
Hazard–Freedom Checking in

Speed–Independent Systems�

Husnu Yenigun1, Vladimir Levin1, Doron Peled1, and Peter A. Beerel2

1 Bell Laboratories, 600 Mountain Av., Murray Hill, NJ 07974, USA
{husnu,levin,doron}@research.bell-labs.com

2 University of Southern California, Los Angeles, CA 90089, USA
pabeerel@eiger.usc.edu

Abstract. We describe two approaches to use the model checking tool
COSPAN to check the hazard freedom in speed–independent circuits.
First, we propose a straight forward approach to implement a speed–
independent circuit in S/R. Second, we propose a reduction technique
over the first approach by restricting the original system with certain
constraints. This reduction is implemented on the top of COSPAN which
also applies its own reductions, including symbolic representation (BDD).

1 Introduction

Speed–Independent systems are a special subclass of asynchronous systems in
which gates are modeled as instantaneous functional elements followed by arbi-
trarily long delay components while assuming zero delay in wires. The advantage
of this approach is that the design works regardless of the delay of the individ-
ual gates thus eliminating the need for any timing assumptions in the circuit.
There are several techniques developed to help verify speed–independent systems
(e.g., [1,2,3,4]).

The design of speed–independent systems is complicated since one has to
make sure that, the unwanted signals, hazards, which cause the circuit malfunc-
tion, do not appear in the design. In this paper we propose two approaches
to use the model checking engine COSPAN [5] to check the hazard freedom of
speed–independent circuits. In the first approach, a speed–independent system
is completely specified in S/R (the input language of COSPAN), and COSPAN
is used to check the states of the system exhaustively to search for a hazard
state. This approach, however, suffers from the state explosion problem. There-
fore, we propose a reduction method, similar to the partial order reduction [6,7],
to force COSPAN to search only a subset of the reachable states of the system.
Our technique is based on the static partial order reduction [8].

2 Definitions

A speed–independent system SI is given as a tuple SI = (G, I, F). G is the set
of gates in the circuit. I : G → 2G is a function giving the interconnection of
� This work was supported in part by SRC Contract no. 98-DJ-486.

L. Pierre and T. Kropf (Eds.): CHARME’99, LNCS 1703, pp. 317–321, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

318 Husnu Yenigun et al.

the circuit. For two gates g1, g2, if g1 ∈ I(g2), then the output of the gate g1 is
an input to the gate g2. We can also have g ∈ I(g) for a gate g whose output is
also an input to itself. And finally, F is a function mapping each gate g ∈ G to
a boolean function, so F (g) is a boolean function of arity |I(g)|.

A state s of the system is a function s : G → {0, 1} where for a gate g ∈ G,
s(g) is the current output value of gate g at s. Let S be the set of all such
functions and s0 ∈ S be the initial state of the system.

Given a gate g, and a state s, Is(g) is the bit vector [v1, v2, . . . , v|I(g)|] rep-
resenting the current input vector to g at s. F (g)(Is(g)), or shortly Fs(g), is
the desired value which the current inputs of gate g tend to derive as the new
output of g. A gate g is said to be enabled at state s if s(g) �= Fs(g), i.e., the
current value of the gate is different from the desired value of the gate. The set
of enabled gates at s is given by enabled(s) = {g ∈ G|s(g) �= Fs(g)}.

The interleaving semantics of speed–independent systems requires that only
one of the enabled gates may change its value at a time. The transitions of
a speed–independent system are given by the relation T ⊆ S × S, such that,
(s, (s/g)) ∈ T ⇔ g ∈ enabled(s), where s/g is the state obtained from s by
inverting the current output value of g.

A run from s1 is a finite sequence of states, r = (s1, s2, . . . , sk) such that
for 1 ≤ i < k, (si, si+1) ∈ T . The full state space (or reachable state space)
SF ⊆ S of the system is the set of states such that s ∈ SF iff there exists a run
r = (s1, s2, . . . , sk) such that s1 = s0 and sk = s.

A transition (s, s/g) is called a hazard–transition if ∃g′ �= g and g′ ∈
enabled(s) and g′ �∈ enabled(s′). A state s is called a hazard–state if there
exists two gates g and g′ such that g, g′ ∈ enabled(s) and g′ �∈ enabled(s/g).
A hazard–run from s1 is a run from s1, r = (s1, s2, . . . , sk) such that for all
1 ≤ i ≤ k− 1, si is not a hazard–state, and sk is a hazard–state. The system SI
is said to be hazardous if there exists a hazard–run from s0, the initial state of
the system.

3 Reduced Hazard Check

A sequence of gates c = g1, g2, . . . , gn is called a gate–cycle if ∀i < n,
j ≤ n : gi ∈ I(gi+1), gn ∈ I(g1) and i �= j implies gi �= gj . A gate–cycle is
a simple cycle in the interconnection structure of the gates. Let c denote the set
of gates in the sequence c. Let C = {c1, c2, . . . , cm} be the set of all gate–cycles
in the given circuit and Gsticky ⊆ G be a set of gates such that, ∀c ∈ C, ∃g ∈ c
such that g ∈ Gsticky .

Given two gates g and g′ such that g ∈ I(g′), and a state s, g is called
disabling–input for g′ at s if g′ �∈ enabled(s) and ∀s′, (s(g) = s′(g)) ∧ (s(g′) =
s′(g′)) implies g′ �∈ enabled(s′). Intuitively, if g is disabling–input for g′ at s,
then g′ cannot be enabled as long as g stays at its current value. g is called
enabling–input for g′ at s if g′ �∈ enabled(s) and g′ ∈ enabled(s/g). Let
fanout(g) = {g′|g ∈ I(g′)} denote the fanout gates of gate g.

Hazard–Freedom Checking in Speed–Independent Systems 319

A gate g is called ample at s, if (1) g ∈ enabled(s); (2) s(g) = 1 or g �∈ Gsticky ;
(3) ∀g′ ∈ fanout(g), g is a disabling–input for g′ at s; and (4) ∃g′ ∈ fanout(g), g
is an enabling–input for g′ at s. State s is an ample state if there exists an ample
gate g at s.

The defining feature of our reduced algorithm over that of the original algo-
rithm is that it explores only one transition associated with an ample gate out
of every ample state whereas it explores all transitions from non-ample states.
The reduced algorithm is still guaranteed to catch a hazard if the system is not
hazard free.

4 Implementation

To implement our algorithms within COSPAN, we developed two different S/R
process–type libraries for basic gates. Each gate is represented by a S/R process
instantiated from the appropriate S/R process type.

In the first library, a process type has a state variable named out which keeps
the current output value of the gate and a selection variable named output,
assigned to the value of the state variable out, to inform the current output
value to the fanout gates using appropriate instantiation connections. It also
has another selection variable, enabled, which is set to true whenever the gate is
enabled and a selection variable, named hazard flag, which is set to true whenever
the current state is a hazard state on this gate. If the process type implements
an n input basic gate, then it has 2n+1 formal parameters. Specifically, it imports
the output and enabled selection variables from each fanin gate g and a last formal
parameter from a process called Asynchrony Manager, or shortly AM. Since an
S/R system is a synchronous system, whereas a speed–independent system is
asynchronous, we mimic the asynchrony by using AM. Every gate informs AM
whether it is enabled or not (via its enabled selection variable). AM lets the
enabled gates execute a transition in a mutually exclusive manner.

The second process–type library is used for the reduced case analysis. In ad-
dition to all the state and selection variables of the previous case, a process type
in the reduced case has two more selection variables for each fanin component it
has to inform the corresponding fanin gate if it is a disabler and enabler input
for this gate or not. It also has another selection variable called ample which is
set to true only if the gate is an ample gate at the current state. We also modify
AM in the reduced case to import the ample selection variables of the gates. If
at a state, there exists a gate whose ample is true, then AM of the reduced case
only allows this gate to execute. If none of the ample selection variables are true,
then it again lets all the enabled gates execute mutually exclusively.

In both cases, COSPAN is run on the system and checks the property that
no gate’s hazard flag is ever set.

320 Husnu Yenigun et al.

0

20

40

60

80

100

120

140

160

180

200

8 10 12 14 16 18 20 22 24 26 28 30 40 50

Memory (MB)

Explicit, no reduction
Explicit, with reduction

BDD, no reduction
BDD, with reduction

0.0625

0.25

1

4

16

64

256

1024

4096

16384

65536

8 10 12 14 16 18 20 22 24 26 28 30 40 50

Time (sec.)

Explicit, no reduction
Explicit, with reduction

BDD, no reduction
BDD, with reduction

Fig. 1. Memory and time. The x–axis are the number of C–elements in the
circuit.

5 Experiments and Discussion

Currently, there is no tool implemented to instantiate a system using the process
type libraries. Therefore, we experimented with a hand-generated scalable family
of FIFO queue circuits implemented using Muller C-elements and inverting and
non–inverting buffers.

Neither the original system nor the reduced system is reported to be haz-
ardous. As the figure illustrated, the reduction ratio of the number of states (i.e.
the number of states in the original system divided by the number of states in the
reduced system) is exponential though with a smaller degree than the increase
in the number of states. As a consequence of this reduction, the time required
to analyze the reduced system is always less than that required to analyze the
original system and the reduced case always uses less memory, but it is still
exponential.

In the symbolic (BDD) case, we do not see any stable correlation between
reduced and original cases in terms of memory usage. The reduced analysis,
however, is faster after the scale goes above 16 C–elements despite the fact that
the partial reduced system being verified is more complicated.

Although somewhat promising, more experiments are needed to better judge
the merits of the proposed reduction approach.

References

1. J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan and D. L. Dill, Sym-
bolic model checking for sequential circuit verification, IEEE Transactions on CAD,
Vol.13, No.4, April 1994, pp.401–424. 317

2. K. L. McMillan, A technique of state space search based on unfolding, Formal
Methods in System Design, Vol.6, pp.45–65, 1995. 317

3. P. A. Beerel, J. R. Burch and T. H.-Y. Meng, Checking Combinational Equivalence
of Speed-Independent Circuits, in Formal Methods on System Design, May 1998.
317

4. D. L. Dill, Trace theory for automatic hierarchical verification of speed–independent
circuits, ACM Distinguished Dissertations, 1989. 317

Hazard–Freedom Checking in Speed–Independent Systems 321

5. R. P. Kurshan, Computer–aided verification of coordinating processes, Princeton
University Press, Princeton, New Jersey, 1994. 317

6. D. Peled, Combining partial order reductions with on the fly model checking, 6th

CAV, June 1994. 317
7. A. Valmari, A stubborn attack on state space explosion, 2nd CAV, 1990, pp.25–42.

317
8. R. P. Kurshan, V. Levin, M. Minea, D. Peled and H. Yenigun, Static Partial Order

Reduction, TACAS, 1998. 317

	Introduction
	Definitions
	Reduced Hazard Check
	Implementation
	Experiments and Discussion

