
Yet Another Look at LTL Model Checking�

Klaus Schneider

University of Karlsruhe, Department of Computer Science
Institute for Computer Design and Fault Tolerance (Prof. D. Schmid)

P.O. Box 6980, 76128 Karlsruhe, Germany
Klaus.Schneider@informatik.uni-karlsruhe.de

http://goethe.ira.uka.de/~schneider

Abstract. A subset of LTL is presented that can be translated to ω-
automata with only a linear number of states. The translation is com-
pletely based on closures under temporal and boolean operators. More-
over, it is shown how this enhancement can be combined with traditional
translations so that all LTL formulas can be translated. Exponential sav-
ings are possible in terms of reachable states, as well as in terms of
runtime and memory requirements for model checking.

1 Introduction

Nearly all decision procedures for the linear-time temporal logic LTL are based
on a translation to equivalent ω-automata. Given an LTL formula Φ, the states
of the corresponding ω-automaton AΦ are usually given as the powerset of the
elementary formulas, i.e., of the set of all subformulas of Φ that start with a
temporal logic operator. The transition relation and the acceptance condition of
the automaton is determined by the fixpoint characterization of the formulas in
the corresponding state (cf. [6,1]).

Clarke, Grumberg and Hamaguchi [2] pointed out that for LTL model check-
ing, there is no reason to construct the automaton AΦ explicitely. Instead, they
directly abbreviated each elementary subformula ϕ of Φ by a new state vari-
able �ϕ. The transition relation and the acceptance condition are then directly
given in terms of these state variables. This yields in a translation procedure that
runs in time O(|Φ|) and whose result can be directly used for symbolic model
checking.

The number of possible states is however of order O(2|Φ|) since any ele-
mentary formula of Φ may double the set of reachable states. Although this
exponential blow-up can not be circumvented in general, it can be avoided for
many formulas, when the automaton is derived by means of closures (see [6]
for an example): Given that we have already derived an automaton Aϕ for ϕ,
and we have a propositional formula ψ, the presented closure theorems tell us
how to construct automata for Xϕ, [ψ U ϕ], and [ϕ B ψ] by only introducing one
additional state.
� This work has been financed by the DFG project ‘Verification of embedded systems’

in the priority program ‘Design and design methodology of embedded systems’.

L. Pierre and T. Kropf (Eds.): CHARME’99, LNCS 1703, pp. 321–326, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

322 Klaus Schneider

A forerunner of this approach is due to Jong [3] who already used closure
theorems for X and F. We extend his idea to all temporal operators, i.e. also to
the binary ones. The closures are used to keep the automaton as small as possible
by avoiding the introduction of too much states and acceptance constraints. Our
translation can still be performed within O(|Φ|) time and still computes the
transition relation of the automaton Aϕ in a symbolic manner similar to [2].

However, the mentioned closures can only be applied if ψ is propositional, so
that there is an intimate relationship between the logic LeftCTL∗ [5,6] and the
closure theorems. LeftCTL∗ is a branching-time temporal logic that is equal ex-
pressive as CTL, but has a much richer syntax, so that a lot of LTL formulas that
are equivalent to some CTL formulas do even syntactically belong to LeftCTL∗.
Using the closure theorems, we will see that any formula of LTL ∩ CTL can be
translated to a deterministic Büchi automaton. A similar result has been ob-
tained by Kupferman and Vardi, who showed in [7] that each formula of the
intersection of LTL with the alternation-free µ-calculus (a superset of CTL in
some sense) can be translated to a deterministic Büchi automaton.

In [6], it has been shown how given CTL∗ model checking problems can be
handled by the extraction of a LeftCTL∗ formula. It has already been remarked
there that the procedure presented in [6] is a generalization of the usual transla-
tion of LTL to ω-automata (in the sense of [1]). Our overall approach is therefore
as follows: We apply the ‘extraction procedure’ of [6] to a given LTL formula Φ.
This essentially computes an ω-automaton AΦ for the parts of Φ that do not
belong to LeftCTL∗ and some formula Ψ ∈ LTL ∩ LeftCTL∗. Ψ is then trans-
lated by means of the closure theorems to another ω-automaton AΨ , so that
the resulting automaton AΦ × AΨ is equivalent to Φ. The construction of AΨ

does not introduce any fairness constraints at all, whereas the traditional trans-
lation generates O(|Φ|) fairness constraints that evidently increase the runtime
requirements of the later model checking. Due to lack of space, the paper is
not self-contained. It refers to some definitions and algorithms given in [5,6,1]
(available from http://goethe.ira.uka.de/˜schneider).

2 Translating LeftCTL� ∩ LTL to ω-Automata by Closures

We describe ω-automata by formulas of the form A∃ (Q,ΦI , ΦR, ΦF), where Q
is the set of state variables (states of the automaton are given as subsets of Q).
ΦI is a propositional formula over Q and describes the initial states (all sets
that ‘satisfy’ ΦI). Similarly, ΦR describes the transition relation, and ΦF the
acceptance condition. In particular, we consider the following types of acceptance
conditions, where Φ, Φk, Ψk are propositional over Q, and hence denote sets of
states (B+(ϕ1, . . . , ϕn) denotes the set of formulas that can be constructed with
the boolean connectives ∧ and ∨ from the formulas ϕ1, . . . , ϕn):

Büchi Acceptance: GFΦ
Generalized Büchi Acceptance: B+(GFΦ1, . . . ,GFΦm)
Generalized Co-Büchi Acceptance: B+(FGΦ1, . . . ,FGΦm)

Yet Another Look at LTL Model Checking 323

It is well-known that generalized co-Büchi automata are less expressive than
Büchi automata. The latter are closed under all boolean operations, but the for-
mer are not closed under complement. Moreover, generalized co-Büchi automata
can be made deterministic (with an exponential blow-up) [8], while Büchi au-
tomata can not be made deterministic [4].

We next show how the LTL formulas that are also LeftCTL∗ [5] formulas
can be translated to generalized nondeterministic co-Büchi automata with only
O(|Φ|) states and an acceptance condition of length O(|Φ|). The grammar rules
of LeftCTL∗ are as follows (see [5] for the semantics):

S ::= Variables | ¬S | S ∧ S | S ∨ S | EPE | APA

PE ::= S | ¬PA | PE ∧ PE | PE ∨ PE | XPE | GS | FPE

| [PE W S] | [S U PE] | [PE B S] | [PE W S] | [S U PE] | [PE B S]
PA ::= S | ¬PE | PA ∧ PA | PA ∨ PA | XPA | GPA | FS

| [PA W S] | [PA U S] | [S B PE] | [PA W S] | [PA U S] | [S B PE]

We call a formula without path quantifiers A and E a PE-formula if it can be
derived from the nonterminal PE with the above grammar rules. The trans-
lation of these PE-formulas to ω-automata by closures is done by the follow-
ing equations (any LeftCTL∗ formula can be reduced to one with only the
operators X, U and B):

Lemma 1 (Temporal Closure of Generalized Co-Büchi Automata).
Given a formula Φ of B+(FGΦ1, . . . ,FGΦn) and a variable p. Define for any
set Q of variables the formula ΦQ :=

∧
q∈Q ¬p. Then, the following equations

are valid:

– for propositional ϕ, we have ϕ = A∃

0
@

{p, q},¬p ∧ q,
(Xp) ∧ (Xq = q ∧ (p ∨ ϕ)),
FGq

1
A

– X [A∃ (Q,ΦI , ΦR, Φ)] = A∃

0
@
Q ∪ {p},¬p ∧ ΦQ,�¬p ∧ ΦQ ∧ Xp ∧ XΦI

� ∨ [p ∧ ΦR ∧ Xp] ,
Φ

1
A

– [ϕ U A∃ (Q,ΦI , ΦR, Φ)] = A∃

0
BBBB@

Q ∪ {p},¬p ∧ ΦQ,�¬p ∧ ΦQ ∧ ϕ ∧ X(¬p ∧ ΦQ)
�∨�¬p ∧ ΦQ ∧ ϕ ∧ X(p ∧ ΦI)

�∨
[p ∧ ΦR ∧ Xp] ,
Φ

1
CCCCA

– [A∃ (Q,ΦI , ΦR, Φ) B ϕ] = A∃

0
BBBB@

Q ∪ {p},¬p ∧ ΦQ,�¬p ∧ ΦQ ∧ ¬ϕ ∧ X(¬p ∧ ΦQ)
�∨�¬p ∧ ΦQ ∧ ¬ϕ ∧ X(p ∧ ΦI ∧ ¬ϕ)

�∨
[p ∧ ΦR ∧ Xp] ,
FG(¬p ∧ ΦQ) ∨ Φ

1
CCCCA

Instead of giving a formal proof, we only explain the intuition that is behind
the closure under U: a new initial state (encoded by ¬p ∧ ΦQ) is added with
a self-loop (encoded by ¬p ∧ ΦQ ∧ ϕ ∧ X(¬p ∧ ΦQ)) that is enabled under ϕ.
Also, there are transitions (encoded by ¬p ∧ ΦQ ∧ ϕ ∧ X(p ∧ ΦI)) to any initial

324 Klaus Schneider

state ΦI that are also enabled under ϕ. If p has become true, it will stay for all the
future time true and therefore enables the transitions ΦR of the (sub)automaton
A∃ (Q,ΦI , ΦR, Φ) (encoded by p∧ΦR∧Xp). The acceptance condition Φ requires
that we can not stay forever in the added state ¬p ∧ ΦQ, which must however
be allowed for the weak U operator (and also for the B operator). The closures
under X and B are constructed in a similar manner.

function extract PE(ϕ)
case ϕ of

is prop(ϕ) : return ({}, ϕ);
ϕ1 ∧ ϕ2 : (E1, ψ1) ≡ extract PE(ϕ1); (E2, ψ2) ≡ extract PE(ϕ2);

return (E1 ∪E2, ψ1 ∧ ψ2);
ϕ1 ∨ ϕ2 : (E1, ψ1) ≡ extract PE(ϕ1); (E2, ψ2) ≡ extract PE(ϕ2);

return (E1 ∪E2, ψ1 ∨ ψ2);
Xϕ1 : (E1, ψ1) ≡ extract PE(ϕ1); return (E1,Xψ1);
[ϕ1 B ϕ2] : (E1, ψ1) ≡ extract PE(ϕ1); (E2, ψ2) ≡ tableau(ϕ2);

return (E1 ∪E2, [ψ1 B ψ2]);
[ϕ1 U ϕ2] : (E1, ψ1) ≡ tableau(ϕ1); (E2, ψ2) ≡ extract PE(ϕ2);

return (E1 ∪E2, [ψ1 U ψ2]);

function close(ϕ)
case ϕ of q

is prop(ϕ) : return Πprop(ϕ);
ϕ1 ∧ ϕ2 : return Ω∧(close(ϕ1), close(ϕ2));
ϕ1 ∨ ϕ2 : return Ω∨(close(ϕ1), close(ϕ2));
Xϕ1 : return ΩX(close(ϕ1));
[ϕ1 B b] : ΩB(b, close(ϕ1))
[ϕ1 U b] : ΩU(b, close(ϕ1))

function Closed Tableau(Φ)
({�1 = ϕ1, . . . , �n = ϕn}, Ψ) := extract PE(NNF(Φ));
ΦR :=

Vn
i=1 trans(�i, ϕi);

ΦF :=
Vn

i=1 fair(�i, ϕi);
A∃ (Q,ΨI , ΨR, ΨF) := close(Ψ);
return A∃ (Q ∪ {�1, . . . , �b}, ΦI ∧ ΨI , ΦR ∧ ΨR, ΦF ∧ ΨF);

Fig. 1. Algorithm for translating LTL to ω-automata by means of closures

Note that only one further state is added by the above closures (we use a
wasteful encoding that introduces a new state variable for the encoding of the
new state). Similar closures hold also for generalized Büchi automata, and also
for conjunction and disjunction. Assume that the functions ΩX, ΩU, ΩB, Ω∧, Ω∨
implement the closures under X, U, B, ∧, and ∨, respectively. Πprop computes
the ω-automaton for propositional formulas. Using these functions, the function
call close(Φ) with a PE-formula Φ for the algorithm given in figure 1 yields in
a nondeterministic generalized co-Büchi automaton A∃ (Q,ΦI , ΦR, ΦF) that is

Yet Another Look at LTL Model Checking 325

equivalent to Φ. This automaton has O(|Φ|) states and an acceptance condition
of length O(|Φ|).

In [8], it is shown that generalized co-Büchi automata can be made deter-
ministic, and that we can reduce the acceptance condition to the normal form∨f

i=0 FGΦi where even f = 0 will do. Hence, we can compute for any LeftCTL∗

formula a deterministic co-Büchi automaton. As PA is dual to PE , and determin-
istic Büchi automata are the complements of deterministic co-Büchi automata,
this means that we can compute for any PA formula a deterministic Büchi au-
tomaton only by application of the above closure theorems. Hence, we have the
following result (similar to [7]).

The o re m 2 . The fol lowin g fact s are valid:

1. For all Φ ∈ PE there is an equivalent nondeterministic generalized co-Büchi
automaton with O(|Φ|) states and an acceptance condition of length O(|Φ|).

2. For all Φ ∈ PE there is an equivalent nondeterministic ω-automaton with
O(|Φ|) states and an acceptance condition of the form

∨n
i=1 FGϕi with propo-

sitional ϕi, n ∈ 2O(|Φ|), and |ϕi| ∈ O(|Φ|).
3. For all Φ ∈ PE there is an equivalent deterministic co-Büchi automaton.
4. For all Φ ∈ PA there is an equivalent deterministic Büchi automaton.

3 Translating LTL to ω-Automata by Closures

To translate an arbitrary LTL formula Φ, we abbreviate each subformula ϕ
of Φ that violates the grammar rules of PE by a new variable �ϕ (see function
extract PE(ϕ) of figure 1). The resulting PE-formula Ψ can then be translated by
means of the closures to a nondeterministic generalized co-Büchi automaton AΨ .
Of course, it has to be assured that � behaves always equivalent to ϕ. According
to the product model checking approach [6], we therefore add transitions and
fairness constraints according to [6] (see also [1] for the functions trans and fair).
Hence, we obtain the following result:

The o re m 3 . Fo r a n y s t r u c t u r e K , any state s of K , and any quantifier-free for-
mula Φ, the following is equivalent for A := A∃ (Q,ΦI , ΦR, ΦF) =
Closed Tableau(Φ) (KA is the Kripke structure associated with A):

– there is a fair path π starting in s such that (K, π) |= Φ holds
– there is an initial state s0 of A such that there is a fair path π× πA through

K ×KA such that (K ×KA, (s, s0)) |= ΦF holds.

Moreover, ΦF is of the form (
∧n

i=1 GFΦi)∧Ψ , where Ψ is built-up with conjunc-
tions and disjunctions of FGΨi formulas.

There is also the possibility to abbreviate more subformulas than necessary (for
extracting a PE formula), so that one can gradually choose between the tradi-
tional translation and the one based on closures for optimizations.

326 Klaus Schneider

References

1. K. Schneider and D. Hoffmann. A HOL conversion for translating linear time tem-
poral logic to ω-automata. In Higher Order Logic Theorem Proving and its Appli-
cations, LNCS, Nice, France, September 1999. Springer Verlag. 321, 322, 325

2. E. M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model check-
ing. In Conference on Computer Aided Verification (CAV), LNCS 818, pp. 415–427,
Standford, California, USA, June 1994. Springer-Verlag. 321, 322

3. G.G de Jong. An automata theoretic approach to temporal logic. In Computer Aided
Verification (CAV), LNCS 575, pp. 477–487, Aalborg, July 1991. Springer-Verlag.
322

4. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 133–191, Amsterdam, 1990. Elsevier
Science Publishers. 323

5. K. Schneider. CTL and equivalent sublanguages of CTL*. In C. Delgado Kloos,
editor, IFIP Conference on Computer Hardware Description Languages and their
Applications (CHDL), pp. 40–59, Toledo, Spain, April 1997. IFIP, Chapman and
Hall. 322, 323

6. K. Schneider. Model checking on product structures. In Formal Methods in
Computer-Aided Design, LNCS 1522, pp. 483–500, Palo Alto, CA, November 1998.
Springer Verlag. 321, 322, 325

7. O. Kupferman and M. Y. Vardi. Freedom, weakness, and determinism: From linear-
time to branching-time. In IEEE Symposium on Logic in Computer Science, 1998.
322, 325

8. K. Wagner. On ω regular sets. Information and control, 43:123–177, 1979. 323,
325

	Introduction
	Translating LeftCTL* cap LTL to omega-Automata by Closures
	Translating LTL to omega-Automata by Closures

