss the main
computational problems in image computation—the step responsible for most
resource consumption in invariant checking. In Section 4 we introduce guided
symbolic traversal by discussing case studies and presenting our algorithm. Sec-
tion 5 is devoted to a review of the relevant prior art in relation with our new
approach. Experimental results are presented in Section 6 and conclusions are
drawn in Section 7.

2 Preliminaries

Binary Decision Diagrams (BDDs): (BDDs) represent boolean functions. A
BDD is obtained from a binary decision tree by merging isomorphic subgraphs
and eliminating redundant nodes. For a given variable order, this reduction pro-
cess leads to a canonical representation. Therefore, equivalence tests are efficient,
and, thanks to the extensive use of memoization, the algorithms that operate on
BDDs are fast. Large sets can be manipulated via their characteristic functions,
which in turn can be represented by BDDs. BDDs are used to represent sets of
states and transitions in symbolic verification.

Though almost all functions have optimal BDDs of size exponential in the
number of variables, the functions encountered in several applications tend to
have well-behaved BDDs. This is not necessarily the case in model checking:
Sometimes the sets of states or transitions that a model checker manipulates are
irregular and have large BDDs.

The sizes of the BDDs for many functions depend critically on the variable
orders. Good variable orders are hard to predict a priori. Heuristic algorithms
like sifting [27] have been devised to dynamically change the order and reduce
BDD sizes during the computation. However, the high cost of the reordering
and short-sighted optimization (which may be bad for a later stage) impedes its
effectiveness.
Finite State Machine: A sequential circuit is modeled as a finite state machine
(S, Σ, O, T, λ, I), where S is the set of states, Σ is the input alphabet, O is the
output alphabet, T = S ×Σ × S is the state transition relation, Z = S ×Σ ×O
is the output relation, I ⊆ S is the set of initial states.
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S is encoded with a set of variables x. T is encoded with three sets of
variable—the set of present state variables x (same as S), a set of next state
variables y, and a set of primary input variables w. T (x, w, y) = 1 if and only
if a state encoded by y is reached in one step from a state encoded by x under
input w.

For deterministic circuits, the transition relation is customarily constructed
as a product of the bit relations of each state variable,

∏n
i=1(yi ≡ δi(x, w)),

where yi is the next state variable corresponding to the state variable xi, δi

is the next state function of the i-th state variable. When T is represented by
a single BDD, it is said to be monolithic. The monolithic transition relation
may have a large BDD, even for mid-size circuits. In practice, a more efficient
partitioned representation [7,28] is used as an implicit conjunction of blocks of
bit relations.

T (w, x, y) =
m∏

i=0

Ti(w, x, y),

Image Computation: With BDDs it is possible to compute the successors
(predecessors) of a set of states symbolically (without enumerating them). This
computation is referred to as an image (preimage) computation, and is defined
as follows:

Image(T, C) = [∃x,wT (x, w, y) ∧ C(x)]y=x ,

where Image(T, C) is the image of a set of states C(x) (expressed in terms of
the x variables) under the one-step transition relation T (x, w, y). Further details
are discussed in Section 3.
BFS: The traversal of the state space of a circuit is accomplished by a series of
image computations, starting from the initial states and continuing until no new
states are acquired. This is a BFS of the state graph: All the states at a given
minimum distance from the initial states are reached during the same image
computation. Some states are considered multiple times: A commonly applied
optimization is to compute only the image of the states that were first reached
during the previous iteration. This optimization still guarantees a BFS of the
graph. Such a set of states is called the frontier.

3 Image Computation

And-Exists: For a monolithic relation, image computation is carried out with a
single BDD operation called And-Exists. And-Exists(f, g, v) produces ∃v(f ∧ g).
The complexity of this operation has no known polynomial bound [19]. In the
worst case, the known algorithms are exponential in the number of variables in
the first two operands.

We adopt the approach of Ranjan et al., [23] for image computation. A linear
order is determined for the blocks of the transition relation, Ti(x, y, w). A series
of And-Exists operations are performed. At each step, the operands are the
current partial product, next block of the transition relation Tj(w, x, y) and the
quantifiable variables. The initial partial product is set to C(x).
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Quantification Schedule: And-Exists has the property that ∃v(f∧g) = g∧∃vf ,
if g is independent of v. This property can be used to quantify x and w variables
earlier than the last And-Exists in image computation to reduce the worst-case
sizes by reducing the peak number of variables. This has been observed to pro-
duce significant practical gains. The application of this property is called early
quantification. Several researchers have proposed heuristics to optimally order
the operands of the And-Exists, Ti(w, x, y), C(x) and scheduling the quantifica-
tion of variables [13,23]. In Ranjan’s approach, the life-span of variables during
image computation is minimized—variables are quantified out as early as pos-
sible and introduced into the partial product as late as possible. However, the
proposed techniques are far from being optimal.
Issues in Image Computation: Image computation comprises the largest
fraction of traversal time, typically 80-90%. Most of the BDD size explosion
problems in symbolic traversal are observed during image computation. The
main causes for size explosion are complex functions for the next state relations,
insufficient early quantification, and conflicting variable ordering requirements.

Three sets of variables—x, y, and w are involved in image computation.
Several ordering heuristics have been experimented with—the most common one
being the interleaving of x and y variables (as done in VIS [4]). This controls the
intermediate BDD sizes in the substitution of the y variables with the x variables
at the end of image computation but may be sub-optimal for the partial products.

In the monolithic transition relation, the interleaving order may cause a size
blowup since all the x and y variables interact in the same BDD. In a par-
titioned transition relation, normally the size stays under control since every
block Ti(x, w, y) has few variables and the blocks are kept separate. However,
during image computation, depending on the set whose image is computed and
the quantification schedule, all the x and y variables may interact. The situa-
tion may arise due to two reasons—the heuristics used may not find the optimal
quantification schedule or, a good quantification schedule may not exist when
many partitions depend on most of the variables.
Example: An ALU is an example of function that causes large intermediate
sizes. ALUs usually have operations such as ADD, SHIFT that make the output
bits depend on many of the input bits in complex functions, resulting in a bad
quantification schedule and large BDDs. In Section 4 we show how the use of
hints can address this problem.

4 Guided Symbolic Traversal Using Hints

We address the main problem of traversal—large intermediate BDD sizes dur-
ing image computation. We propose to simplify the transition relation in order
to reduce these sizes. The simplification addresses the issues discussed in Sec-
tion 3—reducing the peak number of variables involved in image computation
and (or) reducing the complexity of the transition relation by removing some
transitions.

The simplification is achieved by the use of hints. As explained in Section 1,
applying hints to traversal is equivalent to constraining the environment or the
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operating mode of the FSM. Breath-first search (BFS) explores all possible states
at each iteration of traversal i.e., all possible transitions from the current set of
states are considered. With hints, only a subset of these transitions considered.

Hints are expressed as constraints on the primary inputs and the states
of the FSM. The transition relation simplified with hints (conjoined with the
constraints) may have fewer variables in its support or fewer nodes or both.
This leaves room for a better clustering of the bit relations based on support
and size considerations. A improved quantification schedule may result from this
modified clustering. Every iteration of traversal performed with the simplified
transition relation benefits in terms of smaller intermediate BDD sizes and faster
image computations.

In invariant checking, all reachable states are checked for violation of the
property. The order in which the states are checked for the violation is irrele-
vant for the correctness of invariant checking. Traditional methods employ BFS,
starting at the initial states, as their search strategy. Applying hints results in a
different search order. Removing the hints at the end ensures that the invariant
is checked on all states. Counterexamples can be produced for invariant check-
ing with hints in the same manner as invariant checking without hints. An error
trace, though correct, may not be the shortest possible error trace since hints
do not perform a BFS.

We use the following grammar to express hints.

hint ::= atomic hint | hint : hint | repeat(hint, n)

where an atomic hint is a predicate over the primary inputs and states of the
FSM. The “:” operator stands for concatenation. The repeat operator allows the
application of hints for n (finite) iterations or infinitely many times (n = ∞).
repeat(hint, ∞) results in exploration of all states reachable from the given set
in the hint-constrained FSM.

We illustrate the effectiveness of hints by studying their application to some
circuits.
Am2901: This model is a bit-sliced ALU and contains sixteen 4-bit registers
organized into a register file, along with a 4-bit shift register. The ALU operations
include LOAD, AND, OR, XOR, and ADD. The registers are fed by the output
of the ALU. The operands of the ALU are either primary inputs or registers.

The hint given to this circuit restricts the instruction set to LOAD. Traversal
without hints runs out of memory whereas with hints completes in 3.93 seconds.
The LOAD instruction is sufficient to generate the entire reachable set. The hint
results in every register being fed by primary inputs and removes the dependence
on other bit registers. The size of each bit relation decreases, the number of blocks
in the transition relation reduces due to better clustering and the quantification
schedule improves, allowing more variables to be quantified earlier.

Another hint that enhances traversal is the sequencing of destination regis-
ters. Since there is only one write port, only one register gets written into in
each cycle. In BFS, at the k-th iteration, sets of k registers are filled with data
values of the ALU output and 17 − k registers retain their initial value. The
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circuit takes 17 iterations to complete reachability analysis. In sequencing the
destination address, a specific register is chosen as the destination for the k-
th iteration. At the end of 17 iterations, the effect is the same as that of not
sequencing addresses. The time for this traversal is 53 seconds.

The two hints mentioned above indicate that the transition relation can be
simplified in different ways. In reducing the instruction set to LOADs only, the
peak number of variables in the computation decreases. Sequencing the addresses
resulted in only one set of registers being fed by the ALU output while the rest
retain their original values.
Pipelined ALU (PALU): This model is a simple ALU with a three-stage
pipeline. The ALU allows boolean, arithmetic and shift operations. It also reads
from and writes to a register bank. The register bank is 4-bits wide and has 4
registers. There are three pipeline stages—fetch, execute and write-back stage.
A register bypass is allowed if the destination address in the write-back stage
matches the source address in the fetch stage. The pipeline is stalled if one of the
inputs is asserted. On stalling, the data and addresses are not allowed to move
through the pipeline. This creates dependencies between the latches in different
stages of the pipeline.

The traversal of this circuit takes 1560 seconds. With the hint that disallows
pipeline stalls, traversal completes in 796 seconds. In this case, the hint chooses
a common mode of operation of the circuit. Disabling stalls changes the quan-
tification schedule since many registers in the original FSM depend on the stall
input. Additionally, the constrained FSM explores a denser [25] set of states due
to the absence of simultaneous dependencies introduced by stall and addresses.
There is no instruction such as LOAD to generate enough data values to explore
a large portion of the reachable states.
Summary: The above examples demonstrate the usefulness of hints in traversal.
Hints may make traversal possible where it was not or may speed up traversal
considerably. In the following section, we describe how these hints are applied
and a modified algorithm for hint-enhanced traversal.

4.1 Algorithm

Our algorithm for traversal is illustrated in Fig. 1. hints is a parse tree of hints
expressed in the grammar described at the beginning of Section 4. Every node
of this parse tree has a type, that may be “atomic hint”, “:” or “repeat”. An
“atomic hint” node has no children, a “:” node has two children and a “repeat”
node has one child and an associated field, n, for the number of repetitions.

The algorithm is called with P set to I and T set to the transition relation
of the FSM. The hints are automatically suffixed with :repeat (1, ∞). This
serves to restore the original transition after applying all the hints. (The first
argument here implies no constrain on the transition relation.) The algorithm in
Fig. 1 recurs on the parse tree of hints. The leaf of the recursion is the case of
the atomic hint (H(w, x)). In this case, the algorithm computes a constrained
transition relation TH(x, w, y) with respect to the hint and computes the image of
the current set P . In the case of a node of type “:” (concatenation), the procedure
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Guided Traversal (hints,T , P )
switch type(hints)

case “atomic hint”
TH(x,w, y) = T (x,w, y) ∧ H(w,x)
P = P ∨ Image(TH , P )

case “:”
P = Guided Traversal (left child(hints), T , P )
P = Guided Traversal (right child(hints), T , P )

case “repeat”
for (counter =0; counter < read n(hints); counter++)

Pprev = P
P = Guided Traversal (left child(hints), T , P )
if (Pprev == P ) break

return P
Fig. 1. Guided traversal algorithm.

recurs on each subgraph (concatenated hint) and updates P . With a “repeat”
node, the procedure recurs as many times as required by n or until P converges,
whichever comes first. The atomic hint produces new successors while “:” and
repeat order the application of hints.

The case of repeat with n > 1 involves repeatedly computing the image of P
using the same transition relation TH(x, w, y) (generated using this atomic hint).
The implementation of repeat(atomic hint, n) can be made more efficient by
using the frontier states (as mentioned in Section 2). Our implementation makes
use of this optimization.
The correctness of the algorithm in Fig. 1 is established by the following theorem.

Theorem 1. 1. Algorithm Guided Traversal terminates.
2. The set of states computed by Guided Traversal is contained in the reachable

states and no less than the reachable states are computed.

Proof Sketch: (1) is proved by induction on the depth of hints. The proof of (2)
relies on the fact that application of hints to the transition is monotonic and the
operation P ∨ Image(TH , P ) is monotonic. Finally, since the original transition
relation is restored, all reachable states are computed.
Optimization. Touati [28] proved that the BDD Constrain operator has the
property

∃x,wT (x, y, w) ∧ C(x) = ∃x,wT (x, y, w) ↓ C(x).

In applying the hint, the same result can be used as

P (x) ∨ (∃x,w(T (x, w, y) ∧ P (x)) ↓ H(w, x))|y=x.

If the hint depends on primary inputs only, the computation can be further
simplified to

P (x) ∨ (∃x,w(T (x, w, y) ↓ H(w)) ∧ P (x))|y=x.

Images of Large Sets. Every iteration in the algorithm computes the image
of P . If the size of the BDD of P increases, computing the image of P is likely to
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cause a memory blowup. To address this problem, we decompose P disjunctively
and compute the image of each individual part [9,22,26]. Specifically, we adopt
the Dead-End computation approach of [26]—a two-way recursive disjunctive
decomposition of P is done and an image is computed only when the size of a
disjunct are below a certain threshold. A tradeoff may occur in terms of CPU
time when the decomposition does not produce enough reduction in size and
many disjuncts are generated before the allowed size for image computation is
attained. However, the image computation of a large BDD is avoided and in
many cases this allows traversal to complete.

4.2 Identification of Good Hints

Hints to aid traversal fall in two main categories: Those that depend on the in-
variants being checked and those that capture knowledge of the design at hand,
independent of the property. Invariant checking may profit from both property-
dependent and machine-dependent hints. False invariants may be negatively im-
pacted by hints that further the distance of the violating states from the initial
states. Property-dependent hints will tend to avoid this situation. Counterex-
amples, using property-dependent hints, will tend to be shorter than those with
general purpose hints.

In Section 4, we presented two circuits and appropriate hints that acceler-
ated the traversal of these circuits. The hints fall in the category of machine-
dependent hints. The acceleration was achieved due to reduced BDD sizes in
image computation and exploration of a dense set of states for a majority of
iterations. Figure 2 shows the comparison of BDD sizes for the reached set be-
tween BFS and traversal using hints of the circuit Vsa (described in Section 6).
In this section, we try to summarize the kinds of hints that are easy to identify
and achieve the desired effect. We believe that these hints are easily extracted
from a reasonable knowledge of the circuit. (Sometimes it may even be possible
to guess them.) We expect that traversal of circuits containing features (ALUs,
register files) similar to the ones described in this paper will profit from the same
kinds of hints.

The hints we have utilized can be classified into four categories.

1. Pick the most common operation mode of the circuit. One example is dis-
abling stalls. If there is a counter in the circuit, the counter should be enabled
first so that counting iterations have small BDDs.

2. Simplify complex functions such as ALUs: Pick an opcode that produces
small intermediate sizes and many states. Loads, in this case, tend to be
ideal as they reduce variables in the support of the ALU outputs and produce
many next states.

3. Disabling latches: Disable output latches or latches with a small transitive
fanin.

4. In the presence of addresses to access banks of registers, pick a sequence of
addresses. This prevents the simultaneous interaction of variables belong-
ing to independent registers. These registers tend to be quasi-symmetric in
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Fig. 2. Comparison of BDD sizes on a log scale of the reached states in the BFS
traversal and hint-enhanced traversal of Vsa.

the circuit. Symmetry has traditionally been viewed problematic in model-
checking because of its effects on variable order. Several researchers have
studied the effects of symmetry [10,18]. The proposed hint breaks the sym-
metry in the circuit.

A combination of the above hints can also enhance traversal time. In the Vsa
example (described in Section 6), a combination of opcode hints and sequencing
of addresses reduced the BDD sizes and traversal time dramatically. For property
dependent hints, it is useful to pick an input that is likely to cause the violation.
While simulation requires the specification of all input stimulus, the property
dependent hints require only a partial specification.

So far, we have discussed the extraction and application of hints by the user.
It may also be possible to extract these hints automatically and apply them to
traversal. The above mentioned guidelines may prove useful in the automatic
detection of hints. In particular, the last two categories may be easy to extract
by static analysis of the circuit. A property dependent hint for the same circuit
decreased the
Effect on dead-end computations. Dead-end computations are expensive in
comparison with image computations of frontier sets with small BDDs. Since
repeated dead-end computations may slow down the overall traversal, a good
choice of hints should try to minimize the number of dead-end computations. In
this regard, retaining a frontier is desirable. The hint repeat(atomic hint, n) is
implemented to use frontier sets. Hints should also be chosen to produce dense
sets of states, to ease dead-end computations. A particular hint may also be
abandoned when the density of the reached state set begins to deteriorate.
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5 Comparison to Prior Work

In this section we review the techniques that share significant algorithmic fea-
tures with our approach.

High-density reachability analysis [25] is based on the observation that BDDs
are most effective at representing sets of states when their density is high. The
density of a BDD is defined as the ratio of the number of minterms of the function
to the number of nodes of the BDD. By departing from pure BFS, one can try
to direct the exploration of the state space so that the state sets have dense
BDDs. Dense sets are obtained by applying subsetting algorithms [24] to the
frontier states when the BDDs grow large. The increased density of the frontier
sets often improves the density of the other sets as well. When this is not the
case, corrective measures can be attempted [26].

Both high density reachability and guided traversal analysis depart from BFS
to avoid its inefficiencies. The latter adopts the dead-end computation algorithm
of the former. However, the search strategies differ in several respects. High den-
sity reachability is a fully automated approach, which can be applied regardless
of the knowledge of the system, but occasionally exhibits erratic behavior. Also,
it addresses directly the density of sets of states, but only indirectly the diffi-
culties of image computation that may be connected to the representation of
transitions. (When the intermediate products of image computation grow too
large, they are subsetted. This leads to the computation of partial images [26].)

Disjunctive partitioning of the transition relation has been proposed
in [9,8,22,20]. In the original formulation, partitioning is applied to image com-
putation only. This keeps the test for convergence to the fixpoint simple (no
dead-end computation is required,), is effective in reducing the image compu-
tation cost, and is fully automated. However, it provides for no departure from
BFS, and is therefore ineffective at controlling the sizes of the state sets. When
the sub-images computed for the partition blocks have substantial overlap, the
disjunctive approach may do unnecessary work.

[9] also introduces the notions of λ-latches and partial iterative squaring.
These are latches on which no other state variables depend; they are constrained
at their initial value until no new states are achieved. Guided traversal subsumes
this technique. Freezing λ-latches is indeed a good hint. Partial iterative squaring
may be effective when the sequential depth of the circuit is high.

Biasing the search towards reaching particular states is the subject
of [30,2,29]. A technique called saturated simulation is proposed in [30,2]. It
consists of dividing the state variables into control and data variables, and se-
lectively discarding reached states to allow the exploration of a large number of
values for the control variables. Since this technique concentrates on “control”
states, its usefulness is mostly in disproving invariants in circuits with a clear
separation between control and data.

In [29] the idea of guidepost is presented in the context of explicit state search.
Given a set of target states, a guidepost is a set of states that the search should
try to reach as an intermediate step towards reaching the targets. There is a
clear relation between guideposts and the hints used in guided symbolic traversal
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formulated in terms of state variables. However, there are important differences.
In explicit state enumeration, guideposts only help if the target states are indeed
reachable. By contrast, the hints used in the symbolic algorithm do not have
this limitation. Apart from pointing the way towards the target states, the hints
used in guided traversal try to address the difficulties of image computation—not
addressed by explicit search.

Constraints on the inputs of the system being verified are also used in sym-
bolic trajectory evaluation [6]. However, full-fledged reachability analysis is not
the objective of that technique. Constraints are also used in [15] to implement
an assume/guarantee approach to verification. The constraining of the transition
relation proceeds in the same way as in guided traversal, but the constraints are
not chosen to speed up verification; they are imposed by the environment. One
consequence is that there is no need to lift the constraints, and therefore no
dead-end computation.

A similar situation occurs in forward model checking [14,3]. The traversal
of the state space is constrained by the formula being verified. This has been
reported as one of the reasons why forward model checking often outperforms
the classical algorithm based on backward analysis. However, as in the previous
cases, the constraints are not deliberately chosen to improve performance of the
algorithm.

6 Experimental Results

We implemented the algorithm described in Fig. 1 in VIS [4]. Experiments were
conducted on a 400MHz Pentium II machine with 1GB of RAM running Linux.
We conducted two sets of experiments: One for reachability analysis; the other
for invariant checking. We report the results of these experiments in Tables 1
and 2. We used thirteen circuits in our experiments. Of these, Am2901, and
PALU are described in Section 4. The Am2910 is a microprogram sequencer.
It has a 5-deep stack to store 12-bit addresses, a stack counter and a micro-
program counter. CRC computes a 32-bit cyclic redundancy code of a stream of
bytes. Fabric is an abstracted version of an ATM network switching fabric [17].
BPB is a branch prediction buffer that predicts whether a branch should be
taken depending on the correctness of the previous predictions. Rotator is a
barrel shifter sandwiched between registers. Vsa is a very simple non-pipelined
microprocessor that executes 12-bit instructions—ALU operations, loads, stores,
conditional branch—in five stages: fetch, decode, execute, memory access, and
write-back. It has four registers, with one always set to zero. DAIO is a digital
audio input output receiver. Soap is a model of a distributed mutual exclusion
protocol [12]. CPS is a flat description of a landing gear controller. s1269 and
s1512 belong to the ISCAS89 Addendum benchmarks.

The set of atomic hints belong to one of the four categories described in
Section 4.2. We guessed some hints for CPS, s1269, and s1512 as we had no
information regarding their behavior. In all these circuits, constraints on the
primary inputs alone were effective. The hints were expressed as a concatenation
of repeat (atomic hint, ∞) and computed with frontier sets. We conducted our
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Table 1. Experimental results for reachability analysis.

Circuits FFs Reachable Peak Live Nodes Times in seconds
States without with without with constr.

hints hints hints hints traversal

CRC 32 4.295e+09 >42,384,405 16,312 Mem. out 0.11 0.11

BPB 36 6.872e+10 1,884,853 46,904 236.9 1.04 1.04

PALU 37 2.206e+09 29,134,676 25,753,334 1560.78 796.48 40.9

s1269 37 1.131e+09 31,225,168 3,287,777 2686.08 47.07 25.31

s1512 57 1.657e+12 23,527,792 26,210,543 5036.9 2372.7 2372.05

Rotator 64 1.845e+19 >12,891,752 16,071 Mem. out 0.18 0.18

Vsa 66 1.625e+14 25,061,852 6,858,369 6974.7 111.8 23.2

Am2901 68 2.951e+20 >38,934,128 349,781 Mem. out 3.65 3.65

DAIO 83 3.451e+14 6,390,705 3,746,631 24584.3 1752.12 1591.36

Fabric 87 1.121e+12 14,220,404 16,197,453 340.12 178.65 117.15

Am2910 99 1.161e+26 >36,696,241 26,238,783 Mem. out 1674.39 14.97

Soap 140 4.676e+08 1,011,972 628,959 36.93 13.87 9.67

CPS 231 1.108e+10 4,648,226 4,032,671 108.86 105.9 68.9

experiments without dynamic reordering in order to compare without variability
introduced by it.

Table 1 compares reachability analysis with hints against BFS runs.
Columns 1, 2, and 3 give the name of the circuit, number of flip-flops (state
variables) and number of reachable states of the circuit. A memory limit of 1GB
was set on each traversal run. Columns 4 and 5 show the peak number of live
nodes during traversal. These numbers are reflective of the peak intermediate
sizes during image computation. Columns 6 and 7 compare run times for reacha-
bility analysis without and with hints. Column 8 shows the portions of the times
in Column 7 spent in traversing the constrained machines.

The circuits in this table are mid-sized, but four of these circuits—CRC, Ro-
tator, Am2901, and Am2910 run out of memory for BFS. The hints described in
Section 4 provide dramatic improvements to the traversal of these circuits, en-
abling completion times of a few seconds. With the remaining circuits in Table 1,
BPB, s1269, DAIO, and Vsa demonstrate 1-2 orders of magnitude improvement.
For Am2901 and s1269, different hints give comparable reduction in traversal
times. The best times are reported in the table. With PALU, Fabric and s1512,
the improvement in traversal time is roughly a factor of 2. In cases of dramatic
improvement in traversal time, the difference peak number of live nodes sup-
port the notion that small computation times result from manipulation of small
BDDs (see Fig. 2). CRC, BPB, s1269, Am2901, and Rotator also display this
behavior.

The difference in traversal times for CPS is small. The traversal of the con-
strained machine takes only 69 seconds. Most of the remaining traversal time is
taken up in the dead-end computation (only one additional image computation
after the dead-end computation is required to prove convergence). This is an



Hints to Accelerate Symbolic Traversal 263

Table 2. Experimental results for invariant checking.

Circuits Invariant Reached States Times in seconds
TRUE/ without with without with
FALSE hints hints hints hints

CRC-1 FALSE Mem. out 4.295e+09 Mem. out 0.2

BPB-1 FALSE 2.76347e+08 2.41592e+09 20.0 0.9

PALU-1 FALSE 6.05235e+06 5.27424e+06 2.3 1.3

PALU-2 FALSE 5.50225e+08 5.05979e+08 71.0 8.6

PALU-3 FALSE 1.50252e+09 1.33688e+09 164.8 19.2

PALU-4 TRUE 2.20562e+09 2.20562e+09 1529.9 824.5

Rotator-1 FALSE Mem. out 1.84467e+19 Mem. out 0.3

Vsa-1 FALSE 5.81677e+12 1.23589e+11 806.8 5.6

Vsa-2 FALSE 2.92565e+11 9.47068e+13 173.2 40.5

Vsa-3 TRUE 1.62485e+14 1.62485e+14 6813.5 111.1

Am2901-1 FALSE Mem. out 2.95148e+20 Mem. out 19.6

Fabric-1 FALSE 4.37925e+09 2.73703e+08 10.4 8.0

Fabric-2 TRUE 6.88065e+10 6.88065e+10 7.0 14.2

Fabric-3 TRUE 1.11004e+12 1.11004e+12 77.9 65.6

Am2910-1 FALSE Mem. out 3.45961e+18 Mem. out 872.6

Am2910-2 TRUE 24576 24576 3.5 2.8

Am2910-3 TRUE Mem. out 1.161e+26 Mem. out 1734.8

Soap-1 TRUE 4.676e+08 4.676e+08 31.5 16.1

example of a case where hints speed up traversal but the dead-end computation
offsets these gains. It illustrates the importance of a hint producing a dense set
of reachable states in addition to simplifying each image computation.

Table 2 shows comparisons for invariant checking runs without and with
hints. Both passing and failing invariants were tried on the various circuits. En-
tries in Column 1 indicate the circuit name and the number of distinct invariants
tried on them. Column 2 indicates whether an invariant failed or passed. Some
invariants led to a reduced FSM based on the transitive fanin of the variables
involved in the invariant property. Such invariants required exploration of fewer
states to pass or fail. For a fair comparison the same reduced FSM was provided
to the algorithm without and with hints. Columns 3 and 4 of the table indi-
cate the number of reachable states that needed to be explored to prove these
invariants. The last two columns give time comparisons. Failing invariants are
reported as soon as they are detected.

The results show that hints may help both passing and failing invariants. For
failing invariants where using hints was faster, hints steered the search toward the
violating states. For example, in PALU, invariants involving the register values
are checked faster when stalls are disabled. Invariants PALU-2 and PALU-3
benefit from this. On the other hand, a user should be careful that the hints
provided do not conflict with the invariants being checked, thereby resulting
is slower computation times. Invariant checking with hints on CRC, Rotator,
Am2901, Am2910, and Soap enjoys the same benefits as reachability analysis.
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Sometimes hints have less of an impact since the violating states are close to the
initial states, or the reduced FSM is small, like in the case of Fabric.

In the case of the false invariant for Vsa-2, the 40.5 second run-time was gen-
erated with hint based on the knowledge of the circuit. A property-dependent
hint is more effective, completes traversal in 6.5 seconds and generates the short-
est error trace. This hint also works for the other invariants, but is about three
times slower than the general-purpose one. So general purpose and property-
dependent hints may be also useful in the reverse situations.

7 Conclusions

In this paper we have shown that state traversal guided by hints can substantially
speed up invariant checking. Orders-of-magnitude improvement have been ob-
tained is several cases, and visible gains have been achieved in most experiments
we have run. The hints prescribe constraints for the input and state variables of
the system. Deriving the hints requires some knowledge of the circuit organiza-
tion and behavior, at the level a verification engineer needs to devise simulation
stimuli or properties to be checked. Simple heuristics often allow one to find hints
that are effective for both properties that fail and properties that pass. There
is no guarantee, however, that a hint will be beneficial, as we have discussed
in Section 6. We are therefore investigating methods that would allow guided
traversal to recover from an ineffective hint with minimum overhead.

The success obtained in deriving hints from a rather small catalog of hint
types seems to suggest the automatic derivation of hints as a fruitful area of
investigation. We are interested in both methods that work on the structural
description of the system (e.g., the RTL code), and methods that analyze the
transition relation for information concerning function support and symmetries.
We are also investigating the application of hints to model checking more general
properties than invariants.
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